HW 1 Write up

edited September 2019 in Problems

The problem: Let $\vec{v}_1$ and $\vec{v}_2$ be vectors in $\mathbb R^2$. Show that

$$\langle \{\vec{v}_1, \vec{v}_2 \} \rangle = \langle \{2\vec{v}_1 - \vec{v}_2, \vec{v}_1 + 2\vec{v}_2 \} \rangle.$$

Comments

  • edited September 2019

    Proof 1

    We first show that
    $$\langle \{\vec{v}_1, \vec{v}_2 \} \rangle \subset \langle \{2\vec{v}_1 - \vec{v}_2, \vec{v}_1 + 2\vec{v}_2 \} \rangle.$$
    To that end, suppose that $a_1$ and $a_2$ are scalars so that
    $$a_1\vec{v}_1 + a_2\vec{v}_2 \in \langle \{\vec{v}_1, \vec{v}_2 \} .$$
    We must find scalars $b_1$ and $b_2$ such that
    $$a_1\vec{v}_1 + a_2\vec{v}_2 = b_1 (2\vec{v}_1 - \vec{v}_2) + b_2 (\vec{v}_1 + 2\vec{v}_2).$$
    Rewriting the right hand side, we find
    $$a_1\vec{v}_1 + a_2\vec{v}_2 = (2 b_1 + b_2)\vec{v}_1 + (-b_1 + 2b_2)\vec{v}_2.$$
    Thus, finding $b_1$ and $b_2$ is equivalent to solving the linear system
    $$
    \begin{align}
    2b_1 + b_2 &= a_1 \\
    -b_1 + 2b_2 &= a_2.
    \end{align}
    $$
    Of course, this has a solution as long as the coefficient matrix
    $$
    \left(\begin{matrix}
    2 & 1 \\
    -1 & 2
    \end{matrix}\right)
    $$
    is nonsingular. Of course, the matrix *is* nonsingular, since the columns are linearly independent. (See theorem NME3 on page 161.) Note that the reverse inclusion can be obtained immediately by applying the inverse matrix!

  • edited September 2019

    Proof 2

    Again, we first show that
    $$\langle \{\vec{v}_1, \vec{v}_2 \} \rangle \subset \langle \{2\vec{v}_1 - \vec{v}_2, \vec{v}_1 + 2\vec{v}_2 \} \rangle.$$
    So, suppose that $a_1$ and $a_2$ are scalars so that
    $$a_1\vec{v}_1 + a_2\vec{v}_2 \in \langle \{\vec{v}_1, \vec{v}_2 \} .$$
    We then set
    $$
    \begin{align}
    b_1 &= (2a_1-a_2)/5 \\
    b_2 &= (a_1+2a_2)/5.
    \end{align}
    $$
    Then
    $$
    \begin{align}
    2b_1+b_2 &= \frac{2}{5}(2a_1-a_2) + \frac{1}{5}(a_1+2a_2) = a_1\\
    -b_1+2b_2 &= \frac{1}{5}(-2a_1+a_2) + \frac{2}{5}(a_1+2a_2) = a_2.
    \end{align}
    $$
    Thus,
    $$
    b_1 (2\vec{v}_1 - \vec{v}_2) + b_2 (\vec{v}_1 + 2\vec{v}_2) = (2 b_1 + b_2)\vec{v}_1 + (-b_1 + 2b_2)\vec{v}_2 = a_1\vec{v}_1 + a_2\vec{v}_2.
    $$
    Note that the reverse inclusion is a bit simpler because, as we can see reading the last equation from right to left, given $b_1$ and $b_2$ we simply take
    $$
    \begin{align}
    a_1 &= 2b_1+b_2 \\
    a_2 &= -b_1+2b_2.
    \end{align}
    $$

Sign In or Register to comment.