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Abstract. We iterate the Weierstrass elliptic ℘ function in order to understand the
dependence of the dynamics on the underlying period lattice L. We focus on square
lattices and use the holomorphic dependence on the classical invariants (g2, g3) =
(g2, 0) to show that in parameter space (g2-space) one sees both quadratic-like
attracting orbit behavior and pre-pole dynamics. In the case of pre-pole parameters
all critical orbits terminate at poles and the Julia set of ℘L is the entire sphere.
We show that both the Mandelbrot-like dynamics and the pre-pole parameters
accumulate on pre-pole parameters of lower order providing results on the dynamics
occurring in parameter space “between Mandelbrot sets”.

1. Introduction

We parametrize a family of periodic meromorphic maps from ℂ onto the Riemann
sphere ℂ∞ in order to analyze the asymptotic behavior changes under iteration, as
the parameter moves holomorphically. In particular starting with a maximal discrete
subgroup of points in ℂ, a square lattice denoted L, generated by a nonzero pair
�, �i ∈ ℂ, we iterate the Weierstrass elliptic ℘ function, the basic building block for
maps periodic with respect to each element of L. We denote the map by ℘L and by
℘n
L
we mean ℘L∘℘L ⋅ ⋅ ⋅∘℘L n times; note that ℘n

L
is not defined at every z ∈ ℂ∞. This

is because any doubly periodic function f must have poles; if not, then by Liouville’s
Theorem f is bounded and hence constant in ℂ. The Riemann sphere splits in the
classical way into the open set of normal points, points z such that the family {℘n

L} is
a normal family near z, called the Fatou set and the “chaotic” complement called the
Julia set. For the meromorphic setting a good background exposition can be found
in [Bergweiler, 1993].

We study parameter space for Weierstrass elliptic ℘ functions with square pe-
riod lattices since this restriction gives a family of elliptic functions which can be
parametrized by a single nonzero complex parameter. On the other hand this class
already exhibits most of the richness of behavior typical of elliptic functions as shown
for example in [Hawkins & Koss, 2002, 2004, 2005] and [Hawkins & Look, 2005].

In this paper we answer a question posed by Bob Devaney about the parameter
space. It is evident that Mandelbrot-like bifurcations occur and indeed many of the
maps in the family under consideration have been shown to be quadratic-like [Hawkins
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& Look, 2005]. A simple computer algorithm searching for attracting periodic orbits
gives a picture like that shown in Fig. 4 [Hawkins & Koss, 2004, 2005]. There are
large white areas visible in Fig. 4 and the natural question posed by Devaney is:
what occurs in parameter space “between Mandelbrot sets”?

In [Lei, 1990] it was shown that certain points in parameter space of z2 + c, c ∈ ℂ,
show a resemblance between the Julia set (dynamical space) and parameter space.
Here we prove a similar phenomenon occurs. All Julia sets of Weierstrass elliptic ℘
functions have poles occurring at lattice points and pre-poles evident throughout the
Julia set. In the spirit of [Lei, 1990] we might expect to see “pre-poles” in parameter
space for an elliptic function. We show this to be the case for the Weierstrass elliptic
function with a square period lattice.

Section 2 presents the needed background material about the dynamics of iterated
meromorphic functions. In Sec. 3 we show that there are natural analogs of poles
and pre-poles in parameter space and that all the types of dynamics accumulate
around each pole just as in the dynamical space; that is, patterns analogous to those
appearing in Julia sets appear in parameter space.

2. Overview of the dynamics of the Weierstrass ℘ function

We define a lattice of points in the complex plane by L = [�1, �2] : = {m�1 +
n�2 : m,n ∈ ℤ}, where �1, �2 ∈ ℂ∖{0} satisfy �2/�1 /∈ ℝ. There are several equivalent
characterizations. A lattice L is a maximal discrete subgroup of ℝ2. Equivalently, L
is the ℤ-linear span of a set of 2 linearly independent vectors in ℝ2, and the vectors
v1 = (ℜ(�1),ℑ(�1)) and v2 = (ℜ(�2),ℑ(�2)) are a basis for L. Lattices have many
bases; i.e., the generators of L are not unique.

We will consider L ⊂ ℂ, and define a L to be square if iL = L. A fundamental
domain for the quotient ℝ2/L ∼= ℂ/L is the set:

ℱ(L) = {s�1 + t�2 : 0 ≤ s, t < 1};
This proposition is easily proved.

Proposition 2.1. The following are equivalent for a lattice Λ.

(1) L is a square lattice.
(2) There exists a � > 0 and � ∈ (−�/2, �/2] such that L = [�ei�, �e−i(�+�/2)].
(3) There exist real numbers a ≥ 0, b ≥ 0, not both 0, such that L = [a+b i, b−a i].
(4) A fundamental domain ℱ(L) is a square.

The ratio � = �2/�1 is an important feature of a lattice. If L = [�1, �2], and k ∕= 0
is any complex number, then kL is the lattice defined by taking k� for each � ∈ L;
kL is said to be similar to L. A square lattice corresponds to � = i and is similar to
the lattice L = [1, i]. Similarity is an equivalence relation between lattices, and an
equivalence class of lattices is called a shape. Clearly the shape of a square lattice
gives it its name.

Definition 2.2. For any lattice L, we define:
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Figure 1. A Fundamental Region ℱ of a square lattice L

(1)
L = {� : � ∈ L},

and say L is real if L = L.
(2) L = [�1, �2] is real rectangular if there exist generators such that �1 is real

and �2 is purely imaginary. Any lattice similar to a real rectangular lattice is
rectangular.

(3) L = [�1, �2] is real rhombic if there exist generators such that �2 = �1. Any
similar lattice is rhombic.

In each of these cases the period parallelogram with vertices 0, �1, �2, and �3 :=
�1 + �2 can be chosen to look rectangular or rhombic respectively.

2.1. Square lattices and elliptic Functions. Throughout ℂ∞ = ℂ∪{∞} denotes
the Riemann sphere and all meromorphic functions are considered to be functions
with domain ℂ and range ℂ∞. We give a brief overview of elliptic functions here;
there is a review including details in [Duval, 1973].

Definition 2.3. An elliptic function is a meromorphic function which is periodic with
respect to a lattice L.

For any z ∈ ℂ and any lattice L, the Weierstrass elliptic function is defined by

(2.1) ℘L(z) =
1

z2
+

∑

w∈L∖{0}

(

1

(z − w)2
− 1

w2

)

.

Replacing every z by −z in the definition we see that ℘L is an even function. The
map ℘L is meromorphic, periodic with respect to L, and has poles of order 2 at every
lattice point.

The derivative of the Weierstrass elliptic function is also an elliptic function which is
periodic with respect to L defined by

℘′
L
(z) = −2

∑

w∈L

1

(z − w)3
.
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The Weierstrass elliptic function and its derivative are related by the differential
equation:

(2.2) ℘′
L
(z)2 = 4℘L(z)

3 − g2℘L(z)− g3,

where g2(L) = 60
∑

w∈L∖{0}w
−4 and g3(L) = 140

∑

w∈L∖{0} w
−6.

The numbers g2(L) and g3(L) are invariants of the lattice in the following sense:
if g2(L) = g2(L

′) and g3(L) = g3(L
′), then L = L′. Furthermore given any g2 and g3

such that g32 − 27g23 ∕= 0 there exists a lattice L having g2 = g2(L) and g3 = g3(L) as
its invariants [Duval, 1973].

The next result is classical and leads to a holomorphic parametrization of many
families of elliptic functions [Duval, 1973].

Theorem 2.4. (1) For L� = [1, � ], the functions gi(�) = gi(L� ), i = 2, 3, are
analytic functions of � in the open upper half plane ℑ(�) > 0.

(2) For lattices L and L′, L′ = kL ⇔
g2(L

′) = k−4g2(L) and g3(L
′) = k−6g3(L).

For any lattice L, the Weierstrass elliptic function and its derivative satisfy the
following properties: for k ∈ ℂ∖{0},

(2.3) ℘kL(ku) =
1

k2
℘L(u), (homogeneity of ℘L),

(2.4) ℘′
kL(ku) =

1

k3
℘′
L
(u), (homogeneity of ℘′

L
),

Verification of these homogeneity properties can be seen by substitution into the series
definitions.

If ℘′
L
(z0) = 0 then z0 is a critical point and ℘L(z0) is a critical value. The critical

values of the Weierstrass elliptic function on an arbitrary lattice L = [�1, �2] are as
follows. For j = 1, 2, notice that ℘L(�j − z) = ℘L(z) for all z. Taking derivatives of
both sides we obtain −℘′

L
(�j − z) = ℘′

L
(z). Substituting z = �1/2, �2/2, or �3/2, we

see that ℘′
L
(z) = 0 at these values. We use the notation

e1 = ℘L(
�1

2
), e2 = ℘L(

�2

2
), e3 = ℘L(

�3

2
)

to denote the critical values. Since e1, e2, e3 are the distinct zeros of Eq. 2.2, we also
write

(2.5) ℘′
L
(z)2 = 4(℘L(z)− e1)(℘L(z)− e2)(℘L(z)− e3).

Equating like terms in Eqs. 2.2 and 2.5, we obtain

(2.6) e1 + e2 + e3 = 0, e1e3 + e2e3 + e1e2 =
−g2
4

, e1e2e3 =
g3
4
.

Consider the polynomial p(x) = 4x3 − g2x − g3. Let △ = g32 − 27g23 ∕= 0 denote
its discriminant, and L the unique lattice associated with p via Theorem 2.4 and Eq.
(2.2).
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Prescribed Parameter {e1, e2, e3} {g2, g3} L-generator
Standard rectangular {1,−1, 0} {4, 0} 
Standard rhombic {−i, i, 0} {−4, 0} 
e1 {c,−c, 0} {4c2, 0} √

c

g2 {
√
!
2
,−

√
!
2
, 0} {!, 0}

(

4
!

)1/4


L-generator { 1
k2
,− 1

k2
, 0} { 4

k4
, 0} k

Table 1. Parameter relationships for ℘L on a square lattice

Proposition 2.5. [Duval, 1973] If L is a square lattice in ℂ, then the following hold.

(1) g3 = 0 and g2 ∕= 0;
(2) g2 > 0 if and only if and only if △ > 0. (We call L real rectangular (square)).
(3) g2 < 0 if and only if △ < 0. (We call L real rhombic (square)).
(4) L = [�ei�, �ei�+�/2] for some � > 0 and � ∈ (−�/2, 0]. L is real rhombic iff

� = −�/4 and real rectangular iff � = 0
(5) e3 = 0, e1 =

√
g2/2 = −e2 are the three critical values of the corresponding

map ℘L.

Proof. The last property is obtained using Eqs. (2.2) and (2.6). The rest are classical
and follow from the series definition of ℘L. □

We define the standard (rectangular square) lattice to be the unique lattice corre-
sponding to g2 = 4, (g3 = 0), and giving e1 = 1 and e2 = −1. For the standard lattice
we denote the side length by  ≈ 2.62206 (see eg. [Milne-Thomson, 1950]), and we
call the standard lattice Γ = [, i]. The constant  is called the standard side length.
We summarize the connections between the various invariants of square lattices and
the associated Weierstrass ℘ function in Table 1. Starting from the standard lattice
defined eg. in [Duval, 1973], all other entries of Table 1 follow from the homogeneity
equation (2.3).

We turn to the iteration of Weierstrass elliptic ℘L functions and the effects on the
long term dynamics of iterating ℘L as L varies. A lot of expansion occurs in a single
application of any ℘L, since if ℱ is a fundamental domain for L, ℘L(ℱ) = ℂ∞. On the
other hand attracting periodic orbits are known to exist for any shape lattice [Hawkins
& Koss, 2005]. These two facts, coupled with the highly nonlinear dependence of ℘L

and ℘′
L
on a change in L as shown in Eqs. (2.3), (2.4), and Table 1 contribute to the

complexity of parameter space.

2.2. Fatou and Julia sets for elliptic functions. We review the basic dynamical
definitions and properties for meromorphic functions which appear in [Baker et al,
1991], [Bergweiler, 1993], [Devaney & Keen, 1988], and [Devaney & Keen, 1989]. As
above, let f : ℂ → ℂ∞ be a meromorphic function where ℂ∞ denotes the Riemann
sphere. The Fatou set F (f) is the set of points z ∈ ℂ∞ such that {fn : n ∈ ℕ} is
defined and normal in some neighborhood of z. The Julia set is the complement
of the Fatou set on the sphere, J(f) = ℂ∞∖F (f). Notice that ℂ∞∖∪n≥0 f

−n(∞)

is the largest open set where all iterates are defined. Since f(ℂ∞∖∪n≥0 f
−n(∞)) ⊂
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ℂ∞∖∪n≥0 f
−n(∞), assuming there are more than three poles Montel’s theorem im-

plies that

J(f) =
∪

n≥0

f−n(∞).

Let Crit(f) denote the set of critical points of f , i.e.,

Crit(f) = {z : f ′(z) = 0}.
If z0 is a critical point then f(z0) is a critical value. For each lattice, ℘L has three
critical values and no asymptotic values. The singular set Sing(f) of f is the set of
critical and finite asymptotic values of f and their limit points. A function is called
Class S if f has only finitely many critical and asymptotic values; for each lattice L,
every elliptic function with period lattice L is of Class S. The postcritical set of ℘L

is:

P (℘L) =
∪

n≥0

℘n
L
(e1 ∪ e2 ∪ e3).

When L is square we have from Proposition 2.5 that ℘L(e1) = ℘L(e2) since they are
negatives of each other, and that ℘L(e3) = ∞ and we can iterate no further. In other
words we really only have one critical orbit so we have a simple expression for P (℘L):

(2.7) P (℘L) =
∪

n≥0

℘n
L
(e1) ∪ e2 ∪∞.

For a meromorphic function f , a point z0 is periodic of period p if there exists a
p ≥ 1 such that f p(z0) = z0. We also call the set {z0, f(z0), . . . , f p−1(z0)} a p-cycle.
The multiplier of a point z0 of period p is the derivative (f p)′(z0). A periodic point
z0 is called attracting, repelling, or neutral if ∣(f p)′(z0)∣ is less than, greater than, or
equal to 1 respectively. If ∣(f p)′(z0)∣ = 0 then z0 is called a superattracting periodic
point. As in the case of rational maps, the Julia set is the closure of the repelling
periodic points [Baker et al, 1991].

Suppose U is a connected component of the Fatou set. We say that U is preperiodic
if there exists n > m ≥ 0 such that fn(U) = fm(U), and the minimum of n−m = p
for all such n,m is the period of the cycle.

Proposition 2.6. If p is an attracting fixed point or a rationally neutral fixed point
for ℘L, then the local coordinate chart for the point is completely contained in one
fundamental period of ℘L (in fact in one half of one fundamental period).

Proof. This is due to the periodicity of ℘L; in each case the local form is invertible.
If we spill into another half fundamental period or region, then injectivity fails.

□

Julia sets for square lattices exhibit additional symmetry. The following was proved
in [Hawkins & Koss, 2002]; its proof uses the simple fact that by Eq. (2.3) we have
℘L(iz) = −℘L(z). The rotational symmetry expressed in the next result is shown in
Fig. 2. In this figure the blue (or dark) points are in F (℘L) and the white points
approximate in J(℘L).



SQUARE PARAMETER SPACE FOR ℘ 7

Figure 2. There is a lot of symmetry in J(℘L) when L is square

Figure 3. A blowup of a piece of the Julia set in Fig. 2 shows the
pole and pre-pole structure

Theorem 2.7. If L is square, then e�i/2J(℘L) = J(℘L) and e�i/2F (℘L) = F (℘L).

In Fig. 3 we zoom in on a part of the Julia set shown in Fig. 2 which shows how
the components of the basin of attraction for the attracting fixed point accumulate
around poles and prepoles of the map.

3. Parameter Space for ℘L with L a square lattice

This section contains the main results of the paper. We begin with a natural
way parametrization of ℘L when L is a square lattice, which makes the family
{℘L}{L a square lattice} vary analytically with the parameter in the sense of Defini-

tion 3.4 below. There are various choices one can make, but it appears that one good
way is to parametrize the Weierstrass elliptic functions with square period lattices
using the parameter g2 ∈ ℂ ∖ {0}. Therefore it is convenient to simplify the notation
by writing for a general lattice, the corresponding Weierstrass elliptic function as:

(3.1) ℘(z, {g2, g3}) = ℘L(z) ⇔ L = L(g2, g3).
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Figure 4. g-Parameter space for ℘L = ℘(⋅, {g, 0}) for L = L(g) a
square lattice as shown in [Hawkins & Koss, 2004]

When L is square, by suppressing the extra 0 (since g3 = 0) and setting g2 ≡ g, we
write

(3.2) ℘(z, g) ≡ ℘(z, {g, 0}) ≡ ℘L(g)(z).

We want to stress that the function ℘ depends both on z ∈ ℂ and g ∈ ℂ ∖ 0 in our
study. Then homogeneity equations (2.3) and (2.4) can be recast as follows: for any
u ∈ ℂ

(3.3) ℘(ku,
g

k4
) =

1

k2
℘(u, g), ℘′(ku,

g

k4
) =

1

k3
℘′(u, g),

or equivalently,

(3.4) ℘(l−1/4u, lg) = l1/2℘(u, g), ℘′(l−1/4u, lg) = l1/3℘′(u, g)

for k, l ∈ ℂ ∖ {0}. We also note that in this notation the standard lattice gives
℘Γ(z) = ℘(z, 4).

In Fig. 4 we show g colored according to the following algorithm. If there is an
attracting periodic orbit for ℘(⋅, g) we color the parameter g = a + ib dark. Other-
wise the parameters are left light. Three fundamental regions have their boundaries
marked in red (dark gray), see Corollary 3.2 below. It was shown in [Hawkins, 2006,
2010] that for each value of g along the marked boundary ray, the corresponding map
has Julia set the whole sphere.

The problem with the algorithm used to produce Fig. 4 is that it leaves large empty
gray areas where the dynamical properties of ℘ are not evident; what happens there?
As mentioned earlier this is the motivation for this paper. We turn now to an answer
to this question and an improved algorithm.
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3.1. Symmetries and Stability. The parametrization discussed here, using the
invariant g2 to uniquely define ℘L when L is square, was introduced in [Hawkins &
Koss, 2004] where it was proved that there are some clearly visible symmetries in
g-space. Let ℂ∗ = ℂ ∖ {0}. We say that the holomorphic family of meromorphic
maps ℘L parametrized over the complex manifold M is reduced if for all g ∕= g′ in M ,
℘(⋅, g) and ℘(⋅, g′) are not conformally conjugate.

Theorem 3.1 (Hawkins & Koss, 2004, Thm 9.1). For square lattices L1 and L2, ℘L1

is conformally conjugate to ℘L2
if and only if e−2�i/3g(L1) = g(L2) or e

2�i/3g(L1) =
g(L2).

Corollary 3.2. For square lattices, the sector of g-space such that

−�

3
< Arg(g) ≤ �

3

is a reduced holomorphic family of meromorphic maps.

We call the region of g-space satisfying Corollary 3.2 the primary fundamental
region of parameter space and denote it by M . It corresponds to the wedge on the
right side of Fig. 4:

(3.5) M = {z = rei� : r > 0,−�

3
< � ≤ �

3
}

There is one additional symmetry which does not result in conformal conjugacy,
but instead uses the simplest anti-conformal mapping. The next result follows imme-
diately from the series definition (2.1) of ℘L [Hawkins & Koss, 2002].

Proposition 3.3. Define the map � : ℂ → ℂ by �(z) = z; for any lattice L we have
that � ∘ ℘L = ℘

L
∘ � and � ∘ ℘′

L
= ℘′

L
∘ �. Therefore the map ℘L is (C1) conjugate

to ℘
L
, and the Julia sets are conjugate under � as well.

The above results explain the visible symmetries in Figs. 4, 5, and 6, and we now
turn to the finer structure within each of the six identical subregions of parameter
space. In order to explain precisely what is being illustrated in the figure, we use
the theory of holomorphic families of meromorphic maps introduced by Keen and
Kotus [1997] and studied in this setting in [Hawkins & Koss, 2004]. For simplicity
we use M ⊂ ℂ∗ for the complex manifold parametrizing square lattices, even though
Corollary 3.2 shows that the reduced space M is a complex manifold homeomorphic
to a cylinder. We now some definitions connecting parameter space to stability for
Weierstrass ℘ functions with square period lattices.

Definition 3.4. Using the notation of Eq. 3.2:

(1) A holomorphic family of elliptic functions ℘L(g) over a complex manifold M is
a holomorphic map ℂ∞ ×M → ℂ∞, given by (z, g) 7→ ℘(z, g)

(2) M top ⊂ M is the set of parameters g which have a neighborhood U with the
property that ℎ ∈ U implies there is a homeomorphism � : ℂ∞ → ℂ∞ such
that ℘(⋅, ℎ) = �−1 ∘ ℘(⋅, g) ∘ �.

(3) The set M qc ⊂ M is defined similarly except that � must be quasiconformal.
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(4) We have for each g ∈ M the set of postcritical values of each ℘(⋅, g) has
3 elements; moreover we also have that ℘L(e3) = 0, which is a pole, and
℘L(e1) = ℘L(e2) for all g. We label the single critical value e1(g); for g ∈ M ,

the critical value is the holomorphic function e1(g) =
√
g

2
. A singular orbit

relation is a pair of integers (m,n) ≥ 0 (or a pair of the form (m,∞)) such
that ℘m(e1(g), g) = ℘n(e1(g), g) (respectively ℘m

1 (e1(g), g) = ∞). The set
Mpost ⊂ M of postsingularly stable parameters consists of all g such that the
set of singular orbit relations is locally constant.

(5) A holomorphic motion of a set J ⊂ ℂ∞ over a connected complex manifold
with basepoint (M, go) is a map � : M × J → ℂ∞ given by (g, z) 7→ �g(z)
satisfying:

∙ for each fixed z ∈ J, �g(z) is holomorphic in g;
∙ for each fixed g, �g(z) is an injective function of z;
∙ �go(z) = z; i.e., it is the identity function at the basepoint.

(6) A holomorphic motion over (M, go) respects the dynamics if

�g(℘(z, go)) = ℘(�g(z), g)

whenever z and ℘(z, go) both belong to J .
(7) The set Mstab ⊂ M denotes the J-stable set of parameters such that the Julia

set moves by a holomorphic motion respecting the dynamics.

The next theorem follows from a similar result proved in [Hawkins & Koss, 2004,
Prop. 6.3].

Theorem 3.5. If ℒ = {L = L(g)} is the set of square lattices parametrized by g,
and forming a holomorphic family defined over the complex manifold M ,

(1) M qc = Mpost = M top = Mstab, and this set is open and dense in M .
(2) Mstab is the set of parameters g for which the total number of attracting and

superattracting cycles of ℘L(g) is constant in a neighborhood of g.

The focus of this paper is on the complement of Mstab in M .

Definition 3.6. The bifurcation locus, M bif is defined to be M ∖Mstab.

3.2. Critical pre-poles in parameter space. As usual L is assumed to be a square
lattice; hence e3 = 0 is always a pole. Our first observation is that whenever there
exists an m ∈ ℕ such that ℘m

L
(e1) = � ∈ L, then J(℘L) = ℂ∞. This is because

the condition forces all critical orbits to terminate at ∞ so there can be no Fatou
component. It is well known that in this setting as for rational maps, each Fatou
component requires an associated critical orbit, as is discussed for example in [Kotus,
2006]. The values of g for which this occurs form the “pre-poles” of parameter space.

Definition 3.7. (1) If L is a square lattice, L = L(g), we say g is a (critical)
pre-pole parameter of order k if ℘k

L
(e1) = ∞.

(2) We say that g is a superattracting parameter of order m if ℘m−1
L

(e1) ∈ cj + L,
for some j = 1, 2, and m ∈ ℕ is minimal.
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Figure 5. g-parameter space with −20 ≤ ℜ(g),ℑ(g) ≤ 20, showing
parameter pre-poles and the presence of attracting orbits

Figure 6. g-space with 0 ≤ ℜ(g) ≤ 4,−4 ≤ ℑ(g) ≤ 0, showing
parameter pre-pole details

(3) An order 1 parameter pre-pole is also called a parameter pole, and since at
an order 1 superattracting parameter the critical value is a critical point, it is
also called a superattracting parameter.

Summary of the structure of parameter space. In the results that follow we
show that parameter space is structured as follows:
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Figure 7. Graphs of Q1(g) and Q2(g)

(1) There are subhyperbolic regions where the free critical orbit tends to an at-
tracting periodic orbit. These regions look like Mandelbrot sets for quadratic
polynomials and contain stable parameters. These regions are colored black
in Figs. 5 and 6.

(2) There are pre-pole parameters: parameters for which the free critical orbit
lands on a pole. These parameters are colored red in Figs. 5 and 6.

(3) In every neighborhood of a pre-pole we find more tiny Mandelbrot sets and
more poles. More precisely we prove that every pre-pole in parameter space
of order n is an accumulation point for pre-poles of order k > n and it is also
an accumulation point for superattracting parameters of order k > n.

(4) It was shown in [Hawkins, 2006, 2010] that along the rays {g : g = rei�, r >
0, � = ±�/3, �} the Julia set is the whole sphere. This forms the boundary of
M ⊂ ℂ0, or equivalently the “seam” of the cylinder M .

Definition 3.8. For each n ∈ ℕ the ntℎ order critical map Qn is defined on ℂ∗ by:

(3.6) Qn(g) = ℘n
L
(e1) = ℘n

((√
g

2

)

, g

)

,

where L = L(g) and e1 = e1(g) =
√
g

2
is either nonzero critical value.

Using Table 1 we rewrite e1(g) as the image of the critical point c1 = c1(g) to
obtain:

(3.7) Qn(g) = ℘n+1

(

(

4

g

)
1

4 

2
, g

)

= ℘n+1(c1, g)

Fig. 7 shows the graphs of Q1 and Q2 restricted to the positive real axis.
We denote by Dn the maximal domain on which Qn is defined; D1 = ℂ∗ and

Dn+1 ⊂ Dn for all n ≥ 1. If Pk denotes the set of poles of Qk in Dk, then Dk+1 =
Dk ∖ Pk.

Important Facts. We set up Definitions 3.7 and 3.8 so that the following hold.
(1) Poles of Qk are in one-to-one correspondence with critical pre-pole parameters of
order k. (2) Superattracting parameters of order k correspond to parameters g such
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that the map ℘(⋅, g) has a superattracting orbit of period k, hence Qk(g) =
√
g

2
=

±e1(g).

We make a convention about roots of complex numbers. For square roots we slit
the plane along the negative real axis and choose a branch that gives a square root
of a positive number along the positive real axis. Since we focus on g ∈ M , we take a
branch of the cube root function to return a value in that region. The functions Qn

defined above are singly valued and different choices of branches in the identities for
the functions give the same results we prove here.

Theorem 3.9. The following properties hold for the first order critical map.

(1) Q1(g) =
√
g

2
℘
(

( g
1/4
√
2
)3, 4

)

; therefore Q1 is a meromorphic function of g on D1.

Q1 has a pole at g if and only if g = 4(m + in)4/34/3, where  ∈ Γ is the
standard length and m,n is any nonzero integer pair. There are infinitely
many order 1 real pole parameters (see Fig. 7).

(2) If g = 4(m+ in)4/34/3, (i.e., if g is a pole of Q1), then J(℘L(g)) = ℂ∞.

(3) For any g ∈ D1, Q1(g) =
√
g

2
if and only if e1(g) =

√
g

2
is a critical point of

℘(⋅, g). For g > 0, the local minima of Q1 occur at exactly at these points
(see Fig. 7).

(4) If g = 41/3((2m+1+ i2n))4/3, m,n ∈ ℤ, (using any choice of cube root) then
g is a superattracting parameter of order 1. All real order 1 superattracting
parameters are positive.

Proof. (1): Fix any z ∈ D1; Eq. (3.4) with l = z/4, g = 4, and u =
√
z/2, gives

Q1 relative to the standard lattice Γ = L(4) exactly as in (1). Taking d
dz

of Q1(z) =√
z
2
℘
(

( z
1/4
√
2
)3, 4

)

shows that Q1 is meromorphic. The poles of Q1 occur precisely when

g3/4

2
√
2
= (m + in), the right hand side giving all lattice points of Γ. We need g ∕= 0

so we assume (m,n) ∈ ℤ × ℤ ∖ (0, 0). Solving for g gives the result. Setting n = 0
and letting m vary, choosing the real cube root gives a real pole parameter. (2): This
follows from (1) and the remarks at the beginning of Sec. 3.2. (3): Using (1), we see

that Q1(g) =
√
g/2 if and only if ℘Γ(w) = 1, where w = ( g

1/4
√
2
)3. But ℘Γ(w) = 1 if and

only if w is a critical point of the form: w = (2m+1+i2n)
2

, m,n ∈ ℤ or w = (m+i2n+i)
2

,
m,n ∈ ℤ (a half lattice point of Γ corresponding to c1 or c2, but not c3) . Setting

( g
1/4
√
2
)3 = (2m+1+i2n)

2
and solving for g gives the result. If we choose critical points of

the form c = (2m+i(2n+1))
2

, then ℘(c, 4) = −1, and solving for g as above does not give
any new values if we allow all cube roots. For fixed g0 > 0, the map ℘(⋅, g0) takes all
real numbers into positive real numbers, and in fact onto [e1,∞] = [

√
g0/2,∞] (see

[Hawkins & Koss, 2002, Lemma 4.7] for a proof). Therefore Q1(g0) ≥
√
g0/2. Using

(1), equality occurs when ℘

(

(
g
1/4
0√
2
)3, 4

)

= 1, and this holds if and only if
√
g0/2 is
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a critical point of ℘(⋅, g0) by the homogeneity equations. (4): This statement was
proved in [Hawkins & Koss, 2002, Corollary 6.9].

□

Similar proofs and induction on n give the following identities for the nth order
critical map.

Theorem 3.10. (1) For n ≥ 2, Qn(g) =
√
g

2
℘
(

( g
1/4
√
2
)Qn−1(g), 4

)

.

(2) For g > 0, and every n ∈ ℕ we have Qn ≥
√
g

2
. For g ∈ Dn, Qn(g) =

√
g

2
precisely at the order n superattracting parameters.

We now turn to a discussion of the poles of Qn. As discussed above, each g ∈ Dn

determines a lattice L(g) and a Weierstrass elliptic function ℘(⋅, g). Each lattice point
of L(g) is a pole of ℘(⋅, g). To locate parameter poles and pre-poles in M we proceed
inductively. For any g0 ∈ ℂ∗, and R, " > 0, let B"(g0) = {z ∈ ℂ : ∣z − g0∣ < "}, and
BR(∞) = {z ∈ ℂ : ∣z∣ > R} denote balls about g0 and ∞ respectively.

Critical pole parameters. There are infinitely many isolated poles of Q1 giving
parameter pre-poles of order one (i.e., critical points that are poles) in M , using
Theorem 3.9(1). The formula also shows that the modulus of the poles of Q1 is
unbounded.

Pre-pole parameters of order 2. We apply Theorem 3.9 to obtain a pole of
Q1 as follows: fix any nonzero lattice point 0 of the standard lattice Γ, and then

p1 = 4
(4/3)
0 is a pole of Q1. We consider the map on a small ball around p1; i.e.,

Q1 : B"(g0) → ℂ∞ where " is chosen small enough so that p1 is the only pole in the
domain.

It follows that Q1 is a nonconstant holomorphic map between its restricted domain
and ℂ∞, hence is an open map. Therefore there exists an R > 0 such that BR(∞) ⊂
Q1(B"(p1)). The following lemma now follows immediately from this containment.

Lemma 3.11. For any large enough pole of Q1, say 4(m)4/3 ≡ m ∈ BR(∞) (using
any cube root), there exists a parameter ℎ1 ∈ B"(p1) such that:

Q1(ℎ1) = ℘

(
√
ℎ1

2
, ℎ1

)

= m.

Corollary 3.12. p1 is an accumulation point of poles of Q2.

Proof. Given any "0 > 0, "0 < " above, Lemma 3.11 gives ℎ1 ∈ B"0(p1) such that
Q1(ℎ1) = m; then

Q2(ℎ1) = ℘2(e1(ℎ1), ℎ1) = ℘(Q1(ℎ1), ℎ1) = ℘(m, ℎ1) = ∞
since m is a lattice point for L(ℎ1). □

We set ℎ1 ≡ p2 since it is an order 2 pre-pole parameter.

Corollary 3.13. The poles of Q2 are unbounded in D2.
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Proof. The value of ∣p1∣ can be chosen arbitrarily large and there are poles of Q2

arbitrarily close to p1. □

The same proof gives a related result for critical points of Q1.

Lemma 3.14. For any large critical point of Q1, say �m = 41/3(m)4/3 ∈ BR(∞), for
m a large odd integer, there exists a parameter s1 ∈ B"(p1) such that:

Q1(s1) = ℘

(√
s1
2

, s1

)

= �m = 41/3(m)4/3.

Therefore the map ℘L(s1) has an order 2 superattracting periodic orbit within " of p1.

Corollary 3.15. Given any pole p of Q1, in any arbitrary neighborhood N of p there
exists an ℎ ∈ N which is an order 2 pre-pole parameter and an s ∈ N which is an
order 2 superattracting parameter.

Parameter poles of order k. Suppose we have constructed order j pre-pole pa-
rameters pj, j < k, in a nested sequence of balls B"(p1) ⊃ ⋅ ⋅ ⋅ ⊃ B"k−2

(pk−2) ∋ pk−1,
and the set Ak−1 = ∪j<k−1Pj is the set of accumulation points the set of parameter
pre-poles of of order k−1. Also we assume that for any M > 0 there exists a pole p of
Qk−1 such that ∣p∣ > M . Note that Dk−1∩Ak−1 = ∅, so each pole of Qk−1 is isolated.
We choose "k−1 < "k−2 small enough so that B"k−1

(pk−1) ⊂ B"k−2
(pk−2), and pk−1 is

the only pole in the ball. On B"k−1
(pk−1) we define the map: QΓ

k−1(g) ≡
g1/4√
2
Qk−1(g).

Then QΓ
k−1 is a nonconstant holomorphic map with the same poles as Qk−1, hence is

open. Therefore there exists an Rk > R > 0 such that BRk
(∞) ⊂ QΓ

k−1(B"k−1
(pk−1)).

We then have the following lemma.

Lemma 3.16. For any large enough k ∈ Γ, in particular k a pole of ℘(⋅, 4) and
k ∈ BRk

(∞), there exists a parameter ℎk−1 ∈ B"k−1
(pk−1) such that

QΓ
k−1(ℎk−1) =

ℎ
1/4
k−1√
2
Qk−1(ℎk−1) = k.

Set ℎk−1 ≡ pk. Clearly ℘(QΓ
k−1(pk), 4) = ℘(k, 4) = ∞.

Corollary 3.17. The order k − 1 pre-pole pk−1 is an accumulation point of poles of
Qk.

Proof. We consider Qk on Dk = Dk−1 ∖ Pk−1. For pk chosen above, Qk(pk) is defined
and using Theorem 3.10,

Qk(pk) =

√
pk

2
℘(QΓ

k−1(pk), 4) = ∞.

Letting "k−1 → 0 gives the result. □

Corollary 3.18. The order k pre-pole parameters are unbounded in ℂ.

We have just proved the following proposition.
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Proposition 3.19. Let Pn denote the poles of Qn. Then Pn has ∪k<nPk as its
accumulation points.

Superattracting parameters of order k. Using the setup, notation and assump-
tions as immediately above, suppose in addition we have shown there are infinitely
many order k − 1 superattracting parameters forming an unbounded set in ℂ. Then
we have the following lemma.

Proposition 3.20. The order k − 1 pole pk−1 is an accumulation point of critical
points of Qk, and the order k superattracting parameters are unbounded.

Proof. Choose a large half lattice point of the standard lattice Γ along one of the
sides of a square; say we have Ck ∈ BRk

(∞) and ℘(Ck, 4) = 1. Therefore there exists
a parameter sk ∈ B"k(gk) such that:

QΓ
k−1(sk) = Ck.

Then sk ∈ Dk so Qk(sk) is defined, and:

Qk(sk) =

√
sk
2

℘(QΓ
k−1(sk), 4) =

√
sk
2

⋅ 1,
so Qk(sk) = e1(sk). By Theorem 3.10 (2) this implies sk is an order k superattracting
parameter.

□

Corollary 3.21. The order k superattracting parameters are unbounded in ℂ.

Using induction on n, this results in the following theorem, which explains what
goes on in between the Mandelbrot sets and gives an idea of the complexity of M bif .

Theorem 3.22. In g-space, the parameter space corresponding to square lattices
with invariants g2 = g and g3 = 0, there are infinitely many parameters correspond-
ing to critical pre-poles of order n for each n ∈ ℕ. Each parameter pre-pole is an
accumulation point of parameter pre-poles of higher order and also of superattracting
parameters of order k ≥ n.

The conclusion drawn from these results is that in every neighborhood of an order
k pre-pole parameter we see both tiny Mandelbrot sets and more pre-pole param-
eters. Hence these points in parameter space are highly unstable. Figs. 5 and 6
illustrate Theorem 3.22. Red points are placed at the parameters values g such that
the corresponding ℘L, with L(g2, g3) = (g, 0), has the property that all critical orbits
terminate at poles. Black points are used to show parameters such that the associated
℘L has an attracting orbit.
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