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Abstract

Let (X;�) be a separable metric space and let (K(X); e�) denote the
space of non-empty compact subsets of X with the Hausdor� metric.

The purpose of this paper is to investigate the relationship of the Haus-

dor� dimension of a set E � X to that of K(E) � K(X).

1 Introduction and Notation.

1.1 The Hausdor� Metric

Given a separable metric space (X; �), let K(X) denote the set of non-empty

compact subsets ofX. De�ne a metric e� on K(X) as follows: For A;B 2 K(X)

let e�(A;B) = maxfsup
x2A

fdist(x;B)g; sup
y2B

fdist(y;A)gg:

The space (K(X); e�) is called the Hausdor� metric space, or hyperspace, as-

sociated with X and inherits several nice geometrical properties from X. For

example, K(X) is complete whenever X is complete and K(X) is compact

whenever X is compact. A discussion of the Hausdor� metric including proofs

of the above may be found in [Ed] section 2.4. To avoid confusion between

metric spaces and their corresponding hyperspaces, tildes will be used to de-

note reference to the hyperspace. So for example, if A � X is compact and

" > 0, then eB"(A) � K(X) denotes the closed ball of radius " about the set

A.

The Hausdor� metric has been studied extensively. Some early results

on the Hausdor� dimension of K([0; 1]) may be found in [Boa], [Goo1], and

[Goo2].

Key Words: Fractal Dimensions, Hausdor� Measure, Hyperspace
Mathematical Reviews subject classi�cation: 28A78,28C20,54B20

1



2 Mark McClure

1.2 Hausdor� Measure and Dimension

In this section, a de�nition of Hausdor� dimension valid for in�nite dimen-

sional sets will be developed following the very general approach of Rogers

[Rog]. Let � denote the set of all non-decreasing, continuous functions ' de-

�ned on some interval [0; �) so that '(0) = 0 and '(t) > 0 for 0 < t < �. Such

functions will be called Hausdor� functions. The asymptotic behavior near

zero of two Hausdor� functions may be compared by writing:

� ' �  if limt&0
 (t)

'(t)
= 0

� ' �  if lim supt&0
 (t)

'(t)
<1

� ' �  if 0 < lim inft&0
 (t)

'(t)
� lim supt&0

 (t)

'(t)
<1:

Given ' 2 �, de�ne a measure H' on the separable metric space X as

follows: For " > 0 an "-cover of E � X will be a countable or �nite collection

of sets, Ei � X, so that E � [iEi and diam(Ei) � " for every i. Then let

H'

"
(E) = inf

(X
i

'(diam(Ei)) : fEigi is an "-cover of E

)
;

H'(E) = lim
"&0

H'

" (E):

Note thatH'
"
(E) increases as " decreases so thatH'(E) is well de�ned, though

possibly in�nite. In [Rog] it is proven that H' is a metric outer measure on

X. A metric outer measure is an outer measure that satis�es H'(E [ F ) =

H'(E) + H'(F ), whenever dist(E;F ) > 0. This implies that all analytic

(and in particular all Borel) subsets of X are H'-measurable. Denote the

restriction of H' to the H'-measurable subsets of X also by H' and call this

the Hausdor� '-measure on X.

The phrase \E is of (non-)�-�nite H' measure", will be abbreviated by

H'(E) is (non-)�-�nite. The Hausdor� dimension of a set E � X is a partition

of �. Speci�cally, dim(E) = (�1(E);�+(E);�0(E)), where

�1(E) = f' 2 � : E is of non-�-�nite H' measureg;

�+(E) = f' 2 � : H'(E) > 0 and E is of �-�nite H' measureg;

�0(E) = f' 2 � : H'(E) = 0g:

The idea behind the Hausdor� dimension is that the value of H'(E) is

governed by the asymptotic properties of '(t) as t& 0 in a way indicative of
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the dimension of E. For example, if X = Rn, �n is Lebesgue measure, and

 �(t) = t�, then

H �

8<:
� 0 if � > n

= cn�n if � = n (cn constant)

is non-�-�nite if � < n:

The following lemmas show that the � relation places a partial order on � in

which the faster the function disappears at the origin, the larger the dimension.

Lemma 1.1 If H'(E) is �-�nite and ' �  , then H (E) = 0.

Lemma 1.2 If H'(E) > 0 and ' �  , then H (E) is non-�-�nite.

For proofs see [Rog] theorem 40 and the corollary which follows it.

Ideally, one would like to completely describe the partition dim(E). � is a

very rich set, however, and the ordering imposed by � is by no means total. It

is, consequently, not a tractable problem to understand how dim(E) compares

with every ' 2 �. Thus, typically one de�nes an appropriate one parameter

family, f'sgs>0 � �, such that s1 < s2 implies 's1 � 's2 . Then, there is a

critical value s0 2 [0;1] such that

H's(E) =

�
0 if s > s0
1 if s < s0:

For example,  s(t) = ts leads to the standard numerical Hausdor� dimension.

When working with the Hausdor� metric for subsets of a �nite dimensional

set, two useful families of Hausdor� functions are f sgs>0 de�ned by  s(t) =

2�1=t
s

and f'MgM>0 de�ned by 'M (t) = 2�M(1=ts) where s > 0 is �xed.

In [Fal] it is proven that the standard numerical Hausdor� dimension is

preserved by bi-Lipschitz transformations. There, however, he is working with

the family  s(t) = ts. One needs to be more careful when working with more

general functions. The following lemma does hold.

Lemma 1.3 Let f : X ! X and let 0 < r1 < r2.

(a) If �(f(x); f(y)) � r2�(x; y) and H
'(E) is �-�nite, then H'(t=r2)(f(E)) is

�-�nite.

(b) If r1�(x; y) � �(f(x); f(y)) and H'(E) > 0, then H'(t=r1)(f(E)) > 0.

Proof: (a) Suppose �rst that H'(E) < 1. If fEig is an "-cover of E, then

ff(Ei)g is an r2"-cover of f(E). The "-cover fEig may be chosen so thatP
i
'(diam(Ei)) < 2H'

" (E). Then,X
i

'

�
diam(f(Ei))

r2

�
�
X
i

'

�
r2diam(Ei)

r2

�
< 2H'

" (E) � 2H'(E):
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So, H
'(t=r2)
r2" (f(E)) < 2H'(E) < 1. This is true for arbitrarily small " > 0

so, H'(t=r2)(f(E)) < 2H'(E) < 1. Next, if E = [iAi and H
'(Ai) < 1 for

each i, then H'(t=r2)(f(E)) is seen to be �-�nite by applying the above logic

to each Ai.

(b) If H'(E) > c > 0, then we may choose an " > 0 such that, H'
"
(E) > c.

Then, for any "-cover fEigi of E, we have
P
i
'(diam(Ei)) > c > 0. Since f

is bi-Lipschitz, any "=r1-cover of f(E) may be written ff(Ei)gi, where fEigi
is an "-cover of E. Then,X

i

'

�
diam(f(Ei))

r1

�
�
X
i

'

�
r1diam(Ei)

r1

�
> c:

So, H'(t=r1)(f(E)) � H
'(t=r1)

"=r1
(f(E)) � c:2

Consider, for example, the two parameter family of functions

'M;s(t) = 2�M(1=t)s:

For a �xed s > 0, a bi-Lipschitz map with ratios r1 and r2 as above can a�ect

the critical value of M . But it can't be raised by more than a factor 1=r2 and

it cannot be lowered by more than a factor of 1=r1. For s1 < s2, however,

'M1;s1 � 'M2;s2 for any M1 and M2. So a bi-Lipschitz map won't a�ect the

critical value of s.

1.3 Related Notions of Dimension

Although this paper is primarily concerned with the Hausdor� dimension,

there are two other notions of dimension which will be useful. The �rst is the

upper entropy index �(E) de�ned for totally bounded E � X as follows: For

" > 0, let

N"(E) = max# of disjoint closed balls centered inE with radius "=2:

Then, let

�(E) = lim sup
"!0

logN"(E)

log(1=")
:

This assigns a nonnegative number or in�nity to �(E). It is possible to gener-

alize this de�nition to a partition of �, by comparing the asymptotic behavior

of N" to that of Hausdor� functions (see [Mcc]). This level of generality will

not be needed here, however. For more information on the upper entropy

index, see [Ed] section 6.5.

The next useful notion of dimension is the similarity dimension, which is

valid only for self-similar sets. Self-similar sets are obtained as follows: Let
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m 2 N and for i = 1; : : : ;m let fi : X ! X be a similarity with ratio ri 2

(0; 1). This means that for every x; y 2 X we have �(fi(x); fi(y)) = ri�(x; y).

In this situation there exists a unique non-empty compact set E � X such that

E = [m
i=1fi(E). The set E obtained this way is said to be self-similar. The

similarity dimension of the set E is de�ned to be the unique positive number

s0 such that
P
m

i=1 r
s0

i
= 1. For more information on self-similar sets, see [Ed]

chapter 4.

The standard numerical Hausdor� dimension dimN (E), upper entropy in-

dex �(E), and similarity dimension s0 are related as follows:

dimN (E) � �(E) � s0:

In Euclidean space, this relationship may be strengthened, assuming the set

of contractions ffig
m

i=1 satis�es the open set condition. This means that there

is an open set U , such that U � [m
i=1fi(U ) with this union disjoint. Assuming

the open set condition is satis�ed, the above inequalities may be replaced with

equalities. For more information on the relationships between these dimen-

sions, see [Ed] sections 6.3 and 6.5.

A corollary to the main theorems (3.3 and 3.4) of this paper can now be

stated, to provide the gist of those results in a more concrete setting.

Corollary 1.1 Suppose E � Rn is a self-similar set satisfying the open set

condition. Let s0 be the similarity dimension of E and let 's(t) = 2�(1=t)
s

.

Then,

H's(K(E)) =

�
1 for s < s0
0 for s > s0:

Thus the Hausdor� dimension of E is clearly re
ected in the Hausdor� dimen-

sion of K(E). Analogous statements for the upper and lower entropy indices

and dimensions are proven in [Mcc].

1.4 Sequence Spaces

The main results will �rst be proven for some speci�c metric spaces called

sequence spaces and then transferred to a more general setting. Let m 2 N+

and let the sequence space 
 be de�ned by 
 = f1; : : : ;mgN. A family of

metrics will be de�ned on 
 each inducing the product topology. First, some

useful terminology will be developed. An initial segment � of length n is an

element of f1; : : : ;mgn. There is, by de�nition, one initial segment of length

zero namely the empty segment denoted �. If � is an initial segment, write

j�j to denote the length of �. For n 2 N, let 
n denote the set of all initial

segments of length n. Let 
� = [1
j=0


j be the set of all initial segments. If

� 2 
 write �jn for the initial segment (�1; : : : ; �n) 2 
n. A partial order
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may be imposed on 
� as follows: For �; � 2 
�, say � = (�1; : : : ; �j) and

� = (�1; : : : ; �k), write � < � if j < k and �i = �i for i = 1; : : : ; j. If � < �,

then � is said to be a descendant of �. If � 2 
n, then let �- denote the

unique element of 
n�1 such that �- < �. Call �- the parent and � the child.

Also, if � 2 
n is an initial segment, then let

[�] = f� 2 
 : �i = �i for i = 1; : : : ; ng:

For i = 1; : : : ;m, let 0 < ri < 1. The list (r1; : : : ; rm) is called a contraction

ratio list for 
. Given � = (i1; : : : ; in) 2 
�, let r(�) = ri1 � � � rin and let

r(�) = 1. De�ne a metric d as follows:

1. d(�; �) = 0 for all � 2 
;

2. If �; � 2 
 have � as their longest common initial segment, then d(�; � ) =

r(�).

In [Ed] it is shown that the numerical Hausdor� dimension of this sequence

space is given by  s(t) = ts, where
P

m

i=1 r
s

i = 1. In fact it is shown that

Hs([�]) � H s ([�]) = r(�)s (1)

for every � 2 
�.

2 Computational Tools

2.1 The Density Lemma

Lower bounds for Hausdor� measures are frequently obtained by using a den-

sity lemma. See for example, [RayTr] theorem 1. In [RayTr] and other sources

it is assumed that Hausdor� functions are blanketed. That is, there is some

constantM > 0, such that '(2t) < M'(t). This is unsuitable for the purposes

here and so the following generalization is needed.

Lemma 2.1 For a separable metric space X with a positive Borel measure

�, x 2 X, and � > 0 let

��(x) = supf�(U ) : x 2 U and U is a Borel set with diam(U ) � �g:

Let �k & 0. Suppose that ';  2 � satisfy '(�k) � A (�k+1) for all k 2 N.

Let E � X be a Borel set which satis�es �(E) > 0 and

D
'

�(x; (�k)k) � lim sup
k!0

��k(x)

'(�k)
< M <1;

for every x 2 E. Then H (E) �
�(E)

MA
> 0.
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Proof: Let k0 2 N and choose 0 < " < �k0 . Let

Ek0 = fx 2 E : ��k(x) < M'(�k) for every k � k0g:

Note that [1
k0=1

Ek0 = E. Suppose that C is an "-cover of E and so of Ek0.

For k � k0 write

Ck = fU 2 C : �k+1 < diam(U ) � �kg:

Any U 2 Ck such that U \Ek0 6= ; satis�es �(U ) < M'(�k). So,

�(Ek0) �
X
U2C

U\Ek0 6=;

�(U ) =

1X
k=k0

X
U2C

k

U\Ek0 6=;

�(U )

� M

1X
k=k0

X
U2Ck

'(�k) �M

1X
k=k0

X
U2Ck

 (diam(U ))
'(�k)

 (�k+1)

= M

1X
k=k0

 
'(�k)

 (�k+1)

X
U2Ck

 (diam(U ))

!

� MA

 
1X
k=k0

X
U2Ck

 (diam(U ))

!

= MA

 X
U2C

 (diam(U ))

!
:

Now �(Ek0) ! �(E) as k0 ! 1. Thus,
P
U2C

 (diam(U )) � �(E)=MA and

H (E) � H 

"
(E) � �(E)=MA:2

As an example, suppose that  s(t) = 2�(1=t)
s

, c > 0, 0 < u < 1, and let

�k = cuk. Then for 0 < s1 < s2, we have

 s2 (�k)

 s1 (�k+1)
= 2

�( 1

cuk
)s2+( 1

cuk+1
)s1

= 2
�( 1

cuk
)s2(1�(cuk)s2 ( 1

cuk+1
)s1)

= 2
�( 1

cuk
)s2(1�( 1

u
)s1 (cuk)s2�s1 ) � 2

�1
2
( 1

cuk
)s2

for large k. This last term approaches zero as k ! 1. So given a Borel set

E � X, to show that H 
s1
(E) =1, it su�ces to �nd a positive Borel measure

� on E, M > 0, and an s2 > s1 such that

D
 
s2

� (x; (cuk)k) < M

for every x 2 E. This yields the following corollary:
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Corollary 2.1 Let  s(t) = 2�(1=t)
s

and let E � X be a Borel set with

�(E) > 0. If D
 
s

�
(x; (cuk)k) < M <1 for every x 2 E and every s < s0, then

H 
s

(E) > 0 for every s < s0.

2.2 s-Nested Packings

Part of the importance of sequence space is that it may be used to model

other spaces. In [Ed], for example, sequence spaces are used in the study

of self-similar sets in Rn. In this section, a condition on a closed subset E

of a complete separable metric space X will be de�ned. This condition will

allow the construction of a subset E0 � E which is Lipeomorphic to a certain

sequence space. This result will be used later to transfer results from sequence

space to more general spaces.

Now let E be as above, �x c; s > 0, " 2 (0; 1=4), and m > (1=")s + 1. Let


 = f1; : : : ;mgN be a sequence space with the metric d given by r(�) = c"n

for every � 2 
n. An s-nested packing of E will be a collection of closed balls

fBc"j�j(x�)g�2
� satisfying:

1. x� 2 E for every � 2 
�

2. Bc"n (x�) \Bc"n (x�) = ; for distinct �; � 2 
n.

3. Bc"j�j(x�) � B
c"j�

-j=4(x�-) for every � 2 
�.

This de�nition also depends on c; ", and m, however the important parameter

is s because dimensional bounds given later will be in terms of s. If E has such

an s-nested packing, then let E0 = \1n=1 [�2
n Bc"j�j(x�). The existence of

s-nested packings will be established later for self-similar sets. De�ne a map

g : 
! E0 by g(!) = \1
n=1Bc"n(x!jn).

Lemma 2.2 The map g is bi-Lipschitz.

Proof: Let !1; !2 2 
. Choose n 2 N so that d(!1; !2) = c"n. Then

g(!1); g(!2) 2 Bc"n(x!1jn ), so �(g(!1); g(!2)) � 2c"n. For the lower bound,

note that g(!i) 2 Bc"n+1=4(x!ijn+1 ) for i = 1; 2 and, by the choice of n,

Bc"n+1 (x!1jn+1 ) \Bc"n+1 (x!2jn+1 ) = ;. So

c"n+1 � �(x!1jn+1 ; x!2jn+1 )

� �(x!1jn+1 ; g(!1)) + �(g(!1); g(!2)) + �(g(!2); x!2jn+2 )

�
c"n+1

4
+ �(g(!1); g(!2)) +

c"n+1

4
:

So �(g(!1); g(!2)) �
c"
n+1

2
= "

2
c"n:2
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Next, it will be shown that this condition is non-vacuous by the construc-

tion of an s-nested packing for a self similar set E � X. Two sequence

spaces 
1 and 
2 will be used to analyze the set E. The �rst one is the

self-similar sequence space 
1 = f1; : : : ;m1g
N with metric d1 given by the

ratio list (ri)
m1

i=1 corresponding to the contraction ratios of (fi)
m1

i=1. Given

� = (�1; : : : ; �n) 2 
n1 , abbreviate f�1 � � � � � f�n(E) by �(E). An s-nested

packing will be constructed in the metric space (E; �) rather than (X; �).

The reason for this is because for x 2 E, � 2 
�1, and " > 0 we have

�(B"(x)) = Br(�)"(�(x)) as long as only balls in (E; �) are considered. This is

due to the invariance of E under the transformations (fi)
m1

i=1 and not generally

true in the larger metric space (X; �).

Now, let s > 0, let r = minfrig
m1

i=1, and let c = 8
r
maxfdiam(E); 1g. Fix

� 2 (0;minf1
4
; 1
4
diam(E)g) such that N2�(E) > (c=�)s + 1. Such a � certainly

exists if �(E) > s. Let " = �=c and let m2 = N2�(E). The other sequence

space of interest is 
2 = f1; : : : ;m2g
N with metric d2 given by r(�) = c"n for

� 2 
n2 .

An s-nested packing of E, using the above choices for c, ", and m, may be

constructed as follows: Choose x� 2 E arbitrarily. This gives Bc(x�). The

existence of fBc"(x�)g�2
1
2
is guaranteed by the fact that N2�(E) > (c=�)s+1

since � = c". The construction will proceed by induction on the length of �.

Suppose that Bc"j�j(x�) have been de�ned for j�j � n. For � 2 
n2 , choose

�� 2 
�1 such that x� 2 ��(E), and

diam(��(E)) �
1

8

�n

cn�1
< diam(�-�(E)):

In particular, ��(E) � Bc"j�j=4(x�). Since r = minfrig we have:

diam(��(E)) �
r

8

�n

cn�1
=

r

8diam(E)

�n

cn�1
diam(E) �

�n

cn
diam(E):

So N2�(�n=cn)(��(E)) � N2�(E) = m2. Thus ��(E) may be packed with m2

balls of radius �n+1=cn = c"n+1 to continue the induction.

For a useful generalization, note that if f : X ! X is a bi-Lipschitz

map satisfying �(f(x); f(y)) � r�(x; y) for every x; y 2 X, then f(B"(x)) �

Br"(f(x)). So if f : E ! F is a bi-Lipschitz bijection and E has an s-nested

packing fBc"j�j(x�)g�2
� , then f induces an s-nested packing of F , namely

fBcr"j�j(f(x�))g�2
� . Putting all this together we obtain:

Theorem 2.1 If E � X has a subset which is Lipeomorphic to a self-similar

set F satisfying �(F ) > s, then E has an s-nested packing.
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3 Hausdor� Dimension of K(X)

In this section, the relationship between dim(E) and dim(K(E)) is investi-

gated. The plan is the following. First, it is shown that if 
 is a sequence

space with �nite Hausdor� dimension s0 and  
s(t) = 2�(1=t)

s

, then

H 
s

(K(
))

�
= 1 if s < s0
= 0 if s > s0:

This result is then used along with the notion of an s-nested packing to ob-

tain results in more general spaces. In this section, 
 = f1; : : : ;mgN is a

�xed self-similar sequence space with contraction ratio list (r1; : : : ; rm) so thatP
m

1 rs0
i
= 1, where s0 > 0 is �xed.

Theorem 3.1 For M > 0, let 'M (t) = 2�M(1=t)s0 . Then, there exists an M

large enough so that H'M (K(
)) <1.

Proof: Choose 0 < u < minfrig so that 1=u
s0 = n 2 N. For every k 2 N+,

let

Lk = f� 2 
� : r(�) � uk < r(�-)g

and let L0 = f�g. Each � 2 Lk satis�es

uk+1 < r(�) � uk

and

n�(k+1) < Hs0([�]) � n�k (2)

by equation (1). Suppose that #(L1) = L. Then, since each � 2 L1 satis�es

n�2 < Hs0 ([�]) � n�1 for each k 2 N, the number of descendants of � in Lk
cannot exceed nk. Otherwise, their total measure would exceed nkn�(k+1) =
1
n
� Hs0 ([�]). Similarly, the number of descendants of � in Lk must be at

least nk�2. So,

Lnk�2 � #(Lk) � Lnk: (3)

Let A � Lk be nonempty. Associate with A a set eA � K(
) de�ned by:

eA = fC 2 K(
) : f� 2 Lk : [�]\C 6= ;g = Ag:

Such a set eA is called a k-set and satis�es uk+1 < diam( eA) � uk. For a �xed

k, the set of all k-sets covers K(
). Since #(Lk) � Lnk, there are no more

than 2Ln
k

� 1 such k-sets. This leads to the following estimate:

H
'M

uk
(K(
)) �

�
2Ln

k

� 1
�
'M (uk)

� 2Ln
k

2�M(1=uk)s0 = 2Ln
k

2�Mn
k

� 1
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as long as M � L. Thus for M � L, it follows that H'M (K(
)) � 1:2

Now for the lower bound, let  s(t) = 2�(1=t)
s

for s > 0.

Theorem 3.2 H 
s

(K(
)) > 0, whenever s < s0.

Proof: Lk; L; u; n, and k-sets are de�ned as in the preceding proof. Given

A � Lk, de�ne �(A) = #(A)=Lnk�2. Let n0 = 1=us < n, choose p 2 (0; 1) so

that n0 < pn, then choose j 2 N large enough so that
�
n
0

pn

�j
< 1

n
. A measure

�, concentrated on those kj-sets eA with �(A) � pkj=nk, will be constructed.

� will satisfy D
 
s

� (E; (ukj+1)k) � 1 for every E 2 K(
) implying the result

by corollary 2.1. Recall that the de�nition of D
 
s

� (E; (ukj+1)k) is given in

lemma 2.1.

The measure � will be constructed recursively. The empty word � is the

only string of length 0 leading to the one 0-set e� = K(
). De�ne �(K(
)) = 1.

Fix k 2 N and suppose that � has been de�ned for all kj-sets eA such that

�( eA) > 0 only if �(A) � pkj=nk. This condition is seen to be satis�ed by e�
by substituting k = 0 into inequality 3. If eA is a kj-set of positive measure,

then distribute �( eA) evenly among all those (k + 1)j-sets eB � eA such that

�(B) � p
(k+1)j

nk+1
. Such a set eB will be called an eligible descendent of eA. A

lower bound on the number of eligible descendants of eA is needed in order

to estimate �( eA) from above. Now #(A) � p
kj

nk
Lnkj�2, since �(A) � p

kj

nk
. If

� 2 A � Lkj, then

n�(kj+1) < Hs0([�]) � n�kj;

by equation 2. Similarly, if � 2 L(k+1)j, then

n�(k+1)j�1 < Hs0([�]) � n�(k+1)j:

Thus if L(k+1)j;� is the set of descendants of � in L(k+1)j, then

nj�1 < #(L(k+1)j;�) < nj+1:

To form an eligible descendent eB � eA proceed as follows: Take
h
pj p

kj

nk
Lnkj�2

i
of the �'s 2 A and choose all possible descendants � to form part of the set

B. This guarantees that

#(B) �

�
p(k+1)j

nk
Lnkj�2nj�1

�
=

�
p(k+1)j

nk
Ln(k+1)j�3

�
;

so that �(B) � p
(k+1)j

nk+1
. Thus, eB is an eligible descendant. We are now free to

choose descendants of the remaining�
pkj

nk
Lnkj�2

�
�

�
p(k+1)j

nk
Lnkj�2

�
� (1� pj)(

pkj

nk
Lnkj�2)� 1
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�'s 2 A in any combination. Since each � 2 A has at least nj�1 descendants

� 2 L(k+1)j and any possible non-empty subset of these may be chosen as

possible descendants, we get at least

(2n
j�1

� 1)
(1�pj)(

p
kj

nk
Ln

kj�2)�1

eligible descendants eB � eA. This means that any such eB satis�es

�( eB) � (2n
j�1

� 1)
�(1�pj)(p

kj

nk
Ln

kj�2)�1
�( eA):

Applying this recursively, we see that a kj-set satis�es

�( eA) � (2n
j�1

� 1)�(1�p
j)Ln�2(1+pjnj�1+���+(pjnj�1)k�1)�k

= (2n
j�1

� 1)
�(1�pj)Ln�2 (p

j
n
j�1)k�1

pjnj�1�1
�k

� 2�L
0(pjnj�1)k

where L0 > 0 is a su�ciently small constant.

Now, if E 2 K(
) and k is �xed, let

AE = f� 2 Lkj : [�]\E 6= ;g:

Then eAE is a kj-set and, so, satis�es diam( eAE) > ukj+1. So any set eF � K(
)

such that diam( eF ) < ukj+1 and E 2 eF , must also satisfy eF � eAE . Thus,

�ukj+1 (E) < �( eAE). Let n0 = 1=us < n. Then,

�ukj+1(E)

 s(ukj+1)
�

�( eAE )
 s(ukj+1)

�
2�L

0(pjnj�1)k

2�(n
0)kj+1

= 2(n
0)kj+1�L0(pjnj�1)k ! 0

as k !1, since pjnj�1 > (n0)j by assumption.2

The next order of business is to extend these theorems to more general sets

E. For the upper bound, let us suppose that E � F where F is the self-similar

set given by the maps (f1; : : : ; fm) with ratio list (r1; : : : ; rm). Let (
; �) be

the corresponding self-similar sequence space. In this situation, it is shown in

[Ed] that there is a surjective Lipschitz map h : 
! F . Since a Lipschitz map

is continuous and the continuous image of a compact set is compact, h extends

naturally to a Lipschitz map eh : K(
) ! K(F ). Thus the upper bound for

K(
) holds for K(E). By composing the map h with another if necessary, it is

also clear that F need not be strictly self-similar, but only the Lipschitz image

of a self similar set. This is summarized in the following theorem.
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Theorem 3.3 Let E � F � X, where X is a separable metric space and F

is the Lipschitz image of a self-similar set with ratio list (r1; : : : ; rm) such thatP
m

i=1 r
s0

i
= 1. Let 'M (t) = 2�M(1=t)s0 . Then, there is anM > 0 large enough

so that H'M (K(E)) <1.

For the lower bound, suppose that E has an s0-nested packing. Then we

may extract a subset E0 � E, which is bi-Lipschitz equivalent to a self-similar

sequence space (
; �) of �nite Hausdor� dimension s0 by lemma 2.2. Again,

the bi-Lipschitz map g : 
 ! E0 extends to a bi-Lipschitz map eg : K(
) !

K(E0). Thus, we have the following theorem.

Theorem 3.4 Let  s(t) = 2�(1=t)
s

. Suppose that E has an s0-nested pack-

ing. Then for s < s0 we have H
 
s

(K(E)) > 0.

As noted in corollary 1.1, these theorems apply to self-similar sets. It is

natural to ask whether these theorem hold (or fail) for other types of sets.

The next theorem is an example showing that no general estimate can hold.

For every ' 2 �, there is countable metric space X so that H'(K(X)) >

0. It is interesting to note that the following metric space yields this same

unexpected behavior for the entropy dimensions (see [Mcc]). Suppose that

X = fx0; x1; : : : ; x1g is a countable metric space with metric � satisfying

�(xn; x1) = an & 0 and �(xn; xm) � an for m < n <1. Clearly H'(X) = 0

for every ' 2 �. But the following is also true:

Theorem 3.5 Let (X; �) be as above and suppose ' 2 � satis�es '(an) =

2�n. Then 1
2
� H'(K(X)) � 1.

Proof: A set T 2 K(X) is isolated if and only if x1 62 T . Let

K0(X) = fT 2 K(X) : x1 2 Tg:

Then K(X) n K0(X) is countable so that H'(K(X) n K0(X)) = 0.

Turn now to K0(X). For �xed n 2 N, each set A � fx0; : : : ; xn�1g deter-

mines a set eAn = fT 2 K0(X) : A = T \ fx0; : : : ; xn�1gg:

Note that if S; T 2 eAn, then any point xk 2 S with k � n satis�es �(xk; x1) �

an. So dist(xk; T ) � an, since x1 2 T . Since S and T agree on A, it follows

that dist(xk; T ) � an for every xk 2 S and vice versa. So diam( eAn) � an. In

fact, A [ fx1g and A [ fxn; x1g 2 eAn, so that diam( eAn) = an. Now there

are 2n such A's contained in fx0; : : : ; xn�1g. So

H'

an
(K0(X)) � 2n'(an) = 2n2�n = 1:

So H'(K0(X)) � 1.
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For the lower bound, a measure � on K0(X) will be constructed recursively.

Let �(K0(X)) = 1. Fix m 2 N and suppose that � has been constructed so

that A � fx0; : : : ; xn�1g implies �( eAn) = 2�n for every n � m. Note that if

A � fx0; : : : ; xm�1g, then

eAm = fT 2 eAm : xm 2 Tg [ fS 2 eAm : xm 62 Sg:

Divide �( eAm) evenly between these two sets. In this way � is constructed so

that �( eAn) = 2�n for any n 2 N and A � fx0; : : : ; xn�1g.

Now suppose that eB � K0(X) satis�es an+1 < diam( eB) � an. Let T 2 eB
and let A = T \ fx0; : : : ; xn�1g. Then eB � eAn, so

�( eB) � 2�n = 2 � 2�(n+1) = 2'(an+1) < 2'(diam( eB)):
Thus if f eBkg1k=1 is an "-cover of K0(X), we have

1X
k=1

'(diam( eBk)) � 1

2

1X
k=1

�( eBk) � 1

2

and so

H'(K0(X)) � H'

" (K
0(X)) �

1

2
:2
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