INTERSECTIONS OF SELF-SIMILAR SETS

MARK MCCLURE

ABSTRACT. We study sets of the form T N g(T'), where T is self-similar and g
is a bijection. Under certain assumptions, this intersection may be described
using a digraph IF'S.

1. INTRODUCTION

Let 7" be a self-similar set and let g be a bijection. We wish to study sets of the
form T'Ng(T). Natural examples include the intersection of a set with a translated,
rotated or reflected copy of itself. In figure 1 for example, we see two copies of
Sierpinski type triangles shaded gray; one is a reflection of the other. The dark
portion is an image of the intersection and was generated using a digraph TFS. The
goal of this paper is to outline how and when a digraph TFS can be used to generate
an such an intersection. We will need to make some fairly strong assumptions to
be achieve our objectives. In particular, the TFS generating the given self-similar
set together with the function g will need to interact nicely with some lattice. In
spite of this, we are still able to generate a fairly rich set of examples.

FIGURE 1. The intersection of two Sierpinski triangles

This paper is organized as follows. In section 2, we will define our terms and
setting, describe the basic construction, and demonstrate the construction with a
few examples. In section 3, we present a natural generalization involving intersec-
tions of digraph self-similar sets. The example in this section describes a portion
of the boundary of an aperiodic pair of tiles. In fact, the study of self-affine tiles,
as in [13], was the starting point for the current paper. Finally in section 4, we
discuss separation properties used for computation of fractal dimension.
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2. THE SETTING AND BASIC CONSTRUCTION

2.1. Definitions. The basic tool for constructing self-similar sets is the iterated
function system or IFS. The basic theory of iterated function systems was laid out
in [7] and [5, 6] are standard references. We will work exclusively in Euclidean space
R". A function f : R® — R" is called a contraction if there is a number r € (0, 1)
so that | f(z)— f(y)| < r|z—y|. We will deal exclusively with bijective contractions.
An iterated function system or IFS on R™ is a non-empty set of contractions of R™.
A now classic result in fractal geometry states that given an IFS {f;}72,, there is
always a unique non-empty, compact set 7' C R™ so that

T = U £i(1).

The set T is called the invariant set of the IFS. If each f; is a similarity (i.e. | f;(z) —
fi(y)] = rile — y|, for all z,y), then T is called self-similar. In this case, the list of
numbers {r;}72, is called the similarity ratio list of the IFS. If each f; is an affine
function, then 7" is called a self-affine set.

In order to compute the dimension of a self-similar set, some sort of separation
condition should be satisfied. Of course, by dimension we mean the Hausdorff
dimension, which is equal to the box-counting dimension for self-similar sets. The

simplest and most well known separation condition is the open set condition or
OSC. An TFS satisfies OSC if there is a non-empty open set U such that

Uvo AW,
i=1

with this union disjoint. A fundamental result in fractal geometry states that if T
is a self-similar set generated by an IFS satisfying OSC and with ratio list {r;}/2,,
then the dimension of T is the unique number s > 0 so that

m

Z ri =1.

i=1
When there is a single number 7 > 0 so that r; = r for each 7, then this formula
states that the dimension is - log(m)/log(r).

Now suppose that 7" is the invariant set of an TFS consisting of bijective contrac-
tions and that ¢ : R” — R”™ is a bijection. In order to describe T'N g(7T'), we need
to generalize the notion of IFS to that of a digraph IF'S. The notion of a digraph
iterated function system was formulated in [11] and an exposition appears in [5].
The adjectives mixed [1] and generalized [13] have also been used. A Mathematica
package to generate sets using digraph iterated function systems is described in [12].

The first component to define a digraph IFS is a directed multi-graph G that
consists of a finite set V' of vertices and a finite set £ of directed edges between
vertices. Given two vertices u and v, denote the set of all edges from u to v by Fy,.
Given e € F,, we say that u is the initial vertex of e and v is the terminal vertex
of e. A path through G is a finite sequence of edges so that the terminal vertex of
any edge is the initial vertex of the subsequent edge. The set of paths from u to v
is denoted by El(fy) A loop is any path which begins and ends at the same vertex.
G is called strongly connected if for every u,v € F| there is a path from u to v.

We now form a digraph TFS by associating a metric space X, with each vertex
u € V. In this paper, X,, = R” for each u, but they should still be thought of
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as distinct spaces. Also, for each u,v € V and e € F,,, we associate a function
fe 1 Xy — Xy. Given a path a through GG, we may form a function f, by composing
the functions f. over e € a taken in reverse order along the path a. If a € Em),
then fo : Xy — Xyu. If each f. is a similarity with similarity ratio r., then the
similarity ratio of f, is simply the product of the r, over e € a and is denoted r,,.
The digraph 1FS is called contractive if ro, < 1 for every loop a. Given a contractive
digraph TFS, there is a unique set of compact sets 73, one for every v € V, such

that for every u € V

(1) Tu: U U fe(Tv)'

vEV eEFEuy

Such a collection of sets is called the invariant list of the digraph IFS. If each
function f. is a similarity, then the members of the invariant list are called digraph
self-similar sets.

As with self-similar sets, the dimension of digraph self-similar sets may be com-
puted provided some separation condition is satisfied. A digraph IFS is said to
satisfy the open set condition if there exist open sets U,, one for every v € V| such

that for every u € V
v.olJ U £,
vEV e€Eyy

with this union disjoint. When a digraph IFS arising from a strongly connected
digraph satisfies OSC and each f. is a similarity with common similarity ratio r,
then the dimension of all sets in the invariant list may be computed using the
substitution matriz of the digraph IFS. The substitution matrix M is simply the
adjacency matrix representation of the digraph, i.e. My, = #Fy,. In this case, the
common dimension of the digraph self-similar sets is - log(\)/ log(r), where X is the
spectral radius of M.

Note that a digraph TFS itself may be thought of as a type of matrix, which we
denote M™*. The rows and columns of M* are indexed by the vertices V. The entry
M}, in row u and column v should be the set of functions mapping X, — X,.

uv
Using this notation, we may write equation 1 alternatively as

(2) =) U rmn)

VeV fEMS,

This is essentially the representation used to store a digraph IFS in [12]. It is
also particularly convenient when V is a large set, as will often happen in our
construction.

2.2. The main construction. The technique to find a digraph TFS to generate
an intersection of the form T'Ng(7T') is described in the proof the following theorem.
This theorem is essentially a direct generalization of the technique used to describe
the boundary of a tile in [13].

Theorem 1. Let T be the invariant set of an IFS {f;}72, consisting of bijective
contractions. Suppose that S is a finite set of bijections so that for all g € S
satisfying TN g(T) # @ and for all i,j = 1,...,m satisfying TN [T gf;(T) £ @ we
have fi'gf; € S. Then the collection of sets {T'Ng(T) : g € S} forms the invariant
list of a digraph IFS.
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Proof. We simply perform a few basic set theoretical operations using the fact that
all functions involved are bijections. Given any g € S,

TNng(T) = [Ufi(T) N g Ufj(T)
= U (fi(T) N gf;(T))
= U n@astefm).

First note that if 7N g(T) = @, then the above calculation shows that 7' N
[i'9fi(T) = @ for each i, j. Even if TNg(T) # @, many of these sets TN f; g f; (T)
may be empty. For those that are not empty however, the corresponding function

filgfiisin S. Given g,h € S, let C(g,h) = {(i,j) : h = f;'gf;}. Then
(3) TngTM =) U HTnr1)

hES (i,§)€C(g,h)

Now equation 3 has the same form as equation 1. The vertices of the digraph may
be taken to be the elements of S. The directed edges from g to h correspond to
the elements of C(g,h). If (f;, f;) € C(g,h), then the function f; is associated
with that directed edge. The digraph TFS is clearly contractive since each f; is a
contraction. Finally, equation 3 states that {T'Ng(7T) : g € S} forms the invariant
list of this digraph TFS. d

In practice, we start with a single function g and are interested in T'Ng(7). Thus
we need to find a set of functions S containing g and satisfying the hypotheses of
the theorem. This will typically be done using an iterative procedure. Start with
with Sy = {g} and recursively define Si41 using a two step process. First, let

S,(cl_gl :SkU{fi—lhfj cheSgandi,j=1,...,m}.

Then form Sky1 by selecting those elements A from 5121_21 such that TN A(T) # @.
Iterate the procedure until no new functions are produced. If T is a complicated
set, then it may be difficult to determine if TN h(T) # @. To simplify the process,
we may use some super-set Ty D T in place of T. For example, Ty may be the
convex hull of T'; determination of the intersection of convex sets is a relatively
easy problem. This may result in a set S which is too large, i.e. there may be
functions h € S such that 7'N A(T) = &. Note however that theorem 1 allows for
this possibility. When the digraph IFS describing the intersection is constructed,
vertices with no edges leaving them will correspond to empty sets. Vertices with
edges going only to empty vertices will also be empty.

As a first example, we intersect the Cantor set with a scaled and translated copy
of itself. Several authors have studied the Cantor set intersected with a translate of
itself [4, 9, 10]. Our example is a variation of this problem. Let C' denote the Cantor
set. Specifically, C is the invariant set of the TFS containing the two real functions
fi(z) = /3 and fo(z) = /3 + 2/3. We will determine a digraph IFS to generate
the set CN($C+ 3). In the language of theorem 1, we take g(z) = z/4+1/2. Note
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that this set is non-empty as it contains 3/4, although the algorithm will yield this
fact independently. Now if we write f;(x) = 2/3 + b; and similarly for f;, we have

_ 1 1 1
filgfj(z) = Z:L‘-I—S <ij-|- 5 —bz> .

In order for this function to be in our set S, we need 3(4b; + 5 —b;) € [-1/4,1]. To
form the set S1, there are four possible combinations of b; and b; to consider.

1 1 3 1
1) b; = b, = —— -0+ =-— = — ——.1
) 0: J 0 3<4O 9 0) 2%[4a]

2 1 1 2 1 1
Q)bi:§,bj:0 ——t 3<ZO+§—§>:-§Q[—1,1]
2 12 1 1
2 2 12 1 2 1
Thus S; = {g,h}, where h(z) = /4. Applying this same process to h, we find

1 1

2 1 2 1
/ . — R — — —_— :_. [p—
)h=2 =0 = 3<40+0 3> 2¢ (1)
2 12 1 1
Np — — I _ — __
bi=0b=3 = 3<43+0 0)—26[4’1]
2 2 12 2 3 1
4’ bi:—b':— f— — — - — — - _ — 1

We have not generated any new functions and the process terminates. In this case,
S=51= {ga h}

We can now use this information to construct the digraph TFS M*. Given any
pair (g1, g2) chosen from S, find all pairs (f;, f;) so that g2 = f;'g1f;. Any such
occurrence generates a directed edge from g1 to g2 labeled by the function f; in
the digraph IFS. In the matrix representation, this means that f; € M . For
example, My, = {f1} since g = fithf; precisely when i = 1 and j = 2. This
observation corresponds to case (3’) above. We may write down the digraph IFS
defining both intersections C'Ng(C) and C' N A(C') in matrix form as follows. First
suppose that the rows and columns are indexed by S in the order (h, g). Then the

full digraph TFS is
v [ Uht At )
< {f} @
It is easy to see that the digraph open set condition is satisfied using the open
intervals (0,1/4) and (1/2,3/4). Thus we may use the substitution matrix M to
compute the common dimension of these sets. Note that the entry M, ,, simply
counts the number of elements in My , . Thus

M:Gé)
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The spectral radius of M is the golden ratio ¢ and the dimension of the sets is
log ¢/ log 3.

A few comments concerning this construction are in order.

(1) Let g(x) = ma 4+ b where m and b are rational. If T' is a one-dimensional
lattice containing b, 2/3, and 2m/3, then 3 (mb; + b — b;) will be in I'. In
fact, any subsequent shifts will also be in I' and the process will terminate
since there are only finitely many shifts 4’ € T' so that C'N (mC +b') # @.

(2) On the other hand, if either m or b are irrational, then the iteration will
not terminate and this technique will not work.

(3) The set C Ng(C) is actually a self-similar set. In fact, it is the invariant
set of the TFS {faf1, fafifi}. This may be deduced from the digraph TFS
above by composing the functions along two paths from node g to itself.
In general, the digraph TFSs we generate may frequently be simplified, but
not typically to the point of a single self-similar set.

2.3. Intersections in the plane. Suppose that 7' is a self-affine set in the plane
and g : R? = R? is a non-singular affine function. Theorem 1 supplies a digraph
IFS to generate T'N g(T), provided the iterative procedure to find S terminates.
We wish to outline conditions sufficient to guarantee the existence of S. If we write
filz) = Aje 4+ b, fi'(x) = A7 (z — b;), and g(x) = Az + b, then we find that
(4) fi'9fi(@) = A7 AA e + AT (Abj b= bj).

Using the general form of equation 4, it is fairly easy to devise conditions con-

ditions to ensure existence of S. In the following lemma, A = {A4;}72, and we act
on A as a set. For example, A= = {A71}72 .

Lemma 2. Suppose that there is a lattice I' C R? which contains b, b;, and Ab;
for all i and satisfies A~'I' C I'. Suppose further that there is a discrete set A C
GLo(R) containing A and satisfying A~*AA C A. Then the iteration procedure to
find S will terminate and T N g(T') will be a digraph self-affine set.

The proof is a simple consequence of the facts that all functions generated are
elements of a discrete set and the convex hull of a self-similar set is bounded.

The overall process is conceptually simple, but tedious; it may be implemented
on a computer. To illustrate the main ideas we discuss the digraph IFS used to
generate figure 1. The initial set 7" is a Sierpinski triangle with vertices at the
points (0,0), (—=2,0), and (2, 2). Specifically, T is generated by the IFS consisting
of the following three functions.

filz) = =z/2
hlz) = ;13/2+<_01)

1
fa(z) = ac/2+< 1 )
The set T 1s intersected with a reflection of itself. The function g is defined by

o= (1 )ee (1)

The hypotheses of lemma 2 are satisfied by choosing T' = 7Z2? and A = {A}. Using
the iterative procedure described earlier, we find that S consists of all functions of
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-(3)

F1GURE 2. The four interesting intersections to generate figure 1

the form h(z) = Az + b where b is one of.

(8)-6)-6)- ) () (2)- G)- (3)- () ()

With this information, the digraph TFS can be set up. The rows and columns will
be indexed by the list of functions above. Given a pair of functions (g1, g2), we find
all pairs of functions (f;, f;) satisfying g5 = f;'g1f;. If (fi, f;) is such a pair, then
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fi € Mglgz'

{fl)f?} {f?}

In this case we find that the matrix M™ expressing the digraph IFS is

@ Ay @ @ o o o

2
o Aht @ {f ) Afsh {fs) R o @ {f}
st @ @ {n @ Afst {fAY {fs} {f} {AH f2}
2 {fs} @ 2 2 2 o Afst At AN}
2 g o o L ¢ © 2 o 2
2 g o o o {f} © o o @
2 g o o o o {fs} © o @
2 g o o o o o {fH} o @
2 g @ o e @ o o {fs} o
2 g @ o o @ o o @ A{fs)

The set we are interested in 7'N g(7') is the third of ten digraph self-similar sets.
Note however that the last six of these are just single points, because the last six
rows of M* contain just one contraction. These arise because h(T) intersects T at
just a vertex. The four interesting intersections are shown in figure 2.

This digraph TFS is not strongly connected, but may still be used to determine
the dimension of the sets. The singletons have dimension zero, of course. We may
discard the last six rows and columns of M*, without changing the dimension; the
presence of these rows and columns contributes countably many isolated points to
the sets in figure 2. The four remaining sets (minus the isolated points) are the
invariant sets of the digraph IFS generated by the first four rows and columns of
M*. This smaller digraph TFS is still not strongly connected, but it does satisfy
OSC. We may choose the open sets to be Ty N h(Ty), where Ty is the interior of
the triangle with vertices (0,0), (—2,0), and (2,2) and h ranges over the first four
functions of S. The second set is simply a one-dimensional self-similar set with
respect to the IFS {f1, f1fs, fof3}. The first set is a one-dimensional self-similar
set with respect to the IFS {f1, f2}, together with countably many copies of the
second set; it also has dimension one. The fourth set is simply a scaled version of
the second set and the third consists of a copy of the first and a copy of the fourth.
Thus all sets have dimension one.

3. INTERSECTION OF DIGRAPH SELF-SIMILAR SETS

Since we have had to introduce digraph iterated function systems to investigate
intersections even when starting with with a simple IFS, it is natural to ask what
happens if we start with digraph self-similar sets. Suppose that {7y }sev is the
invariant list of a digraph IFS satisfying equation 2 (the matrix representation)
where each f is a bijective contraction. Recall that we have associated a metric
space X, with each u € V. Now suppose that g : X, — X, is a bijection. The
basic technique of this paper is applicable to T, N g(7,). Indeed, mimicking the
proof of theorem 1, we find

T. Ng(Ty)

U U r@n|nle|U U r@)

u' feEM? v heM?”

U U U f@wnsighm)).

u' v fEM? , hEM?
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In this situation, the set of functions S should be replaced by a matrix of functions
S indexed by V. S should have the property that whenever g1 € Sy,v,, f € M.}
heM;,,,, and g2 = I Lg1h satisfies Ty, N g2(Ty,) # <, we have go € Sy

g1 € Suyu, and g2 € Sy, let
C(gl’g2) = {(f’ h) E M’:1u2 X M’:H/z :92 = f_lglh}’
We may then write

(5) Tu, mgl(Tvl) = U U f(Tu2 mg2(Tvz))'

U2,V2 Jh)EC g2
926 Sunn, (f,h)€C(g1,92)

1Uz2)?

Juge Gilven

Equation 5 again has the same form as equation 1. Let us write M* for the inter-
section digraph IFS to distinguish it from the original digraph IFS M*. Thus we
may rewrite equation 5 as

Tu1 091(Tu1) = U U f(Tuz mgQ(T’Uz))'

U2,v2

g2€Suju, FeEMS,,

The vertices for M* correspond to the elements of S. The directed edges from g1 to
go correspond to the elements of C(g1,92). If (f,h) € C(g1,92), then the function
f 1s associated with that directed edge. Note that if f € ]/V[\;lgz where g1 € Suyv,
and gs € Su,e,, then f € M7 .. (since f = g1hg3'). It follows that any loop in the
digraph for M beginning and ending at g1 € M} , must correspond to a loop in

ULV
the digraph for M* beginning and ending at u;. Thus M* is contractive whenever
M™ is contractive.

We illustrate this technique using a pair of tiles with fractal boundary. Figure 3
illustrates the sets Ty and Ty under consideration. 77 and Ty are the top two figures
in figure 3. The bottom two figures show how 7) and 7% fit together to form the
invariant list of a digraph IFS. These sets were initially described in [2], where it is
shown that they form an aperiodic pair of tiles.

More specifically, let us say that 7 lives in the space X; and T3 lives in the
space Xa, where X; and X5 are distinct copies of R?, Let ¢ denote the golden ratio
and let R(#) denote the rotation matrix through the angle §. 77 and T are the
invariant sets of the digraph IFS M* defined by

. (AR Afs)
M —< (1) {f3}>’

where

=
&
I

éR(77r/5)$+ ( 1?@ ) ,

oy
=
Il

éR(?ﬂr/fﬁ)x-l— ( 1?@ > and

o sin(47/5)
fa(z) = ;R(47r/5)1:+ < (1 —cos(4m/5)) /¢ ) .

Now suppose that ¢ : X3 = X3 is the function
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Ty T
wi 30!
-1 1 1
¥ I ¥ I
-1 1 1

FIGURE 3. A pair of tiles with fractal boundary

We wish to investigate T} N g(732). The sets T} and g¢(73) are shown in figure 4.
The intersection of these sets forms a portion of the boundary between the two and
is highlighted in the picture. We may again find the matrix S using an iterative
procedure. In this particular case, we set

soz<g {g}>.

To find Sk41, we again use a two step process. The element in row us and column

1) .
V9 Of5k+1 is

S’ET]‘-|217U2'U2 = (Sk’u2U2) U U U U f_lglh
v fEMY ,, 91€Sk,uyv;
heM;

v1vy

We then form Siy1 by choosing from each S(l) those functions g5 so that

k+1,u2v2
Tu, N g2(Ty,) # @. As before, we may choose super sets if desired to simplify the

process.
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F1GURE 4. The intersection of 7} with g(T%)

Performing this process in this particular case, we find that S contains a total of
25 functions. Fifteen of these result in single point intersections that are contained
in the other ten. The other nine of the ten important intersections are shown in
figure 5. Thus the intersection of interest is one of ten digraph self-similar sets; in
fact, it is the fifth element of the invariant list of the digraph IFS represented by
the following matrix M

e {ft e o o o o {fs} {fsi} @
ot 0o e o o {fit o e o {fs}
) ) %} g {fi} @ ) %} 1%} )
) ) %} 1%} 1%} g {fs} @ 1%} )
g {fi} @ 1%} 1%} ) g {fs} @ )
1% 1% g {h} o 1% 1% 1% 1% 1%
i} @ 1% 1% g {h} @ 1% 1% 1%
1% g {h} o 1% 1% 1% 1% 1% 1%
i} @ 1% 1% g {h} @ 1% 1% 1%
g {h} o o 1% 1% g {fs} o 1%

The functions fy, fo, and f3 are the same functions defining the original digraph
IFS M*. A glance at figure 5 reveals that many of these sets are the same up to
isometry. In fact, all of the intersections are geometrically similar to one another. Tt
is not difficult to use this fact to express the object of interest as a single self-similar
set. Note however that this simplification may only be achieved at the expense of
introducing new functions into the digraph IFS. Furthermore, the algorithm we
have used may be automated.

Note that M* is strongly connected and the open set condition is satisfied, as
we will show in the next section. Thus we may use the substitution matrix M to
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re 4
R
4

FIGURE 5. The other nine important intersections

W

compute the dimension of the sets where

01 000O0O0OT1T10Q0
1000010001
0 0001 O0O0O0O0O0
0 0000 O0OT1TG0O0DO
= 01 000 O0O0T1TO0DO
0 001 0 O0O0O0O0OO0
10 000 1 0O0O0O0
001 00 0O0O0OTOTUO
10000 1 0O0O0O0
0100 0O0O0OT1TO0T®O

The spectral radius A ~ 1.839 of this matrix satisfies A* — A2 =X — 1 = 0. The
dimension of the set in question is %g% ~ 1.266.

4. SEPARATION PROPERTIES

In order to compute the fractal dimension of a digraph self-similar set, some
separation property should be satisfied. In this section, we discuss the open set
condition and the weak separation property for digraph iterated function systems
generated by the techniques described in this paper. Since a self-similar set may
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be considered as a digraph self-similar set using a digraph with a single node, we
consider only the more general setting described in section 3.

As in section 3, suppose that {7, },ev is the invariant list of a digraph TFS
M* and that ¢ : X, — X, is a bijection. Furthermore, suppose the digraph IFS
satisfies some separation property. Ideally, we would like the intersection digraph
IFS associated with T, N g(Ty) to inherit the separation property. As the examples
in this paper show, the situation is not quite so simple for the open set condition.
In particular, it is possible that T, C f(7,) for some f € E,,. This makes it
impossible for the open set condition to be satisfied.

Fortunately, there is another separation property, called the weak separation
property or WSP, which is ideally suited for our situation. Furthermore, there is a
natural relationship between WSP and OSC which allows us to show that OSC is
satisfied under appropriate conditions. The weak separation property in the context
of iterated function systems was introduced by Lau and Ngai [8] and studied further
by Zerner [14]. The generalization to digraph iterated function systems was carried
out by Das and Edgar [3].

The are several equivalent formulations of WSP. We choose a particularly simple
formulation here, which is easily applicable to our situation. Although we’ve pri-
marily used the matrix formulation of a digraph TFS to this point, we now switch
to the graph theoretic notation following [3]. Using this notation, as described in
section 2, for u,v € V define

Fuw={fi'fs 10,8 € )Y,

The digraph TFS satisfies WSP if the identity is an isolated point of F,, for every
ueV.

Now suppose that a digraph IFS G and bijection ¢ : X, — X, generate an
intersection digraph TFS G. As observed in the previous section, any loop in the
digraph for G beginning and ending at f. for e € M}, must correspond to a loop in
the digraph G beginning and ending at u. It follows immediately that G satisfies
WSP whenever G satisfies WSP.

We need two more definitions to state the relationship between WSP and OSC.
A set K C R™ is said to be in general position if it is not contained in any affine
subspace of R™. A digraph IFS G is said to distinguish paths if for every u,v € V
and distinct o, 8 € E},, we have f, # fg. Note that if G and G are as above
and G distinguishes paths, then G distinguishes paths using almost the exact same
argument.

The relationship between WSP and OSC is summarized in the following lemma
([3], Proposition 3.1).

Lemma 3. Let G be strongly connected and suppose the elements of invariant list
of G are in general position. Then G satisfies OSC if and only if G has WSP and
G distinguishes paths.

This lemma is immediately applicable to the situation described in the paper.
In particular, the reduced digraph IFS generating the intersections described in
the previous section does satisfy OSC. The larger digraph IFS which also generates
several single point intersections (which are not in general position) does not satisfy

OSC.
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