Quick classification of 2D systems

edited October 2020 in Assignments

(10 pts)

Open this webpage and refer to the first section on "Quick classifications" to get four different 2D linear systems. Quickly classify the origin for each as

  • An unstable saddle point,
  • An unstable node or spiral, or
  • A stable fixed point.

You can do so using the following condensed version of theorem 4.40 from our text regarding the linear system $\vec{x}'=A\vec{x}$, where $A$ is a square matrix with $\det A \neq 0$:

  • If $\det A<0$, then the origin is a saddle point (and, therefore, unstable)
  • If $\det A>0$ and $\text{tr}\,A>0$, then the origin is an unstable node or spiral,
  • If $\det A>0$ and $\text{tr}\,A<0$, then the origin is a stable node or spiral.

In your answers, be sure to include

  1. The system,
  2. The determinant and trace, and
  3. The classification

Here is a template that you can use to enter a 2D system into the forum:

$$
  \begin{align}
    x' &= ax + by \\\\
    y' &= cx + dy
  \end{align}
$$

Comments

  • edited October 2020

    $$
    \begin{align}
    x' &= -3x - 3y \\
    y' &= 8x + 6y
    \end{align}
    $$

    trace = 3
    determinant = 6
    Unstable node or trace

    $$
    \begin{align}
    x' &= -3x - 2y \\
    y' &= 9x + 8y
    \end{align}
    $$

    trace = 5
    determinant = -6
    Saddle point

    $$
    \begin{align}
    x' &= -3x + 3y \\
    y' &= -5x + 7y
    \end{align}
    $$

    trace = 4
    determinant = -6
    Saddle point

    $$
    \begin{align}
    x' &= 4x + 9y \\
    y' &= 4x + 0y
    \end{align}
    $$

    trace = 0
    determinant = -36
    Saddle point

    mark
  • edited October 2020

    $$
    \begin{align}
    x' &= -9x + 4y \\
    y' &= -3x + -5y
    \end{align}
    $$
    Det= 57
    Tr=-14 so, the origin is a stable node/spiral.
    $$
    \begin{align}
    x' &= 7x + 9y \\
    y' &= 2x + 2y
    \end{align}
    $$
    Det=-4 so, the origin is an unstable saddle point.
    $$
    \begin{align}
    x' &= -5x + 7y \\
    y' &= 6x +8y
    \end{align}
    $$
    Det=-82 so, the origin is an unstable saddle point.
    $$
    \begin{align}
    x' &= -2x - 9y \\
    y' &= -4x + 6y
    \end{align}
    $$
    Det= -48 so, origin is an unstable saddle point.

    mark
  • edited October 2020

    $$
    \begin{align}
    x' &= 2x + 5y \\
    y' &= -3x - 9y \\
    tr &= -7 \\
    det &=-3
    \end{align}
    $$
    The origin is an unstable saddle point because the det<0

    $$
    \begin{align}
    x' &= -2x - 3y \\
    y' &= 9x + 5y \\
    tr &= 3 \\
    det &= 17
    \end{align}
    $$
    The origin is an unstable spiral because tr>0, det>0, and 4det>tr^2

    $$
    \begin{align}
    x' &= -10x - 10y \\
    y' &= -6x + y \\
    tr &= -9 \\
    det &=-50
    \end{align}
    $$
    The origin is an unstable saddle point because the det<0

    $$
    \begin{align}
    x' &= -4x - 9y \\
    y' &= -x - 4y \\
    tr &= -8 \\
    det &=6
    \end{align}
    $$
    The origin is a stable node because tr<0, det<0, and 4det<tr^2

    mark
  • $$
    \begin{align}
    x' &= -1x - 7y \\
    y' &= 6x +3y
    \end{align}
    $$
    Det=39, trA=2, Unstable node or Spiral

    $$
    \begin{align}
    x' &= 8x +4y \\
    y' &= -1x -10y
    \end{align}
    $$
    Det=-76, Saddle Point

    $$
    \begin{align}
    x' &= -2x - 9y \\
    y' &= -7x + 2y
    \end{align}
    $$
    Det=-67, Saddle Point

    $$
    \begin{align}
    x' &= -4x -2y \\
    y' &= -4x - 5y
    \end{align}
    $$
    Det=-3, Saddle Point

    mark
  • My first system is
    $$
    \begin{align}
    x' &= -6x + 1y \\
    y' &= 4x + -6y
    \end{align}
    $$
    The determinant is 40 and the trace is -12 so it is a stable node or spiral.

    My second system is
    $$
    \begin{align}
    x' &= -4x - 3y \\
    y' &= 6x - 7y
    \end{align}
    $$
    The determinant is 10 and the trace is -11 so it is a stable node or spiral.

    My third system is
    $$
    \begin{align}
    x' &= 7x - 10y \\
    y' &= -3x - 7y
    \end{align}
    $$
    The determinant is -19 so it is a saddle point.

    My final system is
    $$
    \begin{align}
    x' &= -4x + 0y \\
    y' &= 3x + 3y
    \end{align}
    $$
    The determinant is -12 so it is a saddle point.

    mark
  • $$
    \begin{align}
    x' &= -3x + 0y \\
    y' &= 0x - 10y
    \end{align}
    $$
    trace = -13
    determinant = 30
    Stable node or spiral

    $$
    \begin{align}
    x' &= -4x + 4y \\
    y' &= -2x - 5y
    \end{align}
    $$
    trace = -9
    determinant = 28
    Stable node or spiral

    $$
    \begin{align}
    x' &= 7x - 5y \\
    y' &= -7x - 3y
    \end{align}
    $$
    trace = 4
    determinant = -56
    saddle

    $$
    \begin{align}
    x' &= 3x - 8y \\
    y' &= -4x - 2y
    \end{align}
    $$
    trace = 1
    determinant = -38
    saddle

    mark
  • edited October 2020

    $$
    \begin{align}
    x' &= -2x + 2y \\
    y' &= -6x + 0y
    \end{align}
    $$
    Determinant is -12
    Trace is -2
    Stable node or spiral
    $$
    \begin{align}
    x' &= -6x - 10y \\
    y' &= 3x + 6y
    \end{align}
    $$
    Determinant is -6
    Trace is 0
    Saddle point
    $$
    \begin{align}
    x' &= 7x + 9y \\
    y' &= -1x - 7y
    \end{align}
    $$
    Determinant is -40
    Trace is 0
    Saddle point
    $$
    \begin{align}
    x' &= 5x - 8y \\
    y' &= -10x + 6y
    \end{align}
    $$
    Determinant is -50
    Trace is 11
    Saddle point

    mark
  • edited October 2020

    $$
    \begin{align}
    x' &= -7x + 9y \\
    y' &= 8x + 1y
    \end{align}
    $$

    Det(A)=-79
    Tr(A)=-6
    Saddle point

    $$
    \begin{align}
    x' &= -4x + 7y \\
    y' &= 7x -5y
    \end{align}
    $$

    Det(A)=-4
    Tr(A)=-9
    Saddle point

    $$
    \begin{align}
    x' &= -10x - 9y \\
    y' &= -1x +7y
    \end{align}
    $$

    Det(A)=-61
    Tr(A)=-3
    Saddle point

    $$
    \begin{align}
    x' &= -3x - 1y \\
    y' &= -5x -2y
    \end{align}
    $$

    Det(A)=1
    Tr(A)=-5
    Stable Node

    mark
  • edited October 2020
    Determinant = 12
    Trace = -7
    Stable Node 
    
    
    
    Determinant = -16
    Trace = 6
    Saddle Point 
    
    
    Determinant = -38
    Trace = 1 
    Saddle Point 
    
    
    Determinant = -21
    Trace = 7
    Saddle Point 
    
    mark
  • $$
    \begin{align}
    x' &= 0x - 4y \\
    y' &= 8x + 3y
    \end{align}
    $$

    Trace = 3
    Determinant = 32
    Unstable Node or Trace

    $$
    \begin{align}
    x' &= 0x - 8y \\
    y' &= -6x + 7y
    \end{align}
    $$

    Trace = 7
    Determinant = -48
    Saddle Point

    $$
    \begin{align}
    x' &= 3x - 7y \\
    y' &= -5x - 8y
    \end{align}
    $$

    Trace = -5
    Determinant = -59
    Saddle Point

    $$
    \begin{align}
    x' &= 8x + 8y \\
    y' &= 5x + 2y
    \end{align}
    $$

    Trace = 10
    Determinant = -24
    Saddle Point

    mark
  • 1.
    Determinant = -10
    Trace = -7
    Saddle Point

    2.
    Determinant = 38
    Trace = -5
    Stable Node

    3.
    Determinant = -33
    Trace = 1
    Saddle Point

    4.
    Determinant = 23
    Trace = 4
    Unstable Node

    mark
  • $$
    \begin{align}
    x' &= 5x + 7y \\
    y' &= -10x
    \end{align}
    $$

    $det(A) = -70$, so the origin is a saddle point.

    $$
    \begin{align}
    x' &= 8x - 2y \\
    y' &= -6x - 8y
    \end{align}
    $$

    $det(A) = -76$, so the origin is a saddle point.

    $$
    \begin{align}
    x' &= 6x + 6y \\
    y' &= 6x + 1y
    \end{align}
    $$

    $det(A) = -30$, so the origin is a saddle point.

    $$
    \begin{align}
    x' &= -10x - 9y \\
    y' &= -2x - 9y
    \end{align}
    $$

    $det(A) = 72$ and $tr(A) = -19$, so the origin is stable node or spiral.

    mark
  • Determinant=3
    Trace=1
    unstable node

    Determinant=-46
    Trace=-9
    saddle

    Determinant=-15
    Trace=8
    saddle

    Determinant=8
    Trace=1
    unstable node

    mark
  • $$
    \begin{align}
    x' &= 8x - 2y \\
    y' &= -10x - 8y
    \end{align}
    $$

    determinant = $-44$
    trace = $0$
    unstable saddle point

    $$
    \begin{align}
    x' &= -3x - 8y \\
    y' &= -8x + 9y
    \end{align}
    $$

    determinant = $-91$
    trace = $6$
    unstable saddle point

    $$
    \begin{align}
    x' &= 3x + 6y \\
    y' &= 4x - y
    \end{align}
    $$

    determinant = $-27$
    trace = $2$
    unstable saddle point

    $$
    \begin{align}
    x' &= 3x - y \\
    y' &= -2x + 3y
    \end{align}
    $$

    determinant = $7$
    trace = $6$
    unstable node or spiral

    mark
  • maxmax
    edited October 2020

    $$
    \begin{align}
    x' &= -1x - 10y \\
    y' &= 0x - 5y
    \end{align}
    $$

    det = 5
    tr = -6
    origin is a stable node or spiral

    $$
    \begin{align}
    x' &= -10x - 9y \\
    y' &= 7x - 5y
    \end{align}
    $$

    det = 113
    tr = -15
    origin is a stable node or spiral

    $$
    \begin{align}
    x' &= 6x - 6y \\
    y' &= -4x - 7y
    \end{align}
    $$

    det = -66
    tr = -1
    origin is a saddle point (and unstable)

    $$
    \begin{align}
    x' &= 6x - 3y \\
    y' &= 5x + 1y
    \end{align}
    $$

    det = 21
    tr = 7
    origin is unstable node or spiral

    mark
  • edited October 2020

    $$ x'=-2x+y$$$$y'=-6x+4y$$
    det=-2
    Since the $det<0$, this is a saddle (and unstable)

    $$ x'=9x-10y$$$$y'=-x-8y$$
    det=-82
    Since the $det<0$, this is a saddle (and unstable)

    $$ x'=-7x+4y$$$$y'=-6x-y$$
    det=31, 4det=124
    tr=-8, $tr^2$=64
    Since the $det>0$ and $tr<0$ and $4det>tr^2$, this is a stable spiral

    $$ x'=-5x+5y$$$$y'=x+4y$$
    det=-25
    Since the $det<0$, this is a saddle (and unstable)

    mark
  • edited October 2020

    $$ x'=8x-7y$$ $$ y'=-5x-4y$$

    det = -67
    tr = 4
    saddle; unstable

    $$ x'=-x-4y$$ $$ y'=0x+4y$$

    det = -4
    tr = 3
    saddle; unstable

    $$ x'=2x+9y$$ $$ y'=6x-8y$$

    det = -70
    tr = -6
    saddle; unstable

    mark
  • $$
    \begin{align}
    x' &= 3x -10y \\
    y' &= 8x + 6y
    \end{align}
    $$
    Det>0
    Tr>0
    Unstable node or spiral

    $$
    \begin{align}
    x' &= -8x + 2y \\
    y' &= 6x + 6y
    \end{align}
    $$
    Det<0
    Saddle point

    $$
    \begin{align}
    x' &= 0x -3y \\
    y' &= -9x + 3y
    \end{align}
    $$
    det<0
    Saddle point

    $$
    \begin{align}
    x' &= -8x -1y \\
    y' &= -6x + 0y
    \end{align}
    $$
    Det<0
    Saddle point

Sign In or Register to comment.