Sahil wants points

Use Mathematica to find a numerical solution to the following system: $u_t=u_{xx}$, $u(x,0)=\sin(5x)$, $u(0,t)=0$, $u(1,t)=1$.

Comments

  • Using the code:

    heatSystem = {
       D[u[x, t], t] == D[u[x, t], x, x],
       u[x, 0] == Sin[5 x],
       u[0, t] == 0, u[1, t] == 1};
    u[x_, t_] = NDSolveValue[heatSystem,
      u[x, t], {x, 0, 1}, {t, 0, 1}]
    Manipulate[Plot[u[x, t], {x, 0, 1},
      ColorFunction -> "TemperatureMap", 
      ColorFunctionScaling -> False,
      PlotRange -> {-1, 1}],
     {t, 0, 0.15}]
    pics = Table[Plot[u[x, t], {x, 0, 1},
        ColorFunction -> "TemperatureMap", 
        ColorFunctionScaling -> False,
        PlotRange -> {-1, 1}],
       {t, 0, 0.5, 0.01}];
    Export["anim.gif", pics]
    u[0.5, 1]
    

    The graph of the solution is:

    The solution to the system $u_{t}=u_{xx}, u(x,0)=sin(5x), u(0,t)=0, u(1,t)=1$ at the midpoint when t=1 is:

    $u(0.5,1)=0.0894617$

Sign In or Register to comment.