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THE PREVALENT DIMENSION OF
GRAPHS

Abstract

We show that the upper entropy dimension of the prevalent function
feqo,1]is 2.

1 Prevalence

The extension of the various notions of “almost every” in R" to infinite dimen-
sional spaces is an interesting and difficult problem. Perhaps the simplest and
most successful generalization has been through the use of category. Banach’s
application of category to the investigation of differentiability is classic. As
another example, [HP] demonstrates that the graph of the generic function
has lower entropy dimension one and upper entropy dimension two. There are
fundamental difficulties, however, with attempts to extend measures to infinite
dimensional spaces. Prevalence is a notion defined in [HSY] which generalizes
the measure theoretic “almost every” without actually defining a measure on
the entire space. An equivalent notion was originally introduced in [Chr] as
pointed out in [HSY2]. Prevalence is defined as follows: Let V' be a Banach
space. A Borel set A C V will be called shy if there is a positive Borel measure
won V such that u(A + v) = 0 for every v € V. More generally, a subset of
a shy Borel set will be called shy. In [HSY] it is shown that shyness satisfies
all the properties one would expect of a generalization of measure zero. For
example:

1. Shyness is shift invariant.
2. Shyness is closed under countable unions.

3. A subset of a shy set is shy.
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4. A shy set has empty interior.
5. If V = R"™, then the shy sets coincide with the measure zero sets.

The complement of a shy set will be called prevalent. The goal here is to
investigate the prevalent dimensional properties of graphs of functions.

2 Dimension

In this section, we define the upper entropy index, A, and from that the upper
entropy dimension, A. For € > 0, the e-square mesh for R?2 is defined as the
collection of closed squares {[ic, (i + 1)e] x [je, (j + 1)e]}i,jez. For a totally
bounded set E C R?2, define

N.(E) = # of e-mesh squares which meet E

and
A(E) = limsup M.
>0  —loge
An easy but important property of A is that it respects closure. That is
A(E) = A(E). Another ([F] p. 41) is that the limsup need only be taken
along any sequence {c"}%2, where ¢ € (0,1) and we still obtain the same
value. One problem with A is that it is not o-stable. In other words it is
possible that A(U, E,) > sup,{A(E,)}. For example, A(Q) =1 even though
Q is countable. For this reason, A is used to define a new set function, 3,
defined by: R
A(E) = inf{sup{A(E,)} : E =Up,E,}.
n

This new o-stable set function, ﬁ, is the upper entropy index. See [Edg]
section 6.5 or [F] sections 3.1 through 3.3 for reference.

We may now state the main result. Let C[0,1] denote the Banach space of
continuous, real valued functions defined on [0, 1] with the uniform metric p.
For f € C[0,1], let G(f) = {(z, f(z)) : x € [0,1]} denote the graph of f.

Theorem 2.1 The set {f € C[0,1] : K(G(f)) = 2} is a prevalent subset of
o, 1].
3 Application

In this section, we prove several lemmas and Theorem 2.1. First we fix some
notation. Let I = [k27™,(k + 1)27™] C [0,1] be a dyadic interval, where
k,m € N are fixed. For f € C[0,1], let G;(f) = {(z, f(x))}ser be that
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portion of the graph of f lying over I. For any interval [a,b] C [0, 1] define
Ryla,b] = sup{|f(z) — f(y)| : a < z,y < b}. For n > m, let

(k+1)2"~™_—1
My-o(fy=2" > Rsl2™™(i+1)27"].

i=kan—m
For v € [1,2), let A, ={f € C[0,1] : A(G((f)) > 7}-
Lemma 3.1 For every f € C[0, 1] and natural number n > m,
My (f) € No-n (G1(f)) < 27" 4+ My-n(f).
Proof: See [F] proposition 11.1.0

Corollary 3.1 For every f € C[0,1],

- log My-n (f)
A =1 —= 7
(G1(f)) msup == o
Proof: Note that lim, o 27" My-» (f) = co. Thus
L Mo (Grlf) 2 My ()
M- (f) My (f)
or My—n ~ No-n(G;(f)) as n — co. The result easily follows.O

—1

Lemma 3.2 The set A, is a G4, subset of C[0, 1].
Proof: For any rational number ¢ € (v, 2) and any natural number n > m,

let
log My (f)
log 2™

4,= U NUA4am.

g€Qn(y,2) k=1 n=k

Ay(n) ={f € C[0,1]: > q}.

Note that

So it suffices to show that A,(n) is an open set.
Let f € Ay(n). Choose € > 0 so small that

log(Ms-n (f) — )
log 2n

> q.

Suppose that g € C[0, 1] satisfies p(f, g) < £27™. Then the triangle inequality
yields

|f() = )] < |f(@) —g(x)| + |g(z) — 9| + |9(y) — fF(W)]-
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Thus

lg(x) —gW)| = |f(x) = f(y)| = 227" = |f(z) — f(y)| —e2™ 7™
Therefore
Ry[i27", (1 +1)27"] > Rye[i27", (1 + 1)27"] — 2™ e
and
log(M,-n(9))  log(My-n(f) —¢)
log 27 - log 27
Thus g € A4(n) and A, (n) is open.O

> q.

Lemma 3.3 For all f € C[0,1] and A # 0, A(Gr(f)) = A(Gr(Af)).
Proof: This is a simple consequence of the fact that Rys[a,b] = AR¢[a, b].O.
Lemma 3.4 For all f,g € C[0,1],

A(Gr(f +9)) < max{A(G1(f)), A(Gr(9))}-
Proof: This is a simple consequence of the inequality
Ryi4la,b] < Ryla,b] + Ryla,b] < 2max{Ry[a,b], Ry[a,b]}.O
Lemma 3.5 For all v < 2, A, is a prevalent, Borel set.

Proof: A, is a Borel set by lemma 3.2. Let g € C[0, 1] satisfy A(G(g)) > 7.
The existence of such a g is guaranteed by the fact that the typical g € C[0, 1]
satisfies A(Gr(g)) = 2 (see [HP], Proposition 2). Let u be the Lebesgue type
measure concentrated on the line [g] defined by [g] = {\g € C[0,1] : X\ €
[0,1]}. Let h € C[0,1]. We will show that #{(AS + h) N [g]} = 1. Therefore,
p(AS + h) = 0. Suppose that f1, fo € A are such that fi +h € [g] and
fo+ h € [g]. Then there exists A1, A2 € [0,1] such that f; + h = A;¢g and
fa+h = Aog. Thisimplies h = A\yg— f1 = Aog— fo. Thus fi — fo = (A —A2)g.
This can only happen if Ay = Ay by lemmas 3.3 and 3.4. Therefore, f; = fo.
Since h is arbitrary, this says that A is a shy set or A, is a prevalent set.0
By expressing {f € C[0,1] : A(G;(f)) = 2} as a countable intersection

{fech1:AGI(fH=2t= [] 4,
veQn(1,2)

we obtain the following;:
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Corollary 3.2 The set {f € C[0,1] : A(G1(f)) = 2} is a prevalent, Borel
subset of C0,1].

Finally, we prove theorem 2.1.
Proof: Let {I,,}32, be an enumeration of the dyadic intervals and let

An ={f €C0,1]: A(GL,(f)) = 2}

Then A, is a prevalent, Borel set by corollary 3.2, as is A = N A,,, being the
countable intersection of prevalent, Borel sets. If

~

B={feC[0,1]: A(G(f)) =2},

then we claim that A C B. Let f € A and let G(f) = U;” E» be a de-
composition. Since A respects closure, we may assume that the E,’s are
closed. Since G(f) is closed, one of the E,’s must be somewhere dense by
the Baire category theorem. Therefore, E, D Gy, (f) for some n,k. Thus,
A(E,) > A(Gr,(f)) = 2 and A(G(f)) = 2. Therefore, B is a prevalent set
since it is the superset of a prevalent, Borel set.O
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