Subsection 1.2.3 Newton's method in the complex domain
Let's move now to the complex domain, where even crazier things can happen. To understand this stuff, of course, you'll need a basic understanding of complex numbers but it's really not a daunting amount of information. You'll need to know that a complex number \(z\) has the form
\begin{equation*}
z = x+iy,
\end{equation*}
where \(x\) and \(y\) are real numbers (the real and imaginary parts of \(z\)) and \(i\) is the imaginary unit (thus \(i^2=-1\)). You'll also need to know (or accept) that you can do arithmetic with complex numbers and plot them in a plane, called the complex plane.