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CHAPTER I

Introduction

The oldest notion of dimension was clearly intuitive in nature. Mathematicians felt

that the line Rwas somehow di�erent from the plane R2 long before they were proven

to be non-homeomorphic. Intuition is less useful a guide for more complicated sets,

however. Cantor type sets illustrate this nicely. In some sense they are small being

able to �ll up no part of R. On the other hand, they seem big being uncountable and

measure theoretically rich. Thus the need arises for a rigorous de�nition of dimension.

There are now many such de�nitions. Fractal dimensions are those that concen-

trate on the metric structure of a set and lead to the possibility of a set having a

non-integral dimension. Thus a fractal dimension allows for the possibility of dis-

tinction between sets with equal topological dimension, which is necessarily integral.

Cantor's ternary set for example has topological dimension 0, but fractal dimension

log2
log3

� 0:6309. (There are di�erent de�nitions of fractal dimension, but I know of

none that assign some other dimension to Cantor's set.) Thus a fractal dimension

somehow captures the bigness of Cantor's set which the topological dimension misses.

The oldest fractal dimension is Hausdor�'s [Ha]. His de�nition is based on a

measure theoretic construction of Carath�eodory [Ca]. Carath�eodory was interested

1
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in de�ning a measure similar to Lebesgue's to measure the size of a smooth m-

dimensional sub-manifold of Rn. In [Ha], Hausdor� shows that this may be extended

to a natural s-dimensional measure Hs for any real s > 0. This in turn de�nes

dimension by choosing an appropriate parameter s to measure a given set E � Rn.

More generally, the dimension of a set E may be roughly associated with a mono-

tone increasing function '(t) de�ned for t � 0 and with '(0) = 0. In this case write

dim(E) � '(t). To say that E has �nite dimension s, is to say that dim(E) � ts. The

faster ' vanishes at the origin, the larger the corresponding dimension. It is possible

if E is a subset of a large metric space, that dim(E) � ', where ' disappears faster

at the origin than any power of t. Thus we see that fractal dimensions may be used

not only to distinguish between sets of equal integral dimension, but also potentially

between sets of in�nite dimension. It is on such sets that I will concentrate in this

dissertation.

The organization is as follows. In chapter two, I state de�nitions making the

above ideas precise. This chapter is based on much earlier work, but tailored to my

purposes. There are many de�nitions stated, but they are all interrelated and some

are essentially equivalent. I prove some comparison theorems which indicate that a

fairly complete dimensional picture emerges if we can understand two de�nitions in

particular - the Hausdor� dimension and the upper entropy dimension.

In chapter three, I develop some important computational tools and illustrate

their use on some spaces which are relatively easy to deal with called sequence spaces.

In section 3.4, sequence spaces are in turn used to de�ne another important tool for
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calculating Hausdor� dimension - the s-nested packing. Finally, in section 3.5 I discuss

an example involving Cartesian-products which illustrates why certain de�nitions

have evolved to their current form.

Chapters four and �ve form the heart of the original material dealing with hyper-

spaces and function spaces respectively. These are two of the most natural examples

of in�nite dimensional spaces. Hyperspaces are metric spaces whose elements are

subsets of another metric space. Two early papers concerned with dimensions of hy-

perspaces are [Boa] and [Bro]. In chapter four, I extend results proven there to other

notions of dimension and more general metric spaces.

The �fth and �nal chapter is based on [KolTi] which summarizes the earliest

dimensional estimates speci�cally aimed at in�nite dimensional spaces. The theorems

proven in [KolTi] deal with what are now called the entropy indices for various sets

of functions and are part of the resolution of some questions arising from Hilbert's

thirteenth problem. I extend some of these theorems to other notions of dimension.



CHAPTER II

Basic De�nitions

In this dissertation I will be de�ning various notions of dimension in a general setting.

(X; �) or simply X will denote an arbitrary separable metric space. I will frequently

specify that X is complete. For E � X, diam(E) will denote the diameter of E. That

is diam(E) = supx;y2Xf�(x; y)g. If E;F � X, then dist(E;F ) = infx2E;y2F �(x; y)

denotes the distance from E to F . Given x 2 X and r > 0, Br(x) will denote the

closed ball of radius r about the point x. That is Br(x) = fy 2 X : �(x; y) � rg.

2.1 Measure Theoretic De�nitions of Dimension

2.1.1 Hausdor� Dimension

The �rst de�nition of a fractal dimension was Hausdor�'s [Ha]. Although he was

primarily concerned with subsets of Euclidean space, his de�nition generalizes readily

to �-totally bounded subsets of an arbitrary metric space. Here I follow the very

general approach of Rogers [Rog].

For " > 0 an "-cover of E will be a countable or �nite collection of sets, Ei � X,

4
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so that E � [iEi and diam(Ei) � " for every i. Let � denote the set of all non-

decreasing, continuous functions ' de�ned on some interval [0; �) so that '(0) = 0

and '(t) > 0 for t > 0. Such functions will be called Hausdor� functions. Given

' 2 �, de�ne a measure H' on X as follows:

H'
" (E) = inf

(X
i

'(diam(Ei)) : fEigi is an "-cover of E
)
;

H'(E) = lim
"&0

H'
" (E):

Note that H'
" (E) increases as " decreases so that H'(E) is well de�ned, though

possibly in�nite. In [Rog] it is proven that H' is a metric outer measure on X. By

a metric outer measure I mean that H' satis�es H'(E [ F ) = H'(E) + H'(F ),

whenever dist(E;F ) > 0. This implies that all analytic (and in particular all Borel)

subsets of X are H'-measurable. Denote the restriction of H' to the H'-measurable

subsets of X also by H' and call this the Hausdor� '-measure on X.

The idea behind the Hausdor� dimension is that the value of H'(E) is governed

by the asymptotic properties of '(t) as t& 0 in a way indicative of the dimension of

E. For example if �n is Lebesgue measure on Rn and  �(t) = t�, then

H � =

8><>:
0 if � > n

cn�n if � = n (cn constant)
is non-�-�nite if � < n:

In this dissertation I am primarily concerned with in�nite dimensional sets and so

need an appropriate de�nition and method of comparing dimensions. Write:

� dim(E) � ' if H'(E) = 0

� dim(E) � ' if H'(E) is �-�nite
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� dim(E) � ' if H'(E) is non-�-�nite

� dim(E) � ' if H'(E) > 0

� dim(E) � ' if H'(E) is positive and �-�nite.

I would like to be able to use these same symbols to compare Hausdor� functions. So

write:

� ' �  if limt&0
 (t)
'(t)

= 0

� ' �  if lim supt&0
 (t)
'(t)

<1

� ' �  if 0 < lim inft&0
 (t)
'(t)

� lim supt&0
 (t)
'(t)

<1:

The following lemma justi�es the common use of these symbols.

Lemma 2.1.1 If dim(E) � ' �  , then dim(E) �  .

Proof: Assume �rst that H'(E) < M < 1. Let � > 0, choose " > 0 such

that 0 < t � " implies  (t)
'(t) < �=M , and choose an "-cover fEigi of E such thatP

i '(diam(Ei)) < M . Then

H 
" (E) � X

i

 (diam(Ei))

=
X
i

'(diam(Ei))
 (diam(Ei))

'(diam(Ei))
< M

�

M
= �:

Thus H 
" = 0 and H (E) = 0 as " may be chosen arbitrarily small.

If H'(E) is �-�nite, then E = [iEi where H'(Ei) < 1 for every i. So by the

above H (E) �P
iH (Ei) = 0:2

With minor modi�cations, the above proof shows the following:
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� If dim(E) � ' �  then dim(E) �  

� If dim(E) � ' �  then dim(E) �  

� If dim(E) � ' �  then dim(E) �  

There are reverse inequalities with similar proofs. For example:

Lemma 2.1.2 If dim(E) � ' �  , then dim(E) �  .

Proof: Let M > 0 and choose " > 0 such that 0 < t < " implies  (t)
'(t) > M . Then for

any "-cover fUigi of E,

X
i

 (diam(Ui)) =
X
i

'(diam(Ui))
 (diam(Ui))

'(diam(Ui))
> MH'

" (E):

Thus for any M > 0, H (E) �MH'(E) so H (E) =1.

To see that H (E) is non-�-�nite suppose that E = [iEi. Then H'(Ei) > 0 for

some i and so H (E) =1 by the argument above.2

Again a similar proof will show the following:

� If dim(E) � ' �  then dim(E) �  

� If dim(E) � ' �  then dim(E) �  

� If dim(E) � ' �  then dim(E) �  

� is a very rich set and the above ordering is by no means total. It is consequently

not a tractable problem to understand how dim(E) compares with every ' 2 �.

What one sometimes does, therefore, is de�ne an appropriate one parameter family,
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f'�g�>0 � �, such that � < � implies '� � '�. Then there is a critical value

�0 2 [0;1] such that

H'�(E) =

(
0 if � > �0

1 if � < �0:

Suppose  �(t) = t�. This family of functions is useful when studying subsets of

Euclidean space andH � is usually abbreviatedH�. I have made the claim that in this

dissertation I am primarily interested in in�nite dimensional metric spaces. I mean

by this more precisely that I will be working with metric spaces (X; �) satisfying

dim(X) �  � for every � > 0. It so happens that a useful family of Hausdor�

functions for many of the sets that I will be studying is f �g�>0 de�ned by  �(t) =

2�1=t
�
. Another useful family is f'�g�>0 de�ned by '�(t) = 2��(1=t

s) where s > 0 is

�xed.

In [Fal2] it is proven that Hausdor� dimension is preserved by bi-Lipschitz trans-

formations. There, however, he is working with the family  �(t) = t�. One needs

to be more careful when working with more general functions. The following lemma

does hold.

Lemma 2.1.3 Suppose f : X ! X is bi-Lipschitz satisfying:

r1�(x; y) � �(f(x); f(y)) � r2�(x; y): (2.1)

Then

dim(E) � ' ) dim(f(E)) � '(t=r2)

and

dim(E) � ' ) dim(f(E)) � '(t=r1):
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Proof: If fEig is an "-cover of E, then ff(Ei)g is an r2"-cover of f(E). If in additionP
i '(diam(Ei)) <1, then by the second part of inequality 2.1,

X
i

'

 
diam(f(Ei))

r2

!
�X

i

'

 
r2diam(Ei)

r2

!
<1:

If
P
i '(diam(Ei)) > c > 0, then by the �rst part of inequality 2.1,

X
i

'

 
diam(f(Ei))

r1

!
�X

i

'

 
r1diam(Ei)

r1

!
> c:

The result follows.2

Consider, for example, the two parameter family of functions

'M;�(t) = 2�(M=t)�:

For a �xed � > 0 a bi-Lipschitz map with ratios r1 and r2 as above can a�ect the

critical value of M . But it can't be raised by more than a factor 1=r2 and it cannot

be lowered by more than a factor of 1=r1. For �1 < �2, however, 'M1;�1 � 'M2;�2 for

any M1 and M2. So a bi-Lipschitz map won't have any a�ect on the critical value of

�.

This bi-Lipschitz invariance of the Hausdor� dimension is due to its dependence

on the metric structure of the set in question. This is a general feature of fractal

dimensions and lemmas similar to 2.1.3 hold for all the notions of dimension discussed

here.

2.1.2 The Packing and Centered Covering Dimensions

The packing measure and dimension were introduced by Taylor and Tricot [Tr, TayTr]

as notions (almost) dual to the Hausdor� measure and dimension. Equality of the
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Hausdor� and packing dimensions of a set imply some regularity properties for the

set. The centered covering measure and dimension were introduced by St. Raymond

and Tricot [RayTr] as notions precisely dual to the packing measure and dimen-

sion. In these papers it is assumed that Hausdor� functions are blanketed. That is

lim supt&0 '(2t)='(t) <1. This is tantamount to restricting to the �nite dimensional

case as the following lemma shows.

Lemma 2.1.4 If lim supt&0 '(2t)='(t) <1, then there is an � > 0 such that ' � t�.

Proof: Choose t0 > 0 such that 0 < t < t0 implies '(2t)='(t) < M <1. Then for

n 2 N,
1

'(2�nt0)
=

'(2�n+1t0)
'(2�nt0)

'(2�n+2t0)
'(2�n+1t0)

� � � '(t0)

'(2�1t0)
1

'(t0)

� Mn 1

'(t0)
:

Thus for 2�nt0 < t � 2�n+1t0,

t�

'(t)
� (2�n+1t0)�

'(2�nt0)
� 2�

�
M2��

�n t�0
'(t0)

:

Now as t& 0, n!1. Thus t�

'(t)
! 0 whenever � is large enough so thatM2�� < 1:2

I'll now de�ne the centered covering and packing measures and investigate the

relationships between these quantities and the Hausdor� measure. Of course, I will

not assume that my Hausdor� functions are blanketed. This will not a�ect the

de�nitions, but will slightly alter the comparison theorems.

The centered covering '-measure is very similar to the Hausdor� measure. Rather

than covering the set E � X with arbitrary sets, however, we cover E with closed



11

balls centered in E. We then measure the size of these balls using their radius rather

than their diameter. Thus de�ne a centered "-cover of E to be a �nite or countable

collection of closed balls fBri(xi)gi such that xi 2 E and 2ri � " for every i. Then

let

eC'" (E) = inf

(X
i

'(2ri) : fBri(xi)g1i=1 is a centered "-cover of E
)
;

eC'(E) = lim
"&0

eC'" (E):
As with the Hausdor� measure this is a well-de�ned limit. However, a centered cover

of E may not be a centered cover of some F � E. Because of this it is possible to

have F � E with eC'(F ) > eC'(E). So eC' is not an outer measure. Therefore de�ne

C'(E) = sup
F�E

eC'(F ):
It is proved in [RayTr] that C' is a metric outer measure and I will also denote by C'

the restriction of C' to the C'-measurable sets.

For the packing '-measure, rather than covering E and taking an in�mum, one

packs E with disjoint closed balls and takes a supremum. More precisely, for " > 0 an

"-packing of E will be a �nite or countable collection of disjoint closed balls fBri(xi)gi
such that xi 2 E and 2ri � " for every i. Then let

eP'
" (E) = sup

(X
i

'(2ri) : fBri(xi)gi is an "-packing of E
)
;

eP'(E) = lim
"&0

eP'
" (E):

This time the limit exists because as " decreases eP'
" (E) decreases as well.
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We shall see shortly that eP' is not sub-�-additive and, so, not an outer measure.

So, for �-totally bounded E � X de�ne

P'(E) = inf

(X
i

eP'(Ei) : E � [iEi
)
:

Note that although eP' is not an outer measure, it is �nitely subadditive and mono-

tone. That is if E � [ni=1Ei, then eP'(E) � Pn
i=1

eP'(Ei) and if F � E, then

eP'(F ) � eP'(E). Both these statements follow immediately from the fact that a

packing of a subset of E is also a packing of E. Also note that P' is �nite for a

broader class of sets than eP'. If E is �-totally bounded, but not totally bounded

then eP'(E) =1 for any ' 2 �. Next I will show that eP' respects closure. That is

eP'(E) = eP'(E). Thus we may assume that the Ei's above are closed sets.

Lemma 2.1.5 For all totally bounded sets E, eP'(E) = eP'(E).

Proof: If fBri(xi)gi is an "-packing of E, then we may choose an "-packing fBr0i(x
0
i)gi

of E with �(xi; x0i) and ri� r0i > 0 as small as we like. Thus
P
i '(2ri)�

P
i '(2r

0
i) > 0

may be made as small as we like. So eP'(E) = eP'(E):2

The following example illustrates how the lack of sub-�-additivity of eP' extends

into the in�nite dimensional realm.

Example 2.1.1 Let ' 2 � and an 2 '�1(f1=ng). Note that an & 0. Let X =

fx0; x1; x2; : : : ; x1g be a countable set. De�ne a metric � on X by

�(xn; xm) =

8><>:
an if n 6= m =1

an + am if1 6= n 6= m 6=1
0 if n = m:
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Of course, X is a countable union of singletons each satisfying eP'(fxng) = 0. How-

ever, if an+1 < " � an, then considering the packing with n + 1 balls of radius "=2

centered at x0; x1; : : : ; xn we get

eP'
" (X) � (n+ 1)'

�
2
"

2

�
� n+ 1

n+ 1
= 1:

Thus eP'(X) � 1.

All the quantities introduced so far reect the asymptotic properties of '(t) as

t & 0 in a way similar to lemma 2.1.1. There is also the bi-Lipschitz equivalence as

in lemma 2.1.3. The proofs are all similar. There are also relationships between these

quantities as the following theorem states.

Theorem 2.1.1 Suppose that �; ';  2 � satisfy

lim sup
t&0

� (2t)

'(t)
< A <1; lim sup

t&0

'(2t)

 (t)
< M <1: (2.2)

Then for E � X,

1

A
C�(E) � H'(E) � eC'(E) � C'(E) �MP (E) �M eP (E):

Proof: I �rst prove 1
A
eC� (F ) � H'(F ) for every F � E. Let F � E, let " > 0 be

small enough so that 0 < t � " implies � (2t) � A'(t), and choose an "-cover fEigi
of F . We may assume that Ei \ F 6= ; for all i. Choose for every i an xi 2 Ei \ F .

Then fBdiam(Ei)(xi)gi forms a centered 2"-cover of F . Now by the �rst inequality in

2.2, X
i

� (2diam(Ei)) � A
X
i

'(diam(Ei)):
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So eC�2"(F ) � AH'
" (F ) and

1
A
eC�(F ) � H'(F ). Now H' is monotone so

1

A
C� (E) = 1

A
sup
F�E

eC�(F ) � sup
F�E

H'(F ) = H'(E):

H'(E) � eC'(E) � C'(E) is immediate. For the remaining inequalities, it su�ces

to prove that eC'(E) �M eP (E). If this is the case then,by the monotonicity of eP',

for F � E,

eC'(F ) �M eP (F ) �M eP (E):

Thus C'(E) �M eP (E) upon taking supremums. Next, if E = [iEi, then

C'(E) �X
i

C'(Ei) �M
X
i

eP (Ei):

Thus C'(E) �MP (E) upon taking in�mums.

So �nally I show that eC'(E) �M eP (E). We may assume that eP (E) <1 which

implies that E is totally bounded. By the second inequality of 2.2, we may choose

" > 0 small enough so that 0 < t � " implies '(2t) < M (t) and let fB"=2(xi)gni=1 be

an "-packing of E maximal in the sense that for any x 2 E; B"=2(x) \ B"=2(xi) 6= ;

for some i. Then fB"(xi)gni=1 is a 2"-cover of E and

nX
i=1

'(2") �M
nX
i=1

 ("):

So eC'2"(E) �M eP 
" (E) and

eC'(E) �M eP (E) upon letting "& 0:2

2.2 The Entropy Dimensions

In this sections I de�ne the entropy dimensions in terms of the earlier notion of an

entropy index. The entropy indices seem to have been introduced by a number of
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di�erent authors. The earliest references I am aware of are [Bou] and [PonSc]. They

were generalized and studied in function space in [KolTi]. The modi�cation to obtain

the entropy dimensions goes back at least to [Weg].

The basic idea for the entropy indices is to introduce for a totally bounded subset

E � X and " > 0 a quantity N"(E) which behaves asymptotically as "& 0 in a way

indicative of the dimension of E. Here de�ne

N"(E) = max number of closed disjoint
"

2
-balls centered in E;

where "=2 refers to the radius of the ball. Then, if In is an n-dimensional cube,

N"(In) � (1=")n ([KolTi] sec.4). I will be interested in comparing N"(E) with more

general Hausdor� functions. So for ' 2 � write:

� �(E) � ' if lim sup"&0 '(")N"(E) = 0

� �(E) � ' if lim sup"&0 '(")N"(E) =1:

� �(E) � ' if lim sup"&0 '(")N"(E) <1:

� �(E) � ' if lim sup"&0 '(")N"(E) > 0:

� �(E) � ' if 0 < lim sup"&0 '(")N"(E) <1:

This de�nes the upper entropy index, �, through comparison of N" with Hausdor�

functions using the lim sup. The lower entropy index, �, is similar but we use the

lim inf. Thus:

� �(E) � ' if lim inf"&0 '(")N"(E) = 0
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� �(E) � ' if lim inf"&0 '(")N"(E) =1:

and similarly for �, �, and �.

As we shall see, � is closely related to eP' and su�ers from defects related to

eP''s lack of sub-�-additivity. We therefore modify the de�nition to obtain the upper

entropy dimension b� as follows. By a decomposition of E, I mean a �nite or countable

collection of sets fEigi whose union is E. Write:

� b�(E) � ' (resp. b�(E) � ') if there is a decomposition E = [iEi so that

�(Ei) � ' (resp. �(Ei) � ') for every i

� b�(E) � ' (resp. b�(E) � ') if for every decomposition E = [iEi there is an i

so that �(Ei) � ' (resp.�(Ei) � ').

Similar de�nitions may be made to de�ne b� in terms of �.

Some comments on these de�nitions are in order:

1. Since a packing by "=2-balls of a subset of E is also one of E, �; b�; �; and b�
are all monotone. That is if F � E, then �(E) � ' implies �(F ) � ' and

�(E) � ' implies �(F ) � '.

2. Although � and � are de�ned only for totally bounded sets, b� and b� are de�ned
for �-totally bounded sets.

3. � and � respect closure. The proof is similar to lemma 2.1.5 We may therefore

assume that the Ei's in the de�nition of b� and b� are closed.
The concept of �-stability is a property of b� and b� de�ned by the following lemma.
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Lemma 2.2.1 Suppose that E = [nEn. Then b�(En) � ' for every n implies

b�(E) � '. b�(E) � ' implies there is an n such that b�(En) � '. Similar statements

hold with b�, �, or � replacing b�, �, or � respectively.

Proof: For the �rst part, if b�(En) � ' for every n, then each En may be decomposed

En = [iEn;i where �(En;i) � ' for every i. Then E = [n [i En;i is a decomposition

of E implying b�(E) � '.

For the second part, suppose that each En is further decomposed En = [kEn;k.

Then E = [n[kEn;k. Since b�(E) � ', there are n and k such that �(En;k) � '. En;k

is part of an arbitrary decomposition of En. This says that this n satis�es b�(En) � ':

The other proofs are similar.2

Example 2.2.1 Let ' 2 � and let (X; �) be the corresponding metric space as in

example 2.1.1. Then the same argument used there shows that �(X) � ' and even

that �(X) � '. So � and � are not �-stable as X is countable.

Next I investigate the relationship between � and eP'. Let ' 2 �. A blanketing

sequence for ' is a sequence an & 0 such that '(an) � 2'(an+1): Given ' 2 � such

a sequence may always be chosen recursively.

Theorem 2.2.1 Let E � X be totally bounded. Then eP'(E) <1 implies �(E) �

'. Conversely, suppose that (an)1n=1 is a blanketing sequence for ' and

1X
n=1

 (an)

'(an)
<1: (2.3)

Then �(E) � ' implies eP (E) = 0.
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Proof: For the �rst statement note that for " > 0 we have N"(E)'(") � eP'
" (E) since

the supremum on the right is taken over more possible packings than the one on the

left. So if eP'
" (E)! eP'(E) <1, then �(E) � '.

For the second statement let � > 0 and choose "0;M > 0 such that 0 < " � "0

implies N"(E)'(") < M . Choose n0 2 N large enough so that an0 � "0 and

1X
n=n0

 (an)

'(an)
<

�

2M
:

Let " 2 (0; an0 ] and choose an "-packing B of E. For n � n0 let Bn = fBr(x) 2 B :

an+1 < 2r � ang. Note that #(Bn) � Nan+1(E). So by these choices and inequality

2.3,

X
Br(x)2B

 (2r) =
1X

n=n0

X
Br(x)2Bn

 (2r) �
1X

n=n0

Nan+1(E) (an)

=
1X

n=n0

Nan+1(E)'(an+1)
 (an)

'(an)

'(an)

'(an+1)

� 2M
1X

n=n0

 (an)

'(an)
< 2M

�

2M
= �:

Thus eP 
" (E) = 0 as � > 0 was arbitrary. Since this is true for every " > 0 we have

eP (E) = 0:2

This theorem says that the upper entropy index and the packing premeasure lead

to almost the same notion of dimension. When working with a family of Hausdor�

functions ( s)s>0 the packing premeasure and upper entropy index will frequently

lead to the same critical value. For example if  s(") = "s, then an = 2�(n=s) de�nes a

blanketing sequence for  s. If s < t, then

X
n

 t(an)

 s(an)
=
X
n

2n(1�(t=s)) <1:
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And so the packing premeasure and upper entropy index lead to the same critical

value for the family ( s)s>0. More precisely

supfs > 0 : eP s(E) =1g = supfs > 0 : �(E) �  sg:

As another example, suppose  �(") = 2��(1=")
s
. Then an = (�

n
)1=s is a blanketing

sequence for ( �)�>0. If � < �, then

X
n

 �(an)

 �(an)
=
X
n

2��((n=�)
1=s)s

2��((n=�)1=s)s
=
X
n

2n(1�(�=�)) <1:

So again the upper entropy index and packing premeasure lead to the same critical

value for the family ( �)�>0.

More important is the close relationship between the upper entropy dimension

and the packing dimension stated in the following theorem.

Theorem 2.2.2 Let E � X be �-totally bounded. If P'(E) is �-�nite and ' �  ,

then b�(E) �  . Conversely, if (an)n is a blanketing sequence for ' and

1X
n=1

 (an)

'(an)
<1;

then b�(E) � ' implies P (E) = 0.

Proof: For the �rst part, assume �rst that P'(E) < M < 1. Then there is a

decomposition E = [iEi where Pi
eP'(Ei) < M . So eP'(Ei) < M for every i. Since

N"(Ei)'(") � eP'
" (Ei), we have

lim sup
"&0

N"(Ei)'(") � lim
"&0

eP'
" (Ei) < M:
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So

lim sup
"&0

N"(Ei) (") = lim sup
"&0

N"(E)'(")
 (")

'(")

� M lim sup
"&0

 (")

'(")
<1:

So b�(E) �  . If P'(E) is �-�nite, then E = [nEn where P'(En) <1 for every n.

So b�(En) �  for every n by the above and b�(E) �  by �-stability (lemma 2.2.1).

For the second part, if b�(E) � ', then there is a decomposition E = [iEi such

that �(Ei) � ' for every i. So eP (Ei) = 0 by theorem 2.2.1 and

P (E) �
1X
i=1

eP (Ei) = 0:2



CHAPTER III

Computational Methods

The de�nitions of the preceding chapter are useful theoretically, but cumbersome

computationally. In this chapter, I'll develop some computational tools and illustrate

them with some simple examples. As shown in theorems 2.1.1, 2.2.1, and 2.2.2, many

de�nitions of dimension are essentially equivalent to others. From this point on, I will

concentrate on the Hausdor� and upper entropy dimensions. Conclusions about other

dimensions may be drawn using the appropriate comparison theorem 2.1.1, 2.2.1, or

2.2.2.

3.1 Sequence Spaces

I begin by introducing a family of compact, totally disconnected metric spaces which

are relatively easy to deal with and will aid in later analysis. For k 2 N+ let ak 2 N+,

letAk = f1; : : : ; akg be a discrete set, and let 
 =
Q1
j=1Aj. Thus � = (�j)1j=1 2 
 if

�j 2 Aj for every j. I will de�ne a metric d on 
 inducing the product topology on


. First I develop some useful notation. Given n 2 N an initial segment of length

n is a �nite sequence � = (�j)nj=1 with �j 2 Aj for every j = 1; : : : ; n. There is by

21
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de�nition one initial segment of length zero namely the empty segment denoted �.

If � is an initial segment, write j�j to denote the length of �. For n 2 N, let 
n

denote the set of all initial segments of length n. Let 
� = [1j=0
j be the set of all
initial segments. If � 2 
 write �jn for the initial segment (�1; : : : ; �n) 2 
n. We

may put a partial order on 
� as follows: For �; � 2 
�, say � = (�1; : : : ; �j) and

� = (�1; : : : ; �k), write � < � if j < k and �i = �i for i = 1; : : : ; j. If � < �, then �

is said to be a descendant of �. If � 2 
n, then let �- denote the unique element of


n�1 such that �- < �. �- is called the parent and � the child. Also if � 2 
n is an

initial segment, then let

[�] = f� 2 
 : �i = �i for i = 1; : : : ; ng:

To de�ne a metric d on 
 associate to each � 2 
� a number r(�) > 0 satisfying

the following:

1. r(�) > 0,

2. r(�) < r(�) whenever � > �,

3. r(�jn)! 0 as n!1.

If �; � 2 
 have � as their longest common initial segment then de�ne d(�; � ) = r(�).

De�ne, also, d(�; �) = 0. Then d is a metric inducing the product topology on 
. For

details see [Ed1]. Note that if �; � 2 
 and r(�jn) � " < r(�jn�1), then �(�; � ) � " is

equivalent to �i = �i for i = 1; : : : ; n. Thus B"(�) = [�jn].

There are two speci�c types of sequence spaces which will be of particular interest

here. For the �rst, let s > 0 and let Ak = f1; : : : ; 22k�1g: Choose r 2 (0; 1) such that
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1=rs = 2. If � 2 
n, de�ne r(�) = rn. The resulting sequence space will be called

in�nite s-space. We will see in the following sections that an appropriate Hausdor�

function to describe the dimension of this space is given by  s(") = 2�(1=")
s
.

The other case of interest has been used in the analysis of self-similar sets (see

[Ed1]). Let m 2 N be �xed and let Ak = f1; : : : ;mg for every k. Let (r1; : : : ; rm)

satisfy 0 < ri < 1 for every i = 1; : : : ;m. Such a list is called a contraction ratio

list. For � 2 
n, let r(�) =
Qn
i=1 r�i. In [Ed1] it is shown that the dimension of this

sequence space is given by  s(") = "s, where
Pm
i=1 r

s
i = 1. In fact it is shown that

Hs([�]) = r(�)s (3.1)

for every � 2 
�. This space is called self-similar sequence space and I will be using

it when studying hyperspaces.

3.2 Calculation of the Entropy Dimensions

In this section I will calculate the entropy dimensions for in�nite s-space. To estimate

the entropy indices of a totally bounded set E it is necessary to obtain upper and

lower bounds for N"(E). As N" is de�ned in terms of a supremum, it is relatively easy

to �nd a lower bound, but frequently di�cult to �nd an upper bound. The special

nature of sequence space alleviates this problem somewhat.

Theorem 3.2.1 Fix s > 0, choose r 2 (0; 1) so that r�s = 2, and let (
; �) be the

corresponding in�nite s-space. Then �(
) �  s(r"=2), where  s(") = 2�(1=")
s
.
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Proof: Suppose 2rk � " < 2rk�1. I claim then that N"(
) = 22
k�1. This is because

every ball of radius "=2 2 [rk; rk�1) is of the form [�] for some � 2 
k. Furthermore

if �; � 2 
k then [�] \ [�] = ;. So

N"(
) = #(
k) =
kY
i=1

#(Ak) =
kY
i=1

22
k�1

= 22
k�1+2k�2+���+1 = 22

k�1:

So

N"(
) 
s(r"=2) = 22

k�12�(2=r")
s � 22

k�12�(2=2r
k)s = 22

k�12�2
k

=
1

2
:

Thus lim sup"!0N"(
) 
s(r"=2) � 1

2
and �(
) �  s(r"=2).

For the lower bound, choose for every k 2 N an "k 2 [2rk; 2rk�1) so that  s(r"k=2)

� 1
2 

s(rk). Then

N"k(
) 
s(r"k=2) � 22

k�12�(1=r
k)s�1 =

1

4

and

lim sup
"!0

N"(
) 
s(r"=2) � lim sup

k!1
N"k(
) 

s(r"k=2) � 1

4
:

Thus �(
) �  s(r"=2) and �(
) �  s(r"=2)2:

A similar proof shows that �(
) �  s("=2). Note that  s("=2) �  s(r"=2).

Next, we need to pass from the entropy index to the entropy dimension. Clearly

if �(E) � ', then b�(E) � ', since (E) is a decomposition of E. A similar statement

holds with � replaced by �. The key to getting lower bounds on b� is in the next

lemma.

Lemma 3.2.1 Suppose that E is a closed subset of the complete metric space X

and �(E \ U) � ' for every open set U � X. Then b�(E) � '. A similar statement
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holds with � replaced by �.

Proof: Let (Ei)i be a decomposition of E by closed sets. As E is a closed subset of

a complete metric space, we may apply the Baire category theorem to obtain an Ei

which is somewhere dense in E. This means there is an open set U � X such that

E\U � Ei. So �(Ei) � ' by the monotonicity of � and b�(E) � '. The same proof

works for � :2

Theorem 3.2.2 If (
; �) is in�nite s-space, then b�(
) �  s(r"=2).

Proof: First I'll prove that �([�]) �  s(r"=2) for every � 2 
�. This implies the

result when combined with lemma 3.2.1. Fix n 2 N and suppose that � 2 
n. If

k > n and 2rk � " < 2rk�1, then considerations similar to those when calculating

N"(
) show that

N"([�]) =
kY

i=n+1

#(Ai) =
kY

i=n+1

22
i�1

= 22
k�1+2k�2+���+2n = 22

k�2n :

Now for every k 2 N choose "k 2 [2rk; 2rk�1) such that  s(r"k=2) � 1
2 

s(rk). Then,

N"k([�]) 
s(r"k=2) � 22

k�2n
�
1

2
 s(rk)

�
=

1

2
22

k�2n2�2
k

= 22
k�2n�2k�1 = 2�(2

n+1):

So

lim sup
"!0

N"([�]) 
s(r"=2) � lim sup

k!1
N"k([�]) 

s(r"k=2) > 2�(2
n+1):
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Thus �([�]) �  s(r"=2) and b�(
) �  s(r"=2):2

A similar argument shows that b�(
) �  s("=2).

3.3 Computation of Hausdor� Measures

Now I turn to the computation of Hausdor� measures. In this section  s(t) = 2�(1=t)
s
:

As Hausdor� measure is de�ned in terms of in�mums, upper bounds are relatively

straight forward.

Lemma 3.3.1 If (
; �) is in�nite s-space, then H s(
) � 1=2.

Proof: Let " > 0 and choose k 2 N such that rk < " where 1=rs = 2. Then

f[�] : � 2 
kg is an "-cover of 
 with 22
k�1 sets of diameter rk. So

H s

" (
) � 22
k�1 s(rk) = 22

k�12�(1=r
k)s = 22

k�12�2
k

=
1

2
:

Thus H s(
) = lim"!0H s

" (
) � 1
2 :2

Lower bounds may be obtained by comparing H' with other measures as in the

following lemma.

Lemma 3.3.2 Let ' 2 � and suppose there exists c; � > 0 and a positive Borel

measure � on E such that �(U) < c'(diam(U)) for every set U � X with diam(U) �

�. Then �(E) � cH'(E).
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Proof: Suppose 0 < " � � and (Ui)i is an "-cover of E. Then

0 < �(E) �X
i

�(Ui) � c
X
i

'(diam(Ui)):

So �(E) � cH'
" (E) � cH'(E) after taking in�mums.2

Next, I apply this lemma to in�nite s-space, (
; �). First some notation: If

� 2 
k and � 2 Ak+1, let �� 2 
k+1 denote the concatenation of � with �. Thus

�� = (�1; : : : ; �k; �). Now for � 2 
k de�ne e�([�]) = 2�2
k
. To extend e� to �nite

unions of such sets, note that if � 2 
k then

X
�2Ak+1

e�([��]) = 22
k

2�2
k+1

= 2�2
k

= e�([�]):
It follows by induction that if F 2 
� is �nite and [�] \ [�] = ;, for every �; � 2 F

with � 6= �, then

e�([�2F [�]) = X
�2F

e�([�])
de�nes e� consistently on the algebra of sets A generated by f[�] : � 2 
�g. We may

use e� to de�ne an outer measure �� by using what is sometimes called method I (see

[Ed1])

��(E) = inf

(X
A2C

e�(A) : E � [A2CA and C � A
)
:

Finally, let � denote the restriction of �� to the ��-measurable subsets of 
. Since e� is
�nitely additive on disjoint subsets of A, it follows that each A 2 A is ��-measurable

and � = e� on A (see [Fol] prop. (1.13)). In particular �([�]) = 2�2
k
if � 2 
k. Later,

I will construct such measures without going into such detail. This measure � may

be used to obtain a lower bound on H s(
).
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Lemma 3.3.3 If (
; �) is in�nite s-space, then H s(
) � 1=2:

Proof: Let U � 
 satisfy rk+1 < diam(U) � rk. Since diam(U) > rk+1, there are

�; � 2 U so that �k+1 6= �k+1. So, in fact, diam(U) = rk. If � 2 U and �(�; � ) � rk,

then �i = �i for i = 1; : : : ; k. So U � [�jk]. Thus

�(U) � �([�jk]) = 2�2
k

= 2�(1=r
k)s =  s(diam(U))

and H s(
) � �(
) = 1=2, by lemma 3.3.2.2

Putting together lemmas 3.3.1 and 3.3.3 we get

Theorem 3.3.1 If (
; �) is in�nite s-space, then H s(
) = 1=2.

In fact, these arguments may be strengthened to show that H s = � on 
.

Lemma 3.3.2 is good but not quite powerful enough for some of my purposes. The

next lemma is similar, but more widely applicable.

Lemma 3.3.4 For a separable metric space X with a positive Borel measure �,

x 2 X, and � > 0 let

��(x) = supf�(U) : x 2 U and diam(U) � �g:

Let �k & 0. Suppose that '; 2 � satisfy

max
k2N

'(�k)

 (�k+1)
< A <1: (3.2)

Let E � X be a Borel set which satis�es

D
'

�(x; (�k)) � lim sup
k!0

��k(x)

'(�k)
< M <1 for every x 2 E:

Then H (E) =1.
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Proof: Let k0 2 N and choose 0 < " < �k0. Let

Ek0 = fx 2 E : ��k(x) < M'(�k) for every k � k0g:

Note that [1k0=1Ek0 = E. Suppose that C is an "-cover of E and so of Ek0 . For k � k0

write

Ck = fU 2 C : �k+1 < diam(U) � �kg:

I may assume that #(Ck) <1 for every k. Otherwise

X
U2C

 (diam(U)) =1

and I'm done. For U 2 Ck such that U \ Ek0 6= ; I have �(U) < M'(�k). So

�(Ek0) � X
U2C

U\Ek0 6=;

�(U) =
1X

k=k0

X
U2Ck

U\Ek0 6=;

�(U)

� M
1X

k=k0

#(Ck)'(�k) �M
1X

k=k0

X
U2Ck

 (diam(U))
'(�k)

 (�k+1)

= M
1X

k=k0

0@ '(�k)

 (�k+1)

X
U2Ck

 (diam(U))

1A
� MA

0@ 1X
k=k0

X
U2Ck

 (diam(U))

1A
= MA

 X
U2C

 (diam(U))

!
:

Now �(Ek0) ! �(E) as k0 ! 1. Thus
P
U2C  (diam(U)) > �(Ek0)=MA and

H (E) > �(E)=MA:2

As an example, suppose that  s(t) = 2�(1=t)
s
and �k = cuk. Then for s1 < s2, I

have

 s2(�k)

 s1(�k+1)
= 2�(

1
cuk

)s2+( 1
cuk+1 )

s1
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= 2�(
1

cuk
)s2(1�(cuk)s2( 1

cuk+1 )
s1)

= 2�(
1

cuk
)s2(1�( 1u )s1(cuk)s2�s1) � 2�

1
2 (

1
cuk

)s2

for large k. This last term approaches zero as k !1. So given a Borel set E � X, to

show that H s1 (E) =1, it su�ces to �nd a positive Borel measure � on E, M > 0,

and an s2 > s1 such that

D
 s2

� (x; (cuk)) < M

for every x 2 E. In fact, this shows that dim(E) �  s
1
, since if s1 < s0 < s2, then

H s
0
(E) =1 implying that H s1 (E) is non-�-�nite.

3.4 s-Nested Packings

Part of the importance of sequence space is that it may be used to model many other

spaces. In [Ed1], for example, self-similar sequence spaces are used in the study of

self-similar sets in Rn. In this section I will de�ne a condition on a closed subset

E of a complete separable metric space X which allows the construction of a subset

E0 � E which is Lipeomorphic to a certain sequence space. This result will be used

later to transfer results from sequence space to more general spaces.

Now let E be as above, �x c; s > 0, " 2 (0; 1=4), and m > (1=")s + 1. Let


 = f1; : : : ;mgN with the metric d given by r(�) = c"n for every � 2 
n. An

s-nested packing of E will be a collection of closed balls fBc"j�j (x�)g�2
� satisfying:

1. x� 2 E for every � 2 
�
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2. Bc"n(x�) \ Bc"n(x�) = ; for distinct �; � 2 
n.

3. Bc"j�j (x�) � B
c"j�- j=4(x�-) for every � 2 
�.

This de�nition also depends on c; ", and m, however the important parameter is s

because dimensional bounds given later will be in terms of s. If E has such an s-

nested packing, then let E 0 = \1n=1 [�2
n Bc"j�j (x�). De�ne a map g : 
 ! E0 by

g(!) = \1n=1Bc"n(x!jn).

Lemma 3.4.1 The map g above is bi-Lipschitz.

Proof: Let !1; !2 2 
 satisfy d(!1; !2) = c"n. Then g(!1); g(!2) 2 Bc"n(x!1jn), so

�(g(!1); g(!2)) � 2c"n. For the lower bound, note that g(!i) 2 Bc"n+1=4(x!ijn+1) for

i = 1; 2 and Bc"n+1(x!1jn+1) \Bc"n+1 (x!2jn+1) = ;. So

c"n+1 � �(x!1jn+1; x!2jn+1)

� �(x!1jn+1; g(!1)) + �(g(!1); g(!2)) + �(g(!1); x!2jn+2)

� c"n+1

4
+ �(g(!1); g(!2)) +

c"n+1

4
:

So �(g(!1); g(!2)) � c"n+1

2 = "
2c"

n:2

Next, I would like to show that this condition is non-vacuous by constructing

an s-nested packing for a self similar set E � X. Self similar sets are obtained as

follows: Let m1 2 N and for i = 1; : : : ;m1 let fi : X ! X be a similarity with ratio

ri 2 (0; 1). This means that for every x; y 2 X we have �(fi(x); fi(y)) = ri�(x; y).

In this situation there exists a unique non-empty compact set E � X such that

E = [m1
i=1fi(E). A set obtained this way is said to be self-similar. [Ed1] has more

details.
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I will be using two sequence spaces 
1 and 
2 to analyze the set E. The �rst

one is the self-similar sequence space 
1 = f1; : : : ;m1gN with metric d1 given by

the ratio list (ri)
m1
i=1 corresponding to the contraction ratios of (fi)

m1
i=1. Given � =

(�1; : : : ; �n) 2 
n1 , abbreviate f�1 � � � � �f�n(E) by �(E). I will construct the s-nested

packing in the metric space (E; �) rather than (X; �). The reason for this is because

for x 2 E, � 2 
�
1, and " > 0 I have �(B"(x)) = Br(�)"(�(x)) as long as only balls in

(E; �) are considered. This is due to the invariance of E under the transformations

(fi)
m1
i=1 and not generally true in the larger metric space (X; �).

Now let s > 0, let r = minfrigm1
i=1, and let c = 8

r
maxfdiam(E); 1g. Fix � 2

(0;minf14 ; 14diam(E)g) such that N2�(E) > (c=�)s + 1. Such a � certainly exists if

�(E) � ts. Let " = �=c and let m2 = N2�(E). The other sequence space of interest

is 
2 = f1; : : : ;m2gN with metric d2 given by r(�) = c"n for � 2 
n2 .

I will construct an s-nested packing of E for the choices above. Choose x� 2 E

arbitrarily. This gives Bc(x�). The existence of fBc"(x�)g�2
1
2
is guaranteed by the

fact that N2�(E) > (c=�)s+1 since � = c". The construction will proceed by induction

on the length of �. Suppose that Bc"j�j (x�) have been de�ned for j�j � n. For � 2 
n2 ,

choose �� 2 
�
1 such that x� 2 ��(E), and

diam(��(E)) � 1

8

�n

cn�1
< diam(�-�(E)):

Since r = minfrig we have:

diam(��(E)) � r

8

�n

cn�1
=

r

8diam(E)

�n

cn�1
diam(E) � �n

cn
diam(E):

So N2�(�n=cn)(��(E)) � N2�(E) = m2. Thus ��(E) may be packed with m2 balls of

radius �n+1=cn = c"n+1 to continue the induction.
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For a useful generalization, note that if f : X ! X is a bi-Lipschitz map satisfying

�(f(x); f(y)) � r�(x; y) for every x; y 2 X, then f(B"(x)) � Br"(f(x)). So if f : E !

F is a bi-Lipschitz bijection and E has an s-nested packing fBc"j�j(x�)g�2
�, then
f induces an s-nested packing of F namely fBcr"j�j (f(x�))g�2
�. Putting all this

together we obtain:

Theorem 3.4.1 If E � X has a subset which is Lipeomorphic to a self-similar set

F satisfying �(F ) � ts, then E has an s-nested packing.

Finally, I will have occasion to extract a packing B � fBc"j�j(x�)g�2
� from a

given s-nested packing satisfying the condition described in the following lemma.

Lemma 3.4.2 Given an s-nested packing there is a packing B � fBc"j�j (x�)g�2
�

such that for every n 2 N,

#(f� 2 
n : Bc"n(x�) 2 Bg) = (m� 1)n�1:

Proof: Choose one � 2 
1 arbitrarily and put Bc"(x�) 2 B. Continuing recursively,

suppose that Bc"j�j (x�) have been chosen for j�j � n such that

#(f� 2 
k : Bc"k (x�) 2 Bg) = (m� 1)k�1

for each k = 1; : : : ; n. A given Bc"k (x�) 2 B where � 2 
k contains mn+1�k balls

Bc"n+1(x�) where � 2 
n+1. For �xed k, B contains (m � 1)k�1 such balls Bc"k (x�).

Thus for this �xed k,

#(f� 2 
n+1 : Bc"n+1 (x�) � Bc"k (x�) 2 Bg) = mn+1�k(m� 1)k�1:
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So then the number of � 2 
n+1 such that Bc"n+1 (x�) is contained in no Bc"k(x�) 2 B

for any k = 1; : : : ; n is

mn+1 �
nX
k=1

(m� 1)k�1mn+1�k = mn+1

 
1 � 1

m

nX
k=1

�
m� 1

m

�k�1!

= mn+1

 
1 � 1

m

 
(m�1

m
)n � 1

m�1
m
� 1

!!

= mn+1

 
1 +

(m� 1)n

mn
� 1

!

= m(m� 1)n > (m� 1)n:

Thus the induction may continue.2

3.5 A Cartesian Product Example

The Hausdor� measure and dimension were de�ned in 1918. The related theory is

now greatly developed and the de�nition has withstood the test of time. In contrast,

the packing measure and dimension have developed relatively recently. If one looks

at the recent references [Ed1], [TayTr], or [Tr], one �nds a slightly di�erent de�nition

of packing measure based on the diameter of a ball rather than the radius of a ball, as

I have done. Speci�cally, for ' 2 � construct a diameter based packing measure Q'

on a separable metric space (X; �) as follows: For E � X an "-packing of E (for this

section only) is a �nite or countable collection of closed balls fBri(xi)gi with centers

in E such that diam(Bri(xi)) � " for every i. Let

eQ'
" (E) = supfX

i

'(diam(Bri(xi))) : fBri(xi)gi is an "-packing of Eg;
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eQ'(E) = lim
"!0

eQ'
" (E);

and

Q'(E) = inff
1X
i=1

eQ'(Ei) : E � [1i=1Eig:

These de�nitions are very similar to the de�nitions for P' given in section 2.1.2,

except that twice the radius of a ball 2ri is replaced by the diameter of a ball

diam(Bri(xi)). Q' is a reasonable measure which is clearly equal to P' on Eu-

clidean space Rn. In [Cut], however, it is argued that the radius based de�nition

more closely preserves the desirable properties of packing measure and dimension on

Euclidean space. For example, she mentions that the value of the pre-measure eQ'
" is

sensitive to whether closed balls or open balls are used, while eP'
" will not be a�ected

by this choice. The freedom to pack with either closed balls or open balls is frequently

convenient in proofs. In this section, I intend to give an example involving cartesian

products supporting the view that the radius based de�nition is preferable for general

metric spaces.

One very nice feature of the packing dimension in Euclidean space is its behavior

with respect to Cartesian products. Given metric spaces (X; �x) and (Y; �y), a metric

� may be de�ned on the set X � Y = f(x; y) : x 2 X; y 2 Y g by

�((x1; y1); (x2; y2)) = maxf�x(x1; x2); �y(y1; y2)g:

Let 's(t) = ts. Part of [Tr] theorem 5 states that if Dim(E) � 's1 and Dim(F ) � 's2,

then Dim(E�F ) � 's1+s2 when E and F are subsets of Euclidean space. There is a

similar statement made in [Weg] on page 68 for the upper entropy dimension valid for
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arbitrary metric spaces. By the comparison theorem 2.2.2, the radius based packing

dimension behaves in a similar manner. The following example shows that this is not

the case for the diameter based packing measure:

Example 3.5.1 Let 
1 be the sequence space as described in section 3.1 correspond-

ing to the sequence of natural numbers (an)
1
n=1 with diameter function r : 
�

1 ! (0; 1]

given by r(�) =
Qk
i=1

1
ai
for � 2 
k1 and r(�) = 1. De�ne 
2 similarly, but with the

sequence (bn)1n=1. Let '1(t) = t. Then Q'1(
1) � 1 and Q'1(
2) � 1. But given any

' 2 � the sequences (an)n and (bn)n may be chosen to make Q'(
1 � 
2) =1.

Proof: To show that Q'1(
1) � 1, I will use the notion of a re�nement of a packing.

Given a packing B1 of a sequence space 
, a re�nement B2 of B1 is a packing such

that for every [�] 2 B2, there is an [�] 2 B1 such that [�] � [�]. Note that any

packing of 
 is a re�nement of the trivial packing [�].

Next note that if � 2 
k1 and A denotes the set of all children of �, then

X
�2A

diam([�]) = ak+1
k+1Y
i=1

1

ai
=

kY
i=1

1

ai
= diam([�]):

It follows that if B1 is a packing of 
1 and B2 is a re�nement of B1, then

X
[�]2B2

diam([�]) � X
[�]2B1

diam([�]):

In particular, any packing B of 
1 satis�es
P

[�]2B diam([�]) � diam([�]) = 1. So

Q'(
1) � eQ'(
1) � 1. Similar considerations apply to 
2.

Now let ' 2 �. I will recursively de�ne integers (an)1n=1 and (bn)1n=1 so that

Q'(
1 � 
2) = 1. Let a1 = 1, and choose b1 > maxfa1; 1='(a1)g. Choose a2 2 N
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such that 1
a1a2

< 1
b1
< 1

a1
, then choose b2 � 2=(a1a2b1'(

1
a1a2

)) such that 1
b1b2

< 1
a1a2

.

Suppose that (a1; : : : ; an) and (b1; : : : ; bn) have been chosen so that for every k =

2; : : : ; n we have
kY
i=1

1

ai
<

k�1Y
i=1

1

bi
<

k�1Y
i=1

1

ai
(3.3)

and (
Qk
i=1 aibi)'(

Qk
i=1

1
ai
) � k: Choose an+1 such that

Qn+1
i=1

1
ai
<
Qn
i=1

1
bi
, then choose

bn+1 � n+ 1

(
Qn+1
i=1 ai)(

Qn
i=1 bi)'(

Qn+1
i=1

1
ai
)

such that
Qn+1
i=1

1
bi
<
Qn+1
i=1

1
ai
.

Now if 
1 � 
2 = [1n=1Kn where each Kn is closed, then by Baire category there

are k; n 2 N and � 2 
k1, � 2 
k2 such that [�] � [�] � Kn. Thus to show that

Q'(
1 �
2) =1, it su�ces to show that eQ'([�]� [�]) =1 for � 2 
k1, � 2 
k2.

So suppose that � 2 
k1, � 2 
k2. Let n > k and let �0 and �0 be descendants of �

and � respectively of length n. Then diam([�0]) =
Qn
i=1

1
ai
and diam([�0]) =

Qn
i=1

1
bi
.

From the condition in equation 3.3, it follows that if (!1; �1); (!2; �2) 2 [�0]�[�0], then

�((!1; �1); (!2; �2)) � Qn
i=1

1
ai
. Conversely, any point (!3; �3) 2 
1 � 
2 n [�0] � [�0]

satis�es �((!1; �1); (!3; �3)) >
Qn
i=1

1
ai
. So [�0] � [�0] is a ball (closed and open) of

diameter
Qn
i=1

1
ai
. The collection of all such [�0] � [�0] forms a

Qn
i=1

1
ai
-packing of

[�]� [�] with
Qn
i=k+1 aibi elements. So for " =

Qn
i=1

1
ai
,

eQ'
" ([�]� [�]) � (

nY
i=k+1

aibi)'(
nY
i=1

1

ai
) � nQk

i=1 aibi
!1

as n!1. Thus eQ'([�]� [�]) =1 and Q'(
1 �
2) =1:2



CHAPTER IV

Dimensions of Hyperspaces

Given a metric space, (X; �), a hyperspace associated with X is a metric space whose

elements are subsets of X. In this chapter I will discuss the relationship between the

dimension of a metric space and various hyperspaces.

4.1 Entropy Dimensions of the Space K(X)

Given a metric space (X; �), let K(X) denote the set of non-empty, compact subsets

of X. Endow K(X) with a metric e� as follows: For A;B � X let

dist(A;B) = inff�(x; y) : x 2 A; y 2 Bg:

Then for A;B 2 K(X) let

e�(A;B) = maxfsup
x2A

fdist(x;B)g; sup
y2B

fdist(y;A)gg:

The metric e� so de�ned is generally called the Hausdor� metric. Note that a tilde

will frequently indicate that I am working in the hyperspace. The space (K(X); e�)
inherits many nice features from (X; �). For example, K(X) is complete whenever X

38
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is complete and K(X) is compact whenever X is compact. For a proof of these facts,

including that e� is a metric, see [Ed1] section 2. 4.

The following lemmas describe the relationship between �(E) and �(K(E)). Note
that all that follows holds for � and b� with very similar proofs.

Lemma 4.1.1 For totally bounded E � X, �(E) � ' implies �(K(E)) � 2�1=':

Proof: For " > 0, let B" = fB"=2(xi)gN"(E)
i=1 be an "-packing of E with N"(E) balls

of radius "=2. If F � fxigN"(E)
i=1 is non-empty, then F 2 K(E) and we may consider

eB"=2(F ) � K(E) the ball of radius "=2 centered on F. Note that

eB"=2(F ) = fC 2 K(E) : C � [xi2FB"=2(xi) and C \B"=2(xi) 6= ; 8xi 2 Fg:

From this it is easy to see that given distinct, non-empty F1; F2 � fxigN"=2(E)
i=1 we

have eB"=2(F1) \ eB"=2(F2) = ;. So N"(K(E)) � 2N"(E) � 1 and

N"(K(E))2�1='(") � (2N"(E) � 1)2�1='(") = 2N"(E)� 1
'(") � 2

�1
'(")

= 2
N"(E)'(")�1

'(") � 2
�1
'(") :

Thus

lim sup
"!0

N"(K(E))2�1='(") � lim sup
"!0

�
2
N"(E)'(")�1

'(") � 2
�1
'(")

�
=1;

since lim sup"!0N"(E)'(") =1: So �(K(E)) � 2�1=':2

For the reverse inequality it will be useful to de�ne the quantity M" by

M"(E) = min number of sets of diameter � " needed to cover E:

M" is related to N" as per the following lemma.
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Lemma 4.1.2 For totally bounded E and " > 0, N"(E) �M"=2(E) � N"=4(E).

Proof: The �rst inequality is because any two closed disjoint balls of radius "=2 must

have centers separated by more than "=2. Thus an "=2-cover requires at least one set

for each element of an "-packing.

The second inequality follows from the fact that a maximal packing by "=8-balls

induces an "=2-cover by doubling the radius of each of the balls.2

Lemma 4.1.3 For E totally bounded, �(E) � '(t) implies �(K(E)) � 2�1='(t=4).

Proof: Let B" = fB"=2(xi)gN"(E)
i=1 be an "-packing of E. Then eB" = f eB"(F )gF�fxig

forms a 2"-cover of K(E) with 2N"(E) � 1 elements. So

N4"(K(E)) �M2"(K(E)) � 2N"(E) � 1

for every " > 0. So

N4"(K(E))2�1='(") � (2N"(E) � 1)2�1='(")

= 2
N"(E)'(")�1

'(") � 2�1='(") ! 0

as "! 0. Thus �(K(E)) � 2�1='(t=4):2

It is natural to ask if �(E) � ' implies �(K(E)) � 2�1='. The answer is no,

basically because the � relation is too sensitive. For example, if I � R is a closed

interval of length `, then the optimal "-packing of I consists of [`="] balls with centers

separated by ". So N"(I) = [`="] and lim"!0 "N"(I) = `. So �(I) � " for any

bounded interval I. But, as we see in the proofs of lemmas 4.1.1 and 4.1.3,

2N"(E) � 1 � N"(K(E)) � 2N"=4(E) � 1:
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So

N"(K(I))2�1="
( � (2[`="] � 1)2�1=" !1 if ` > 1
� (2[4`="] � 1)2�1=" ! 0 if ` < 1

4
:

And

�(K(I))
( � 2�1=" if ` > 1
� 2�1=" if ` < 1

4:

The next step is to pass to the entropy dimensions.

Theorem 4.1.1 If E � X is �-compact and b�(E) � ', then b�(K(E)) � 2�1='.

Proof: Suppose that b�(E) � ' and E is compact. The extension of the theorem

to �-compact sets is straightforward as any such set contains a compact subset E

satisfying b�(E) � ' by �-stability. I will need to highlight a subset of E with a

certain regularity property. Let

E' = fx 2 E : b�(E \Br(x)) � ' 8 r > 0g:

EnE' is open in E practically by de�nition. So E' is closed in E and, therefore,

�-compact. Let x 2 E' and let r > 0. I claim that b�(E' \ Br(x)) � '. (This

is the needed regularity property of E'.) b�(E \ Br(x)) � ' by de�nition. For

every y 2 (EnE') \ Br(x), choose an ry such that b�(E \ Bry(y)) 6� '. Then

fBry(y)gy2(EnE')\Br(x) is an open cover of the �-compact set (EnE') \ Br(x). So

there is a countable subcover fBryk
(yk)g1k=1. Since

E \Br(x) = ([1k=1Bryk
(yk) \ E) [ (E' \Br(x))

and b�(Bryk
(yk)\E) 6� '8 k, it must be that b�(E' \Br(x)) � ' by �-stability of b�.



42

I'll now show that b�(K(E')) � 2�1=' from which it easily follows that b�(K(E)) �
2�1='. Suppose that K(E') = [11 fKn. It may be assumed that each fKn is closed. By

the Baire category theorem, one of the fKn's is somewhere dense. This means that

there is a set D 2 fKn and an r > 0 such that eBr(D) � fKn. Let x 2 D and de�ne

eAx;r = fC 2 fKn : C = (DnBr) [ F; where F � Br=2(x) \ E' is compactg:

eAx;r � fK is naturally isometric to K(E'\Br=2(x)) which satis�es �(K(E'\Br=2(x)))

� 2�1=', since �(E' \ Br=2(x)) � '. Therefore, �(fKn) � 2�1=' and b�(K(E')) �
2�1=':2

The next example shows that the converse inequality does not hold.

Example 4.1.1 Recall the situation from example 2.1.1: Let an 2 '�1(f1=ng) where

' 2 �. Let X = fx0; x1; x2; : : : ; x1g be a countable set. De�ne a metric � on X by

�(xn; xm) =

8><>:
an if n 6= m =1

an + am if1 6= n 6= m 6=1
0 if n = m:

Then b�(X) �  for every  2 � as X is the countable union of singletons. But

b�(K(X)) � 2�1='.

Proof: Write K(X) = fK [ eI where
fK = fC 2 K(X) : x1 2 Cg and eI = fC 2 K(X) : x1 62 Cg:

eI consists of the countably many isolated points of K(X). So fK is closed in K(X).

Any decomposition of K(X) induces one of fK, so suppose that fK = [1n=1fKn, where

the fKn may be assumed closed. By the Baire Category Theorem, one of the fKn is
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somewhere dense. So there exists n 2 N, C 2 fKn, and r > 0 such that eBr(C) � fKn.

Let

Xr = fx 2 X : �(x; x1) � rg; Cr = fx 2 C : �(x; x1) > rg;

and let

eA = fD 2 K(E) : D = Cr [ F where F 2 K(Xr)g:

Then eA � eBr(C) � fKn and eA is naturally isometric to K(Xr). Now �(Xr) � ' by

example 2.2.1, so �(K(Xr)) � 2�1=' by lemma 4.1.1. Thus b�(K(X)) � 2�1=':2

In spite of example 4.1.1 we do have the following:

Lemma 4.1.4 Suppose that E is totally bounded and �(E) � '(t). Then b�(E) �
2�1='(t=4).

Proof: This immediate by lemma 4.1.3.2

Thus sets which are \regular enough" satisfy the expected type of upper bound.

Another interesting example is K([0; 1]). For c > 0, let 'c(t) = 2�
c
t . In [Goo1],

it is shown that dim(K([0; 1])) � 'c for every c > 0. A careful reading of the proof

there shows, in fact, b�(K([0; 1])) � 'c for every c > 0. I will investigate a converse

to this statement using theorem 4.1.1 and the following lemma. Logarithms are to

the base 2.

Lemma 4.1.5 Let 'c(t) = 2�
c
t and suppose that ' � 'c for every c > 0. Let

 (t) = �1= log('(t)). Then  � t.

Proof: Let c > 0 and choose tc > 0 such that 0 < t < tc implies 'c(t)
'(t)

� 1. Then

t

 (t)
= �t log'(t) � �t log'c(t) = log(2

�c
t )�t = c:
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So t
 (t)

! 0 as t! 0, since c > 0 is arbitrary.2

Corollary 4.1.1 b�(K([0; 1])) � ', where ' is as above.

Proof: Since  (t) � t, I have b�([0; 1]) �  and so b�(K([0; 1])) � 2�1= = ', by

theorem 4.1.1.2.

4.2 Hausdor� Dimension of K(X)

In this section I investigate conditions on E to ensure that dim(K(E)) � 2�(1=")
s
.

Early results in this direction are in [Boa, Goo1, Goo2] which deal with K([0; 1]).

Calculations of Hausdor� dimensions are generally much more di�cult than those

for entropy dimensions. Assumptions made on E will be much more stringent. I

begin with self-similar sequence space 
 and will then transfer the results to other

sets modeled by 
. In this section, 
 = (1; : : : ;m)N is a �xed self-similar sequence

space with contraction ratio list (r1; : : : ; rm) so that
Pm

1 r
s0
i = 1.

Theorem 4.2.1 For M > 0 let 'M (") = 2�M(1=")s0 . Then there exists an M large

enough so that H'M (K(
)) <1.

Proof: Choose 0 < u < minfrig so that 1=us0 = n 2 N. For every k 2 N, let

Lk = f� 2 
� : r(�) � uk < r(�-)g:

Each � 2 Lk satis�es

uk+1 < r(�) � uk
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and

n�(k+1) < Hs0([�]) � n�k (4.1)

by equation 3.1. Suppose that #(L1) = L. Then since each � 2 L1 satis�es n
�2 <

Hs0([�]) � n�1, for each k 2 N the number of descendants of � in Lk cannot exceed

nk. So

Lnk�2 � #(Lk) � Lnk:

Let A � Lk be nonempty. Associate with A a set eA � K(
) de�ned by:

eA = fC 2 K(
) : f� 2 Lk : [�] \ C 6= ;g = Ag:

Such a set eA is called a k-set and satis�es diam( eA) � uk. Since #(Lk) � Lnk, there

are no more than 2Ln
k � 1 such k-sets. This leads to the following estimate:

H'M
uk

(K(
)) �
�
2Ln

k � 1
�
'M (u

k)

� 2Ln
k

2�M(1=uk)s = 2Ln
k

2�Mnk � 1

as long as M � L. Thus for M � L, I have H'M (K(
)) � 1:2

Now for the lower bound, let  s(") = 2�(1=")
s
for s > 0.

Theorem 4.2.2 H s(K(
)) > 0, whenever s < s0.

Proof: Lk; L; u; n, and k-sets are as in the preceding proof. Given A � Lk, de�ne

�(A) = #(A)=Lnk�2. Let n0 = 1=us < n, choose p 2 (0; 1) so that n0 < pn, then

choose j 2 N large enough so that
�
n0
pn

�j
< 1

n
. I will construct a measure � concen-

trated on those kj-sets eA with �(A) � pkj=nk so that � satis�es D
 s

� (x; (ukj+1)) � 1
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for every x 2 K(
) implying the result by lemma 3.3.4. Recall that the de�nition of

D
 s

� (x; (ukj+1)) is given in lemma 3.3.4.

The measure � will be constructed recursively. The empty word � is the only

string of length 0 leading to the one 0-set e� = K(
). De�ne �(K(
)) = 1. Fix

k 2 N and suppose that � has been de�ned for all kj-sets eA such that �( eA) > 0

only if �(A) � pkj=nk. If eA is such a kj-set, then distribute �( eA) among all those

(k + 1)j-sets eB � eA such that �(B) � p(k+1)j

nk+1 . Such a set eB will be called an eligible

descendent of eA. I need a lower bound on the number of eligible descendants of eA. I
have #(A) � pkj

nk
Lnkj�2, since �(A) � pkj

nk
. If � 2 A � Lkj, then

n�(kj+1) < Hs0([�]) � n�kj ;

by equation 4.1 while if � 2 L(k+1)j, then similarly

n�(k+1)j�1 < Hs0([�]) � n�(k+1)j:

Thus if L(k+1)j;� is the set of descendants of � in L(k+1)j, then

nj�1 < #(L(k+1)j;�) < nj+1:

To form an eligible descendent eB � eA proceed as follows: Take
h
pj p

kj

nk
Lnkj�2

i
of

the �'s 2 eA and choose all possible descendants � to form part of the set B. This

guarantees that

#(B) �
"
p(k+1)j

nk
Lnkj�2nj�1

#
=

"
p(k+1)j

nk
Ln(k+1)j�3

#
;

so that �(B) � p(k+1)j

nk+1 as required. I am now free to choose descendants of the
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remaining

"
pkj

nk
Lnkj�2

#
�
"
p(k+1)j

nk
Lnkj�2

#
� (1 � pj)(

pkj

nk
Lnkj�2)� 1

�'s 2 A as I like. Since each � 2 A has at least nj�1 descendants � 2 L(k+1)j and I

may choose any possible non-empty subset of these as possible descendants, I get at

least

(2n
j�1 � 1)(1�p

j)( p
kj

nk
Lnkj�2)�1

eligible descendants eB � eA. This means that any such eB satis�es

�( eB) � (2n
j�1 � 1)�(1�p

j)( p
kj

nk
Lnkj�2)�1�( eA):

Applying this recursively I get that a kj-set satis�es

�( eA) � (2n
j�1 � 1)�(1�p

j)Ln�2(1+pjnj�1+���+(pjnj�1)k�1)�k

= (2n
j�1 � 1)

�(1�pj)Ln�2 (pjnj�1)k�1

pjnj�1�1
�k

� 2�L
0(pjnj�1)k

where L0 is a large enough constant.

The diameter of a kj-set is � ukj+1. Let n0 = 1=us < n. Then

�( eA)
 s(ukj+1)

� 2�L
0(pjnj�1)k

2�(n0)kj+1

= 2(n
0)kj+1�L0 (pjnj )k

nk ! 0

Since pjnj�1 > (n0)j by assumption.2

The next order of business is to extend these theorems to more general sets E.

For the upper bound, let us suppose that E � F where F is the self-similar set given
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by the maps (f1; : : : ; fm) with ratio list (r1; : : : ; rm). Let (
; �) be the corresponding

self-similar sequence space. In this situation, it is shown in [Ed1] that there is a

surjective Lipschitz map h : 
 ! F . Since a Lipschitz map is continuous and the

continuous image of a compact set is compact, h extends naturally to a Lipschitz

map eh : K(
) ! K(F ). Thus the upper bound for K(
) should hold for K(E).

By composing the map h with another if necessary, it is also clear that F need not

be strictly self-similar, but only the Lipschitz image of a self similar set. This is

summarized as the following theorem.

Theorem 4.2.3 Let E � F , where F is the Lipschitz image of a self-similar set with

ratio list (r1; : : : ; rm) such that
Pm
i=1 r

s0
i = 1. Then there is an M > 0 large enough

so that H'M (K(E)) <1.

For the lower bound, suppose that E has an s0-nested packing. Then we may

extract a subset E0 � E which is bi-Lipschitz equivalent to a self-similar sequence

space (
; �) of �nite Hausdor� dimension s0 by lemma 3.4.1. Again, the bi-Lipschitz

map g : 
 ! E0 extends to a bi-Lipschitz map eg : K(
) ! K(E0). Thus I have the

following theorem.

Theorem 4.2.4 Suppose that E has an s0-nested packing. Then for s < s0, I have

H s(K(E)) > 0.

Next I turn to more concrete examples. Suppose that X = (x0; x1; : : : ; x1) is a

countable metric space with metric � satisfying �(xn; x1) = an & 0 and �(xn; xm) �

an for m < n. Clearly H'(X) = 0 for every ' 2 �. But the following is also true:
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Theorem 4.2.5 Let (X; �) be as above and suppose ' 2 � satis�es '(an) = 2�n.

Then dim(K(X)) � '.

Proof: A set T 2 K(X) is isolated if and only if x1 62 T . Let

K0(X) = fT 2 K(X) : x1 2 Tg:

Then K(X) n K0(X) is countable so that H'(K(X) n K0(X)) = 0.

Turn now to K0(X). For �xed n 2 N, each set A � fx0; : : : ; xn�1g determines a

set

eAn = fT 2 K0(X) : A = T \ fx0; : : : ; xn�1gg:

Note that if S; T 2 eAn, then any point xk 2 S with k � n satis�es �(xk; x1) � an. So

dist(xk; T ) � an, since x1 2 T . Since S and T agree on A, I have that dist(xk; T ) �

an for every xk 2 S and vice versa. So diam( eAn) � an. In fact, A [ fx1g and

A [ fxn; x1g 2 eAn, so that diam( eAn) = an. Now there are 2n such eA's contained in

fx0; : : : ; xn�1g. So

H'
an(K0(X)) � 2n'(an) = 2n2�n = 1:

So H'(K0(X)) � 1.

For the lower bound, I will construct a measure � on K0(X) recursively. Let

�(K0(X)) = 1. Fix m 2 N and suppose that � has been constructed so that A �

fx0; : : : ; xn�1g implies�( eAn) = 2�n for every n � m. Note that ifA � fx0; : : : ; xm�1g,

then

eAm = fT 2 eAm : xm 2 Tg [ fS 2 eAm : xm 62 Sg:
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Divide �( eAm) evenly between these two sets. In this way � is constructed so that

�( eAn) = 2�n for any n 2 N and A � fx0; : : : ; xn�1g.

Now suppose that eB � K0(X) satis�es an+1 < diam( eB) � an. Let T 2 eB and let

A = T \ fx0; : : : ; xn�1g. Then eB � eAn, so

�( eB) � 2�n = 2 � 2�(n+1) = 2'(an+1) < 2'(diam( eB)):
Thus H'(K0(X)) � 1=2, by 3.3.2.2

4.3 Entropy and Hausdor� Dimensions of the Space C(Rd)

In this section I investigate the entropy and Hausdor� dimensions of the set of compact

convex subsets of Rd, denoted C(Rd), endowed with the Hausdor� metric e�. This is
a closed subspace of K(Rd) and so is a complete separable metric space. A good

reference for general facts about C(Rd) is [Sch].

The case d = 1 is easy. Any closed convex subset of R is a closed interval which

is uniquely determined by its endpoints. C(R) is therefore two dimensional. Results

for d � 2 rest on the independent work in [Bro] and [Dud] which essentially compute

the entropy indices. In particular, theorem 5 in [Bro] states the following:

Theorem 4.3.1 Let Td = B1(0) be the open ball of radius 1 about the origin in Rd.

Then for 0 < " � 1=(1012(d� 1)),

2ad(1=")
d�1
2 � N"(C(Td)) � 2bd(1=")

d�1
2 ;

where ad < bd are positive constants depending on d.
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In my notation, this implies that if 'a(t) = 2�a(1=t)
d�1
2 , then

'ad � �(C(Td)) � �(C(Td)) � 'bd:

My �rst contribution is to extend this to the entropy dimensions.

Theorem 4.3.2 Let 'a(t) = 2�a(1=t)
d�1
2 and suppose that ' � 'a �  for every

a > 0. Then for every r > 0,

' � b�(C(Br(0))) � b�(C(Rd)) �  :

Proof: Let Td denote the open unit ball in Rd. If f : Td ! Br(0) is a similarity with

ratio r > 0, then ef : C(Td)! C(Br(0)) given by ef(E) = f(E) is also a similarity with

ratio r. It then follows from theorem 4.3.1 that

2r
d�1
2 ad(1=")

d�1
2 � N"(C(Br(0))) � 2r

d�1
2 bd(1=")

d�1
2 :

So

'a � �(C(Br(0))) � �(C(Br(0))) � 'b; (4.2)

whenever a < r
d�1
2 ad � r

d�1
2 bd < b.

For the lower bound I will apply a Baire category argument to the set C(Br(0))

which is not complete. C(Br(0)) is easily seen to be open in C(Rd) and is there-

fore topologically complete by theorem 12. 1 in [Oxt]. This means that it may be

remetrized by means of a complete metric and so the Baire category theorem still

holds.

Fix r > 0 and suppose C(Br(0)) = [n eCn, where each eCn is closed. By Baire

category, there are n 2 N, " > 0, and E 2 C(Br(0)) such that eB"(E) � eCn. I claim
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that eB"(E) � fEg+ C(B"(0)) where + stands for set addition (E +A = fx+ y : x 2

E; y 2 Ag). This is because set addition is an isometry in C(Rd) (see [Sch] page 59).

So if A � B"(0), then e�(E;E +A) < ". We also see that fEg+ C(B"(0)) is isometric

to C(B"(0)) which satis�es ' � 'a � �(C(B"(0))) for some a > 0 by equation 4.2.

Thus ' � �( eCn) and ' � b�(C(Br(0))).

For the upper bound, write C(Rd) = [n2NC(Bn(0)). Then by equation 4.2, for

every n 2 N, there is a bn > 0 so that �(C(Bn(0))) � 'bn �  . So b�(C(Rd)) �  :2

I now turn to the computation of the Hausdor� dimension. The upper bound given

above for the entropy dimensions holds for the Hausdor� dimension as well by the

comparison theorems 2.1.1 and 2.2.2. The lower bound for the Hausdor� dimension

is somewhat weaker and the proof is considerably more di�cult. A good reference for

the Riesz representation theorem and Alaoglu's theorem as used in the next proof is

[Con].

Theorem 4.3.3 Let  s(t) = 2�(1=t)
s
and suppose that s < d�1

2
. Then dim(C(Rd)) �

 s.

Proof: Let T = B1(0) � Rd be the closed unit ball. I will need to obtain a measure

� on C(T ) as the weak-� limit of some discrete measures. Let Sd�1 = @T d be the unit

sphere. Take a d� 1 dimensional cube of side length < 1 and project it orthogonally

onto Sd�1. Denote this region of Sd�1 so obtained by C. Then C is the bi-Lipschitz

image of a self-similar d � 1 dimensional set and so has a 2s-nested packing since

2s < d�1. Denote this 2s-nested packing by fBc"j�j(x�)g�2
� where 
 = f1; : : : ;mgN.
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Then I may extract a packing B � fBc"j�j(x�)g�2
� such that for all n 2 N,

#(f� 2 
n : Bc"n(x�) 2 Bg) = (m� 1)n�1

by lemma 3.4.2. For n 2 N, let

Bn = fx� 2 C : Bc"j�j (x�) 2 B and j�j � ng:

Let x0 2 Sd�1 be a point opposite C (i.e. x0 2 �C). Each subset F � Bn determines

a convex subset eF � T d given by eF = conv(F [fx0g), where conv denotes the closed

convex hull. Let Gn denote the set of all such convex sets generated by Bn. Then

#(Bn) = 1 + (m� 1) + (m� 1)2 + � � �+ (m� 1)n�1 =
(m� 1)n � 1

m� 2

and #(Gn) = 2
(m�1)n�1

m�2 . The elements of Gn are all distinct. In fact, there is a

convenient lower bound on their separation. If x� 2 E n F , where E;F � Bn and

j�j = k, then any point of F is separated from x� by at least c"k. The argument

used in [Bro] in the proof of 4.3.1 then shows that there is an a > 0 independent of

k such that e�( eE; eF ) � a"2k. Let �n be normalized counting measure on Gn. Each �n

is a continuous linear functional on C0(C(T d)) of norm 1 by the Riesz representation

theorem. The unit ball in C0(C(T d))� is weak-� compact by Alaoglu's theorem, so

(�n)
1
n=1 has a weak-� cluster point, say �.
The measure � above will be used in a density argument, so I need to be able

to compare the �-measure of a set with its diameter. So �x n 2 N and suppose

eA � C(T d) is open and satis�es

a"2(n+1) � diam( eA) < a"2n:
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To estimate �( eA), it su�ces to estimate �j( eA) for large j as � is a weak-� cluster point
of (�j)j. This in turn depends on #( eA\Gj). The restriction on diam( eA) guarantees
that eA cannot contain sets E;F 2 Gj which disagree at some point x� 2 Bn. On

the other hand, eA is potentially large enough to accommodate all possible choices for

x� 2 Bj n Bn. Note

#(Bj n Bn) = (m� 1)j�1 + (m� 1)j�2 + � � � + (m� 1)n

=
(m� 1)j � (m� 1)n

m� 2
;

so #( eA \Gj) � 2
(m�1)j�(m�1)n

m�2 . An element E 2 Gj has �j(fEg) = 2
1�(m�1)j

m�2 . So

�j( eA) � 2
(m�1)j�(m�1)n

m�2 2
1�(m�1)j

m�2 = 2
1�(m�1)n

m�2 ;

for every j > n. So �( eA) � 2
1�(m�1)n

m�2 .

Now  s(diam( eA)) � 2�(1=a"
2(n+1))s = 2�a

0(1="2s)n, where a0 > 0 is a constant. So

�( eA)
 s(diam( eA)) � 2

1�(m�1)n

m�2 2a
0(1="2s)n ! 0

as n!1, since 1="2s < m� 1 by the de�nition of a 2s-nested packing. This yields

the result by lemma 3.3.4.2



CHAPTER V

Function Spaces

In [KolTi] the entropy indices are investigated for various compact sets of functions.

Of central importance there are sets of functions of some prescribed degree of smooth-

ness. Roughly speaking, if E � R
d has dim(E) � ts and F is the set of functions

de�ned on E and smooth of order q > 0, then dim(F ) � 2�(1=t)
s=q
. Thus as E in-

creases in dimension, so does F . While an increase in the order of smoothness of the

functions in F , decreases the dimension of F . In this chapter I extend these theorems

to some other notions of dimension.

5.1 Entropy Dimensions of the Space of Smooth Functions

In order to make the above ideas precise, I will �rst need to carefully de�ne the

set of functions under consideration. Let c > 0, d 2 N, E � R be compact, and

let q = p + � where p 2 N and � 2 (0; 1]. Denote the set of real valued bounded

continuous functions de�ned on Rd by C(Rd). Similarly, C(E) denotes the set of real

valued continuous (and necessarily bounded) functions on E. If f 2 C(Rd), then

f jE will denote the restriction of f to E. The uniform norm is denoted by k � k

55
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and will be applied to functions in both C(Rd) and C(E). I want to de�ne a set

F (c; q; E) � C(E) which are to be thought of as smooth of order q and bound by c.

First I need to de�ne a similar set F (c; q;Rd) � C(Rd).

To de�ne F (c; q;Rd) a convenient notation for the partial derivatives of a function

f 2 C(Rd) will be needed. A multi-index � is a vector in Nd. This is not to be

confused with the notion of an initial segment. If � = (�1; : : : ; �d) is a multi-index,

then write j�j = �1 + � � �+ �d. If f 2 C(Rd) is j�j-times di�erentiable, then D�f(x)

denotes the partial derivative @j�jf(x)
@�1x1���@�dxd where x = (x1; : : : ; xn).

F (c; q;Rd) denotes the set of all functions f 2 C(Rd) such that:

1. D�f exists and satis�es kD�fk � c for all multi-indices � with j�j � p.

2. jD�f(x)�D�f(y)j � cjx�yj� for all x; y 2 Rd and multi-indices � with j�j = p.

Note that condition 1 above includes the case j�j = 0 so that f itself satis�es kfk � c.

The set F (c; q; E) is de�ned by restricting functions from F (c; q;Rd) to E. So write

g 2 F (c; q; E) if g = f jE, where f 2 F (c; q;Rd). The following theorem is a slight

modi�cation of theorem 15 in [KolTi].

Theorem 5.1.1 Fix c; q; s1; s2 > 0 and suppose that E � R
d is a compact set

satisfying

ts1 � �(E) � �(E) � ts2:

Then there are a; b > 0 such that

2�a(1=t)
s1=q � �(F (c; q; E)) � �(F (c; q; E)) � 2�b(1=t)

s2=q
:
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I should point out that the de�nition of F (c; q; E) in [KolTi] is somewhat more ab-

stract. However, a close reading of the proof there yields this theorem for the de�nition

of F (c; q; E) given here as well.

The goal in this section is to extend theorem 5.1.1 to the entropy dimensions. As

b� � � in general, the upper bound is not a di�culty. To extend the lower bound

to b� will require a Baire category argument. This in turn requires that F (c; q; E)

is uniformly closed in C(E). I have not been able to �nd this in the literature and

so prove it now. This will require several lemmas. The �rst goal will be to show

that F (c; q;Rd) is closed in C(Rd) with respect to uniform convergence on compact

subsets of Rd. This mode of convergence will henceforth be abbreviated convergence

UCS. The notion of equicontinuity will play a crucial role. A family F of real valued

functions de�ned on a metric space (X; �) is said to be equicontinuous if for every

" > 0 there is a � > 0 such that jf(x) � f(y)j < " whenever f 2 F and �(x; y) < �.

Note that a subset of an equicontinuous family of functions is again equicontinuous.

Lemma 5.1.1 Let c > 0, q 2 (0; 1], and fn 2 F (c; q;Rd) for every n 2 N such that

fn ! f as n!1 pointwise. Then f 2 F (c; q;Rd).

Proof: Clearly kfk � c. To establish the H�older condition, let x; y 2 Rd, " > 0, and

choose n0 2 N such that n > n0 implies that jfn(x)�f(x)j < "=2 and jfn(y)�f(y)j <

"=2. Then for n > n0,

jf(x)� f(y)j � jf(x)� fn(x)j+ jfn(x)� fn(y)j+ jfn(y)� f(y)j

� "

2
+ cjx� yjq + "

2
= cjx� yjq + ":
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Thus jf(x)� f(y)j � cjx� yjq, as " > 0 is arbitrary.2

Lemma 5.1.2 Let c > 0 and let q = p + � where p 2 N and � 2 (0; 1]. If � is a

multi-index with j�j � p, then the family fD�f : f 2 F (c; q;Rd)g is equicontinuous.

Proof: If j�j = p, then I may apply the H�older condition. So let " > 0 and choose

0 < � < ("=c)1=�. Then jx� yj < � implies

jD�f(x)�D�f(y)j � cjx� yj� < c
�
("=c)�

��
= ":

If j�j < p, then by the mean value theorem and the bound on D�(D�f) where

j�j = 1, we have that D�f satis�es the Lipschitz condition

jD�f(x)�D�f(y)j � kgrad(D�f)k � jx� yj � dcjx� yj:

Thus the same argument applies.2

The following lemma is commonly known as the Arzel�a-Ascoli Theorem and ap-

pears in [Fol] as theorem 4.44 (b).

Lemma 5.1.3 If (fn)n is an equicontinuous pointwise bounded sequence of real val-

ued functions de�ned of Rd, then there is a subsequence (fnj )j and f 2 C(Rd) such

that fnj ! f UCS.

The �nal lemma appears as theorem 4.56 in [Str].

Lemma 5.1.4 Let I � R be a compact interval and let (fn)n be a sequence of real

valued di�erentiable functions on I. Suppose that f 0n ! g uniformly on I and that
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for some c 2 I, fn(c) converges. Then there is a di�erentiable function f de�ned on

I such that fn ! f uniformly on I and f 0 = g.

Corollary 5.1.1 Suppose that fn ! f pointwise on R and f 0n ! g UCS. Then f is

di�erentiable and f 0 = g.

Theorem 5.1.2 F (c; q;Rd) is closed in C(Rd) with respect to the topology of uniform

convergence on compact subsets of Rd.

Proof: The case 0 < q � 1 is contained in lemma 5.1.1. So suppose that q > 1. For

every n 2 N, let fn 2 F (c; q;Rd) and suppose that fn ! f UCS. I want to show that

f 2 F (c; q;Rd).

I will recursively de�ne a sequence nj % 1 such that D�fnj converges UCS as

j !1 for every multi-index � with j�j � p. Let Mp be the number of multi-indices

of length � p and let (�i)
Mp

i=1 be a list of those multi-indices with j�1j = 0. Let

j(1) % 1 be just the sequence of natural numbers. Then D�1fnj(1) = fnj(1) ! f

UCS as j(1) ! 1. Suppose that for k � 1 < Mp, the sequence j(k � 1) % 1 has

been de�ned so that D�ifnj(k�1)
converges UCS to say g�i as j(k � 1)!1 for every

i = 1; : : : ; k � 1. By lemma 5.1.2 the set fD�kfnj(k�1)
gj(k�1) is equicontinuous. It

is also uniformly bounded by c and so by lemma 5.1.3 there is a subsequence j(k)

of j(k � 1) so that (D�kfnj(k))j(k) converges UCS as j(k) ! 1 to say g�k . This

process terminates when j(Mp) is reached to generate the �nal sequence (nj)j such

that D�fnj ! g� UCS as j !1 for all multi-indices � with j�j � p.
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Next suppose that � is a multi-index with j�j = 1. Then viewing (fnj)j as a

sequence of functions of the single variable with respect to which D� di�erentiates,

we see that corollary 5.1.1 applies to the sequences fnj ! f UCS and D�fnj ! g�

UCS. Thus f is di�erentiable and D�f = g�. Clearly kD�fk � c since kD�fnjk � c

for every j. This same argument may be recursively applied to obtain D�f = g� and

kD�fk � c for all multi-indices � with j�j � p.

Finally, for j�j = p, D�f satis�es the necessary H�older condition by lemma 5.1.1.2

Corollary 5.1.2 F (c; q; E) is compact (and therefore closed) with respect to the

uniform norm.

Proof: Let gn 2 F (c; q; E) for every n 2 N. So gn = fnjE where fn 2 F (c; q;Rd).

The sequence (fn)n is uniformly bounded by c. By lemma 5.1.2, (fn)n forms an

equicontinuous family. Thus by lemma 5.1.3, there is a function f 2 C(Rd) and a

subsequence (fnj)j of (fn)n such that fnj ! f UCS as j ! 1. By theorem 5.1.2,

f 2 F (c; q;Rd). Thus the function g = f jE satis�es g 2 F (c; q; E) and gnj ! g

uniformly on E:2

One more lemma is necessary for the main theorem of the section.

Lemma 5.1.5 Let c1; c2; q;  > 0, f 2 F (c1; q;Rd), and g 2 F (c2; q;Rd). Then

f + g 2 F (c1 + c2; q;R
d) and f 2 F (c1; q;Rd).

Proof: If � is a multi-index with j�j � p, then D�(f + g) = D�f +D�g and

kD�(f + g)k � kD�fk+ kD�gk � c1 + c2:
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If j�j = p and x; y 2 Rd, then

jD�(f + g)(x)�D�(f + g)(y)j � jD�f(x) �D�f(y)j+ jD�g(x)�D�g(y)j

� c1jx� yj� + c2jx� yj� = (c1 + c2)jx� yj�:

Similarly, kD�(f)k � c1 and

kD�(f(x))�D�(f(y))j � c1jx� yj:2

Corollary 5.1.3 Let c1; c2; q;  > 0, E � R
d be compact, f 2 F (c1; q; E), and

g 2 F (c2; q; E). Then f + g 2 F (c1 + c2; q; E) and f 2 F (c1; q; E).

Finally, the following theorem gives a lower bound found for b�(F (c; q; E)).
Theorem 5.1.3 Let s; q; c > 0 be �xed and suppose that ' � 2�a(1=t)

s=q
for every

a > 0. If the compact set E � Rd satis�es �(E) � ts then b�(F (c; q; E)) � '.

Proof: Suppose that F (c; q; E) = [nFn where each Fn is closed. By Baire category

there is an n 2 N an f 2 Fn, and an r > 0 such that Br(f) � Fn. I may assume, in

fact, that f 2 F (c0; q; E) where 0 < c0 < c. Otherwise, just replace f with f where

 < 1 is close enough to 1 so that f 2 Br(f). Then f 2 F (c; q; E) and there is

an r0 > 0 such that Br0(f) � Br(f).

Consider now g 2 F (min(r; c � c0); q; E). By corollary 5.1.3, g + f 2 F (c; q; E).

Thus

g 2 Br(f)� ffg = fh� f : h 2 Br(f)g
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since we may take h = g + f . Br(f) � ffg is clearly isometric to Br(f) and we see

that

Br(f)� ffg � F (min(r; c� c0); q; E):

Thus by theorem 5.1.1, there is an a > 0 such that �(Fn) � �(Br(f)) � 2�a(1=t)
s=q � '

and b�(F (c; q; E)) � ':2

It is interesting to note that the bound on b�(F (c; q; E)) is expressed in terms of

�(E) rather than b�(E). thus a set small with respect to b� (but large with respect

to �) can lead to a set of functions large with respect to b�. For example, the set

E = f0; 1; 12 ; : : : ; 1n ; : : :g � R satis�es �(E) � �(E) � ' for every ' 2 � since E

is countable. E also satis�es �(E) � �(E) � t1=2 ([Fal2] example 3.5). Thus for

0 < s < 1=2 and q > 0 we have b�(F (c; q; E)) � 2�(1=t)
s=q
.

5.2 Hausdor� Dimension of the Space of Smooth Functions

In this section, I investigate the Hausdor� dimension of F (c; q; E). The upper bound

given in theorem 5.1.1 holds for the Hausdor� dimension as well, so I concentrate here

on the lower bound. As with the space K(E), I need to make stronger assumptions

on the set E.

Theorem 5.2.1 Fix s; q; c > 0 and suppose the compact set E has an s-nested

packing. Then dim(F (c; q; E)) � 's=q(t) = 2�(1=t)
s=q
.

Proof: Let

g(x) =

(
a
Qd
i=1(1 + xi)q(1 � xi)q if all jxij < 1

0 otherwise,
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where x = (x0; : : : ; xd) 2 R
d and a > 0 is a constant. Note that if a is chosen

small enough, then g 2 F (c; q; E). Note also that for b 2 (0; 1) we have bqg(x=b) 2

F (c; q; E).

Now E has an s-nested packing say fBc0"j�j(x�)g�2
�. Extract from this a packing

B satisfying

#(f� 2 
n : Bc0"n(x�) 2 Bg) = (m� 1)n�1;

as guaranteed by lemma 3.4.2. Recall that m; c0; ", and s are all �xed and satisfy

m > (1=")s + 1. De�ne Bn = fBc0"n(x�) 2 B : � 2 
ng: I'll now de�ne some discrete

sets and argue in a way very similar to theorem 4.3.3. Let Gn be the set of all those

functions f 2 F (c; q; E) of the form:

f(x) =

8>>>>>><>>>>>>:

�( c0"p
d
)qg(

p
d(x�x�)
c0"

) for x 2 Bc0"(x�) 2 B1

...
...

�( c0"np
d
)qg(

p
d(x�x�)
c0"n

) for x 2 Bc0"n(x�) 2 Bn
0 for all other x:

Now #(Bk) = (m� 1)k�1 and for each B 2 [nk=1Bk there are two choices to form an

f 2 Gn induced by the � above. So

#(Gn) = 2 � 2m�1 � � � 2(m�1)n�1

= 21+(m�1)+���+(m�1)
n�1

= 2
(m�1)n�1

m�2 :

As in the proof of theorem 4.3.3, let �n be normalized counting measure on Gn and

let � be a weak-� cluster point of f�ng. Let A � F (c; q; E) be open and satisfy

2a(
c0p
d
)q"(n+1)q � diam(A) < 2a(

c0p
d
)q"nq:
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I want an upper bound on �(A). For this it su�ces to have a bound on �j(A) for

large j, which I get by estimating #(A \ Gj). Note that if two functions f1; f2 2 Gj

disagree on some B 2 Bk, then they will disagree by at least 2a( c0p
d
)q"nq. So A is big

enough to allow functions to do what they like on any B 2 Bk if k = n+1; : : : ; j, but

functions in A \Gn are restricted to just one choice on any B 2 Bk for k = 1; : : : ; n.

So for j > n,

#(A \Gj) � 2(m�1)
j�1 � 2(m�1)j�2 � � � 2(m�1)n

= 2(m�1)
n((m�1)j�n�1+(m�1)j�n�2+���+1)

= 2
(m�1)n

�
(m�1)j�n�1

m�2

�
= 2

(m�1)j�(m�1)n

m�2 :

Any f 2 Gj satis�es �j(ffg) = 2
1�(m�1)j

m�2 , so

�j(A) � 2
(m�1)j�(m�1)n

m�2 2
1�(m�1)j

m�2 = 2
1�(m�1)n

m�2

and �(A) � 2
1�(m�1)n

m�2 .

Now diam(A) � 2a( c0p
d
)q"(n+1)q, so

's=q(diam(A)) � 2
�(2a( c0p

d
)q"(n+1)q)�s=q

= 2�c
0(1="s)n;

where c0 is constant. Thus

�(A)

's=q(diam(A))
� 2

1�(m�1)n

m�2 2c
0(1="s)n ! 0

as n!1, since m� 1 > 1="s. This implies the result by lemma 3.3.4.2
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