Generating a self-similar set with an IFS

Generate an image of the self-similar set generated by the following IFS:

[dmath]
\begin{align}
f_1(\vec{x}) &= \left(
\begin{array}{cc}
\frac{1}{2} & \frac{1}{2 \sqrt{3}} \\
-\frac{1}{2 \sqrt{3}} & \frac{1}{2}
\end{array}
\right) \cdot \vec{x} \\
f_2(\vec{x}) &= \left(
\begin{array}{cc}
0 & -\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} & 0
\end{array}
\right) \cdot \vec{x} + \left(
\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2 \sqrt{3}} \
\end{array}
\right)\\
f_3(\vec{x}) &= \left(
\begin{array}{cc}
\frac{1}{2} & \frac{1}{2 \sqrt{3}} \\
-\frac{1}{2 \sqrt{3}} & \frac{1}{2}
\end{array}
\right) \cdot \vec{x} + \left(
\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2 \sqrt{3}}
\end{array}
\right)
\end{align}
[/dmath]

Feel free to experiment with both our Mathematica packages and our Javascript toy. Also both those tools offer multiple algorithms and colors that you might want to play with.

Sign In or Register to comment.