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THE HAUSDORFF DIMENSION OF

HILBERT'S COORDINATE FUNCTIONS

Abstract

We characterize the coordinate functions of Hilbert's space-�lling

curve using a directed-graph iterated function system and use this to

analyze their fractal properties. In particular, we show that both coor-

dinate functions have graphs of Hausdor� dimension 3

2
and level sets of

dimension 1

2
.

1 Introduction

Let I = [0; 1] denote the unit interval and let I2 denote the unit square.

Hilbert's space �lling curve is a continuous, surjective function h : I ! I2.

The coordinate functions x and y are given by h(t) = (x(t); y(t)). An excellent

general reference for h is [Sag], where one may �nd arithmetical expressions

for x and y. More importantly, for this paper, are functional equations given

in [Sag]. We use these to characterize the coordinate graphs using a directed-

graph iterated functions system, henceforth referred to as a DiGraph IFS. This,

in turn, allows us to show that the graphs of x and y have positive, �nite 3
2
-

dimensional Hausdor� measure. This is similar to the result in [Kon] that

the coordinate functions of Peano's space �lling curve are each self-a�ne, and

also have positive, �nite 3
2
-dimensional Hausdor� measure. Our techniques,

however, more closely model those applied to Kiesswetter's curve in [Edg1].

Let X denote the graph of x and let Y denote the graph of y. We will see

that X may be decomposed into 4 parts: 2 a�ne images of itself and 2 a�ne

images of Y . Similarly, Y may be decomposed into 2 a�ne images of itself

and 2 a�ne images of X. This is exactly the type of situation which may be

described by a DiGraph IFS. Our treatment follows that of [MW] and [Edg2].

A DiGraph IFS consists of a directed multi-graph, G, together with a

function fromRn to Rn associated with each edge of G. We will assume that
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all of these functions are contractions, although this condition may be relaxed

somewhat. The directed multi-graph, G, consists of a �nite set, V , of vertices

and a �nite set, E, of directed edges. Given two vertices, u and v, denote

the set of all edges from u to v by Euv. We denote the set of all paths of

length n with initial vertex u by En
u . G is called strongly connected if for

every u; v 2 E, there is a path from u to v. Theorem 4.3.5 of [Edg2] states

that given any DiGraph IFS, there is a unique set of compact sets Kv, one for

every v 2 V , such that for every u 2 V

Ku =
[

v2V; e2Euv
fe(Kv):

Such a set is called the invariant list of the DiGraph IFS. Note that if e 2 Euv,

then fe maps Kv into Ku. More generally, if � 2 En
u
has terminal vertex v,

then we may form f� : Kv ! Ku by composing the functions fe over e 2 �

taken in reverse order along the path �. If K is any compact set, then the

sets
[

�2En
u

f�(K) converge to Ku in the Hausdor� metric as n!1.

The sets X and Y will be characterized using a�ne functions. De�ne A

and B to be the following matrices.

A =

�
1
4

0

0 1
2

�
B =

�
1
4

0

0 �1
2

�

Let ~w 2R2 represent a column vector and de�ne a�ne functions using matrix

multiplication as follows.

axx(~w) = A~w +

�
1=4

0

�
ayy(~w) = A~w +

�
1=4

1=2

�

bxx(~w) = A~w +

�
1=2

1=2

�
byy(~w) = A~w +

�
1=2

1=2

�
cxy(~w) = A~w cyx(~w) = A~w

dxy(~w) = B ~w +

�
3=4

1

�
dyx(~w) = B ~w +

�
3=4

1=2

�

We may associate these functions to the edges in a DiGraph simply by labeling

the edges. We may, also, label the vertices to indicate which one corresponds

to X and which one corresponds to Y . The labeled DiGraph for X and Y is

shown in �gure 1.

Lemma 1.1 X and Y form the invariant list of the DiGraph IFS shown in

�gure 1.
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Figure 1: The DiGraph for X and Y

Proof: This follows immediately from the fact that x and y satisfy the fol-

lowing list of functional equations ([Sag], page 30, ex. 13). We have labeled

the functional equations to clarify the correspondence.

axx : x((1 + t)=4) = x(t)=2 ayy : y((1 + t)=4) = 1=2 + y(t)=2

bxx : x((2 + t)=4) = 1=2 + x(t)=2 byy : y((2 + t)=4) = 1=2 + y(t)=2

cxy : x(t=4) = y(t)=2 cyx : y(t=4) = x(t)=2

dxy : x((3 + t)=4) = 1� y(t)=2 dyx : y((3 + t)=4) = 1=2� x(t)=22

2 Hausdor� Measure and Dimension

In this section, we recall the de�nitions of Hausdor� measure and dimension,

show that X and Y have dimension � 3=2, and state some useful lemmas.

Our notation has been inuenced by [Edg2] and [Fal2], where one may �nd

proofs of the basic facts.

Let s � 0. We will de�ne the s-dimensional Hausdor� measure, Hs, on

Euclidean space, Rn. Let F � Rn. The diameter of F will be denoted by

diam(F ). Let " > 0. An "-cover, C, of F is a countable collection of sets such

that F � [U2CU and diam(U ) � " for every U 2 C. Now de�ne

Hs

"(F ) = inf

(X
U2C

diam(U )s : C is an "-cover of F

)

and

Hs(F ) = lim
"!0+

Hs

"
(F ):

Note that this limit is well de�ned since Hs
"(F ) increases as " decreases. It may

be shown that Hs is a Borel outer measure onRn. We denote its restriction to
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the Hs-measurable sets by Hs, also, and call this the s-dimensional Hausdor�

measure.

The Hausdor� dimension of F , dim(F ), is de�ned by

dim(F ) = inf fs � 0 : Hs(F ) = 0g :

If F is an in�nite set, this is equivalent to

dim(F ) = sup fs � 0 : Hs(F ) =1g :

We will show that 0 < H3=2(X) <1, so that dim(X) = 3=2, and similarly for

Y . We prove the upper bound here and the lower bound in the next section.

Theorem 2.1 H3=2(X) � 23=4, so dim(X) � 3=2. A similar statement holds

for Y .

Proof: We write the proof for X. The proof for Y is identical. Note that

each of the a�ne functions in the DiGraph IFS de�ning X and Y maps I2

into I2. Thus Xn =
[

�2En
X

f�(I
2) forms a nested sequence of sets containing

the invariant set X. Furthermore, each set f�(I
2) is a rectangle with width

4�n and height 2�n, due to the a�ne nature of the functions. There are 4n

of these sets since there are 4n paths of length n leaving any vertex in the

DiGraph.

Now, each of the rectangles f�(I
2) may be decomposed into 2n squares of

side length 4�n. Thus, we may cover X by 2n4n squares of side length 4�n.
Therefore,

H3=2p
2 4�n

(X) � 2n4n(
p
2 4�n)3=2 = 23=4

and H3=2(X) � 23=4, as n is arbitrary.2

Lower bounds for Hausdor� measure are, typically, more di�cult. Our

strategy will be to show that H1=2(x�1(z)) > 0 for all z 2 [0; 1]. The lower

bound for X will then follow from a result of Besicovitch. We will obtain

the lower bound for level sets by using following measure comparison lemma

([Fal2], page 55).

Lemma 2.1 Let � be a Borel measure on the Borel set F and suppose that

for some s > 0, there are numbers c; � > 0 such that �(U ) � c diam(U )s for

all open sets U with diam(U ) � �. Then, Hs(F ) � �(F )=c.

We will, also, need the following scaling property of Hausdor� measure

([Fal2], page 27).

Lemma 2.2 If F � Rn
, � > 0, and �F = f�x : x 2 Fg, then Hs(�F ) =

�sHs(F ).
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Finally, we will need Mauldin and Williams' computation of the Hausdor�

measure of DiGraph self-similar sets. We associate a similarity dimension with

any DiGraph IFS with similarities as follows. Suppose that for each e 2 E,

fe is a similarity with ratio re. Construct a matrix M (s) whose rows and

columns are indexed by the vertex set V . The element in row u and column v

is
X

e2Euv
rse. The similarity dimension of the DiGraph IFS is the unique value

of s such that M (s) has spectral radius 1. This coincides with the Hausdor�

dimension of the corresponding DiGraph self-similar sets, provided an open

set condition is satis�ed. The open set condition states that there should be

open sets Uv, one for each v 2 V , so that Uu �
[

e2Euv
fe(Uv) with this union

disjoint. The following is the main result of [MW]. See, also, [Edg2] theorem

6.4.8.

Lemma 2.3 Let fKvgv2V be the invariant list of a self-similar DiGraph IFS

arising from a strongly connected directed multi-graph and with similarity di-

mension s. Then Hs(Kv) < 1 for all v 2 V . If, in addition, the open set

condition is satis�ed, then Hs(Kv) > 0 for all v 2 V .

Note that self-similarity is the special case of DiGraph self-similarity where

the DiGraph has one vertex. In this case, lemma 2.3 reduces to the standard

formula for similarity dimension.

3 The Structure of Level Sets

We now turn our attention to the structure of level sets. We �rst consider

the sets x�1(0), y�1(0), x�1(1), and, y�1(1) and show they all have Hausdor�

dimension 1=2. Then, we will use the DiGraph structure ofX and Y to extend

these results to other sets.

Consider the functions axx, cxy, cyx, and dyx. These are the four a�ne

transformations from �gure 1 which leave the x-axis invariant. They are all

similarities of ratio 1
4
when restricted to R. Thus, the sets x�1(0) and y�1(0)

form the invariant list of the corresponding self-similar DiGraph IFS. The open

set condition is satis�ed using the open unit interval. Lemma 2.3 shows that

0 < H1=2(x�1(0)) <1 and 0 < H1=2(y�1(0)) <1:

In fact, note that H1=2(x�1(0)) � 1 since x�1(0) may be covered by 2n inter-

vals of length 4�n for any n. A similar statement holds for y.

We need to highlight a certain regularity in these sets in order to extend

results to other sets.
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Lemma 3.1 H1=2(x�1(0) \ U ) � 4 diam(U )1=2 for all Borel sets U � I. A

similar statement holds for y.

Proof: First, consider the case where U is a closed interval of the form

[i=4n; (i + 1)=4n] where i; n 2 N and 0 � i < 4n. Then, either H1=2(x�1(0) \
U ) = 0 or x�1(0) \ U is a set similar to x�1(0) or y�1(0) scaled by a factor

4�n. In either case,

H1=2(x�1(0) \ U ) � (4�n)1=2 H1=2(x�1(0)) = diam(U )1=2:

Now, suppose that U satis�es 4�(n+1) � diam(U ) < 4�n. Then, U may be

covered by at most 2 intervals of the form [i=4n; (i+ 1)=4n]. Thus,

H1=2(x�1(0) \ U ) � 2(4�n)1=2 = 4(4�(n+1))1=2 � 4 diam(U )1=2:2

Next, consider the sets x�1(1) and y�1(1). We see that x�1(1) is isometric

to x�1(0) by using another of Sagan's functional equations: x(t)+x(1� t) = 1

([Sag], ex. 13, page 30). In particular, if t satis�es x(t) = 0, then 1� t satis�es

x(1 � t) = 1. Therefore, 0 < H1=2(x�1(1)) � 1 and x�1(1) satis�es the

conclusions of lemma 3.1.

Finally, y�1(1) is a self-similar set for the similarities ayy and byy restricted

to the horizontal line y = 1. Again, 0 < H1=2(y�1(1)) � 1 and y�1(1) satis�es
the conclusions of lemma 3.1.

We now consider the extension to other level sets.

Lemma 3.2 Suppose that n 2 N and that j is an odd integer satisfying 1 �
j < 2n. Then, x�1(j=2n) and y�1(j=2n) both consist of 2n+1 sets which are

similar to one of the basic sets x�1(0), y�1(0), x�1(1), or, y�1(1), scaled by

a factor 4�n.

Proof: First, note that the result is true for n = 1, as x�1(1=2) consists of a
copy of y�1(1) over [0; 1=4], a copy of x�1(1) over [1=4; 1=2], a copy of x�1(0)
over [1=2; 3=4], and a copy of y�1(1) over [3=4; 1]. This may be seen from the

action of the DiGraph IFS. Similarly, y�1(1=2) consists of a copy of x�1(1), 2
copies of y�1(0), and a copy of x�1(0).

Proceeding by induction, suppose the result is true for n 2 N. Let j be an
odd integer satisfying 1 � j < 2n+1.

Case 1: j < 2n. Then, x�1(j=2n+1) consists of a copy of y�1(j=2n) over
[0; 1=4] and a copy of x�1(j=2n) over [1=4; 1=2], each scaled by a factor 1=4.

Case 2: j > 2n. Then, x�1(j=2n+1) consists of a copy of x�1(1 � j=2n)

over [1=2; 3=4] and a copy of y�1(j=2n) over [3=4; 1], each scaled by a factor

1=4.

In both cases, the induction hypotheses shows that we have a total of 2n+2

copies of the basic sets scaled by a factor 4�(n+1). A similar argument applies

to y:2
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Now, let

m = minfH1=2(x�1(0));H1=2(y�1(0));H1=2(x�1(1));H1=2(y�1(1))g:

Corollary 3.1 If z is a dyadic rational and U is a Borel set, then

m � H1=2(x�1(z)) � 2

and

H1=2(x�1(z) \ U ) � 4 diam(U )1=2:

Proof: This follows immediately from the scaling lemma 2.2 and lemma 3.2.2

The fact that H1=2(x�1(z)) > 0 for all z 2 I now follows from the following

lemma, which generalizes a technique applied to Kiesswetter's curve by Edgar.

Lemma 3.3 Let s > 0 and let f be a continuous, real valued function de�ned

on some closed interval J . Suppose there are numbers a and b such that

0 < a � Hs(f�1(z)) � b

for all z in some dense subset D � range(f). Suppose further that there is a

c > 0 such that for all z 2 D and for all open sets U we have

Hs(f�1(z) \ U ) � c diam(U )s:

Then, Hs(f�1(z)) � a=c for all z 2 range(f).

Proof: Fix z 2 range(f) and choose a sequence (zn) fromD such that zn 6= z

for any n, and zn ! z as n !1. For each n 2 N, de�ne the Borel measure

�n on J to be �n = Hsjf�1(zn), the restriction of Hs to f�1(zn). Since a �
�n(J) � b for every n, this sequence has some weak-� cluster point, say �,

satisfying a � �(J) � b.

We claim that � is supported on f�1(z). Suppose U is an open set con-

taining f�1(z). Then there is an open set V such that f�1(z) � V � V � U .

By the continuity of f , we have f�1(zn) � V for large enough n. Thus,

�(J n U ) � �(J n V ) � lim inf
n!1

�n(J n V ) = 0

and �(J n f�1(z)) = 0. Furthermore, if U � J is any open set, then

�(U ) � lim inf
n!1

Hs(f�1(zn) \ U ) � c diam(U )s:

Thus, Hs(f�1(z)) � a=c by lemma 2.1.2
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Corollary 3.2 H1=2(x�1(z)) � m=4 > 0 and H1=2(y�1(z)) � m=4 > 0 for

all z 2 I.

Proof: Simply combine corollary 3.1 and lemma 3.3.2

The following lemma is Theorem 5.8 of [Fal1], but is originally due to

Besicovitch. We will need it to transfer results to X and Y . If F � R2, where

R2 is the xz plane, then Fz = fx 2R : (x; z) 2 Fg represents a level set.

Lemma 3.4 Let F be a subset of the xz plane and let A be any subset of the

z-axis. Suppose that if z 2 A, then Ht(Fz) > c, for some constant c. Then

Hs+t(F ) � b c Hs(A);

where b depends only on s and t.

Corollary 3.3 H3=2(X) > 0 and H3=2(Y ) > 0.

Proof: This follows immediately from corollary 3.2 and lemma 3.4 by taking

A to be [0; 1], t = 1=2, and s = 1:2

Comments

We have proved that 0 < H3=2(X) < 1 and similarly for Y . More that

this, we have obtained the stronger fact that 0 < H1=2(x�1(z)) for all z 2 [0; 1].

Not only does this imply that 0 < H3=2(X), but the reverse implication is not

true in general. Indeed, all of the vertical cross-sections of X are singletons

and, therefore, zero dimensional.

The fact that H3=2(X) < 1, implies H1=2(x�1(z)) < 1 for almost all

z 2 [0; 1]. This statement is easily improved. Consider the rectangular covers

of X used in the proof of theorem 2.1. One may prove by induction that any

horizontal line intersects at most 2 � 2n of the rectangles of width 4�n. Thus,
for any z 2 [0; 1],

H1=2

4�n
(x�1(z)) � 2 � 2n(4�n)1=2 = 2

and H1=2(x�1(z)) � 2 since n is arbitrary.

Acknowledgments

The referees and editor provided many useful comments to improve this paper.

References

[Edg1] G. A. Edgar, \Kiesswetter's fractal has Hausdor� dimension 3/2." The

Real Analysis Exchange 14 (1988-89), 215-223.



Hilbert's Coordinate Functions 9

[Edg2] G. A. Edgar, Measure, Topology, and Fractal Geometry. Springer-

Verlag, New York, 1990.

[Fal1] K. J. Falconer, The Geometry of Fractal Sets. Cambridge University

Press, Cambridge, England, 1985

[Fal2] K. J. Falconer, Fractal Geometry: Mathematical Foundations and Ap-

plications. John Wiley and Sons, West Sussex, England, 1990.

[Kon] Norio Kono, \On self-a�ne functions." Japan J. Appl. Math. 3 (1986),

259-269.

[MW] R. D. Mauldin and S. C. Williams, \Hausdor� dimension in graph

directed constructions." Trans. Amer. Math. Soc. 309 (1988) 811-829.

[Sag] Hans Sagan, Space-Filling Curves. Springer-Verlag, New York, 1994.


