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THE HAUSDORFF DIMENSION OF
HILBERT’S COORDINATE FUNCTIONS

Abstract
We characterize the coordinate functions of Hilbert’s space-filling
curve using a directed-graph iterated function system and use this to
analyze their fractal properties. In particular, we show that both coor-
dinate functions have graphs of Hausdorff dimension % and level sets of
1

dimension 3.

1 Introduction

Let I = [0,1] denote the unit interval and let I? denote the unit square.
Hilbert’s space filling curve is a continuous, surjective function h : I — I2.
The coordinate functions # and y are given by h(t) = (z(t), y(t)). An excellent
general reference for h is [Sag], where one may find arithmetical expressions
for z and y. More importantly, for this paper, are functional equations given
in [Sag]. We use these to characterize the coordinate graphs using a directed-
graph iterated functions system, henceforth referred to as a DiGraph IFS. This,
in turn, allows us to show that the graphs of  and y have positive, finite %—
dimensional Hausdorfl measure. This is similar to the result in [Kon] that
the coordinate functions of Peano’s space filling curve are each self-affine, and
also have positive, finite %—dimensional Hausdorff measure. Our techniques,
however, more closely model those applied to Kiesswetter’s curve in [Edgl].
Let X denote the graph of  and let Y denote the graph of y. We will see
that X may be decomposed into 4 parts: 2 affine images of itself and 2 affine
images of Y. Similarly, ¥ may be decomposed into 2 affine images of itself
and 2 affine images of X. This is exactly the type of situation which may be
described by a DiGraph IFS. Our treatment follows that of [MW] and [Edg2].
A DiGraph IFS consists of a directed multi-graph, G, together with a
function from R” to R” associated with each edge of G. We will assume that
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all of these functions are contractions, although this condition may be relaxed
somewhat. The directed multi-graph, G, consists of a finite set, V', of vertices
and a finite set, F of directed edges. Given two vertices, u and v, denote
the set of all edges from u to v by E,,. We denote the set of all paths of
length n with initial vertex w by E7. G is called strongly connected if for
every u,v € F, there is a path from u to v. Theorem 4.3.5 of [Edg2] states
that given any DiGraph IFS, there is a unique set of compact sets K, one for
every v € V, such that for every u e V'

Ko= ] (K.

veEV, e€Fyy

Such a set is called the invariant list of the DiGraph IFS. Note that if e € E,,,
then f. maps K, into K,. More generally, if & € E]; has terminal vertex v,
then we may form f, : K, — K, by composing the functions f. over e € «
taken in reverse order along the path a. If K is any compact set, then the
sets U fa(K) converge to K, in the Hausdorff metric as n — co.
aeEn
The sets X and Y will be characterized using affine functions. Define A
and B to be the following matrices.
})
1
2

() e

Let @ € R? represent a column vector and define affine functions using matrix

multiplication as follows.
- 1/4

O k=

oo (i) = AT + ( v ) gy (7)

o zirlin) ez ia)
Cay() = AD ¢y (i) = A
dpy (W) = Bw + ( 3{4 ) dy, () = B + ( :13721 )

We may associate these functions to the edges in a DiGraph simply by labeling
the edges. We may, also, label the vertices to indicate which one corresponds
to X and which one corresponds to Y. The labeled DiGraph for X and Y is
shown in figure 1.

Lemma 1.1 X and Y form the invariant list of the DiGraph IFS shown in
figure 1.
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byy

Figure 1: The DiGraph for X and Y

Proof: This follows immediately from the fact that x and y satisfy the fol-
lowing list of functional equations ([Sag], page 30, ex. 13). We have labeled
the functional equations to clarify the correspondence.

es (1 +1)/4) = ()2 gy y((1+0)/0) = 1/2 4 y(0),2
oo (24 0/4) = /24 2(0)/2 by + (2 +1)/4) = 12+ y(0),2
Coy : 2 (t/4) = y(t)/2 Cye  y(t/4) = (t)/2

dey 1 2((34+1)/4) =1 —y(t)/2 dye ty((3+1)/4) = 1/2 — 2(t)/20

2 Hausdorff Measure and Dimension

In this section, we recall the definitions of Hausdorff measure and dimension,
show that X and Y have dimension < 3/2, and state some useful lemmas.
Our notation has been influenced by [Edg2] and [Fal2], where one may find
proofs of the basic facts.

Let s > 0. We will define the s-dimensional Hausdorft measure, H*, on
Euclidean space, R?. Let FF C IR?. The diameter of F will be denoted by
diam(F). Let € > 0. An e-cover, C, of F' is a countable collection of sets such
that F' C UpecU and diam(U) < ¢ for every U € C. Now define

HI(F) =inf { Z diam(U)* : C is an e-cover of F}
Uec

and
HE(F) = lim HI(F).
e—=0+
Note that this limit is well defined since H:(F') increases as € decreases. It may
be shown that H? is a Borel outer measure on R™. We denote its restriction to
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the H*-measurable sets by H?, also, and call this the s-dimensional Hausdorff
measure.

The Hausdorff dimension of F, dim(F), is defined by
dim(F) =inf{s > 0: H*(F) =0}.

If F'is an infinite set, this is equivalent to
dim(F) =sup{s > 0: H*(F) = oo}.

We will show that 0 < H3/?(X) < oo, so that dim(X) = 3/2, and similarly for
Y. We prove the upper bound here and the lower bound in the next section.

Theorem 2.1 7-[3/2()() < 23/* 5o dim(X) < 3/2. A similar statement holds
forY.

Proof: We write the proof for X. The proof for Y is identical. Note that
each of the affine functions in the DiGraph IFS defining X and Y maps I?
into 72. Thus X, = U fa(fz) forms a nested sequence of sets containing
ocEE;‘(

the invariant set X. Furthermore, each set f,(I?) is a rectangle with width
47" and height 277, due to the affine nature of the functions. There are 47
of these sets since there are 4" paths of length n leaving any vertex in the
DiGraph.

Now, each of the rectangles f, (/%) may be decomposed into 2" squares of
side length 47", Thus, we may cover X by 274" squares of side length 477,
Therefore,

HZ () <20 (V2 A7)/ = 93/

and H3/?(X) < 23/% as n is arbitrary.0

Lower bounds for Hausdorff measure are, typically, more difficult. Our
strategy will be to show that #/?(z=1(z)) > 0 for all z € [0,1]. The lower
bound for X will then follow from a result of Besicovitch. We will obtain
the lower bound for level sets by using following measure comparison lemma

([Fal2], page 55).

Lemma 2.1 Let pu be a Borel measure on the Borel set F' and suppose that
for some s > 0, there are numbers ¢, 6 > 0 such that u(U) < ¢ diam(U)* for
all open sets U with diam(U) < . Then, H*(F) > p(F)/e.

We will, also, need the following scaling property of Hausdorff measure

([Fal2], page 27).

Lemma 2.2 If F C R*, A > 0, and A\FF = {\z : € F}, then H*(\F) =
ANH(F).
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Finally, we will need Mauldin and Williams’ computation of the Hausdorff
measure of DiGraph self-similar sets. We associate a similarity dimension with
any DiGraph ITFS with similarities as follows. Suppose that for each e € F|
fe is a similarity with ratio r.. Construct a matrix M (s) whose rows and
columns are indexed by the vertex set V. The element in row u and column v
18 Z 7S, The similarity dimension of the DiGraph IFS is the unique value

e€ By,
of s such that M(s) has spectral radius 1. This coincides with the Hausdorff
dimension of the corresponding DiGraph self-similar sets, provided an open
set condition is satisfied. The open set condition states that there should be
open sets Uy, one for each v € V| so that U, D U fe(Uy) with this union
e€ By,

disjoint. The following is the main result of [MW]. See, also, [Edg2] theorem
6.4.8.

Lemma 2.3 Let {K,}yev be the invariant list of a self-similar DiGraph IFS
arising from a strongly connected directed multi-graph and with simiarity di-
mension s. Then H*(K,) < oo for all v € V. If, in addition, the open set
condition is satisfied, then H*(K,) > 0 for allv € V.

Note that self-similarity is the special case of DiGraph self-similarity where
the DiGraph has one vertex. In this case, lemma 2.3 reduces to the standard
formula for similarity dimension.

3 The Structure of Level Sets

We now turn our attention to the structure of level sets. We first consider
the sets 71(0), y=1(0), z71(1), and, y=1 (1) and show they all have Hausdorff
dimension 1/2. Then, we will use the DiGraph structure of X and Y to extend
these results to other sets.

Consider the functions age, Cry, Cyr, and dy,. These are the four affine
transformations from figure 1 which leave the z-axis invariant. They are all
similarities of ratio % when restricted to R. Thus, the sets 71(0) and y~=*(0)
form the invariant list of the corresponding self-similar DiGraph IFS. The open

set condition is satisfied using the open unit interval. Lemma 2.3 shows that
0<HY*(z71(0)) <oo and 0< HY?(y '(0)) < .

In fact, note that H'/?(2=*(0)) < 1 since £~'(0) may be covered by 2" inter-
vals of length 47" for any n. A similar statement holds for y.

We need to highlight a certain regularity in these sets in order to extend
results to other sets.
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Lemma 3.1 #'/?(z=1(0) N U) < 4 diam(U)"? for all Borel sets U C 1. A
similar statement holds for y.

Proof: First, consider the case where U is a closed interval of the form
[i/47 (i +1)/4"] where i,;n € N and 0 < i < 4. Then, either H'/?(z=1(0) N
U)=0orz710)NU is a set similar to z7(0) or y~'(0) scaled by a factor
4~" . In either case,

H2 (@7 H0) N U) < (472 HE (@71 (0) = diam(U)H2

Now, suppose that U satisfies 4~ ("1 < diam(U) < 4=". Then, U may be
covered by at most 2 intervals of the form [i/4", (i + )/ . Thus
)2

HY2 (271 0)NTU) < 20472 = 4(4=(HI) Y2 < 4 diam(U) /2.0

Next, consider the sets z71(1) and y=!(1). We see that z71(1) is isometric
to z71(0) by using another of Sagan’s functional equations: x(t)+z(1—¢) =1
([Sag], ex. 13, page 30). In particular, if ¢ satisfies z(t) = 0, then 1—1 satisfies
2(1 —t) = 1. Therefore, 0 < HY?(x~'(1)) < 1 and z~'(1) satisfies the
conclusions of lemma 3.1.

Finally, y=!(1) is a self-similar set for the similarities ay, and by, restricted
to the horizontal line y = 1. Again, 0 < H/?(y=1(1)) < 1 and y~1(1) satisfies
the conclusions of lemma 3.1.

We now consider the extension to other level sets.

Lemma 3.2 Suppose that n € N and that j is an odd integer satisfying 1 <
j < 2% Then, x=1(j/2") and y=1(j/2™) both consist of 2"+ sets which are
similar to one of the basic sets x=1(0), y=1(0), z=1(1), or, y=1(1), scaled by
a factor 47",

Proof: First, note that the result is true for n = 1, as #71(1/2) consists of a
copy of y=1(1) over [0,1/4], a copy of 2=1(1) over [1/4,1/2], a copy of z~1(0)
over [1/2,3/4], and a copy of y~*(1) over [3/4,1]. This may be seen from the
action of the DiGraph IFS. Similarly, y=1(1/2) consists of a copy of 271(1), 2
copies of y~1(0), and a copy of z71(0).

Proceeding by induction, suppose the result is true for n € N. Let j be an
odd integer satisfying 1 < j < 27°+1,

Case 1: j < 2". Then, 271(j/2"*1) consists of a copy of y~1(j/2") over
[0,1/4] and a copy of 2=1(j/2") over [1/4,1/2], each scaled by a factor 1/4.

Case 2: j > 2". Then, 2=1(j/2"*1) consists of a copy of x=(1 — j/2")
over [1/2,3/4] and a copy of y=1(j/2") over [3/4,1], each scaled by a factor
1/4.

In both cases, the induction hypotheses shows that we have a total of 2712
copies of the basic sets scaled by a factor 4=(**+1) A similar argument applies
to y.O0
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Now, let
m = min{H? (@7 (0)), H 2 (y™ " (0), H (@7 (1), H 2y (L))
Corollary 3.1 If z is a dyadic rational and U is a Borel set, then
m < HY (271 (2)) <2

and

HY (2™ z) N U) < 4 diam(U)Y?.

Proof: This follows immediately from the scaling lemma 2.2 and lemma 3.2.0
The fact that H'/?(x=*(2)) > 0 for all z € I now follows from the following
lemma, which generalizes a technique applied to Kiesswetter’s curve by Edgar.

Lemma 3.3 Let s > 0 and let f be a continuous, real valued function defined
on some closed interval J. Suppose there are numbers a and b such that

0<a<H(f(z)) <D

for all z in some dense subset D C range(f). Suppose further that there is a
¢ > 0 such that for all z € D and for all open sets U we have

HE(FH(2)NU) < e diam(U)*.
Then, H*(f~1(2)) > a/c for all z € range(f).

Proof: Fix z € range(f) and choose a sequence (z,) from D such that z, # z
for any n, and z, = z as n — oco. For each n € N, define the Borel measure
pn on J to be pr, = H*[;-1(, , the restriction of H* to J=1(z,). Since a <
tn(J) < b for every n, this sequence has some weak-* cluster point, say g,
satisfying a < u(J) < b.

We claim that p is supported on f~!(z). Suppose U is an open set con-
taining f~1(z). Then there is an open set V such that f~'(z) CV CcV CU.
By the continuity of f, we have f=1(z,) C V for large enough n. Thus,

p(I\NU) < p(J\V) < liminfp, (J\V) =0

and p(J\ f=1(2)) = 0. Furthermore, if U C J is any open set, then

p(U) < liminf H (71 (2,) NU) < e diam(U)°.

n—od

Thus, H*(f~'(2)) > a/c by lemma 2.1.0
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Corollary 3.2 7-[1/2(93_1(,2)) > m/4 > 0 and Hl/z(y_l(z)) > m/4 > 0 for
all z € 1.

Proof: Simply combine corollary 3.1 and lemma 3.3.0

The following lemma is Theorem 5.8 of [Fall], but is originally due to
Besicovitch. We will need it to transfer results to X and Y. If F C R?, where
R? is the zz plane, then F, = {x € R: (2, 2) € F'} represents a level set.

Lemma 3.4 Let F' be a subset of the xz plane and let A be any subset of the
z-awis. Suppose that if = € A, then H'(F,) > ¢, for some constant c¢. Then

HTHF) > beH (A),
where b depends only on s and t.
Corollary 3.3 #3/?(X) > 0 and H3*(Y) > 0.

Proof: This follows immediately from corollary 3.2 and lemma 3.4 by taking
Atobe[0,1],t=1/2,and s = 1.0

Comments

We have proved that 0 < 7-[3/2()() < oo and similarly for Y. More that
this, we have obtained the stronger fact that 0 < #/?(x~"(2)) for all z € [0, 1].
Not only does this imply that 0 < 7-[3/2()(), but the reverse implication is not
true in general. Indeed, all of the vertical cross-sections of X are singletons
and, therefore, zero dimensional.

The fact that H3/?(X) < oo, implies H?(x~'(z)) < oo for almost all
z € [0, 1]. This statement is easily improved. Consider the rectangular covers
of X used in the proof of theorem 2.1. One may prove by induction that any
horizontal line intersects at most 2 - 27 of the rectangles of width 4=". Thus,
for any z € [0, 1],

HY2 (a7 (z) <227 (42 =2

and H'/?(x=*(2)) < 2 since n is arbitrary.
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