
Steffen's flexible polyhedron

A preprint version of a “Mathematical graphics” column from 
Mathematica in Education and Research.

Mark McClure

Department of Mathematics
University of North Carolina at Asheville
Asheville, NC 28804

mcmcclure@unca.edu 

Abstract

ü Initialization

1. Introduction

A closed spatial figure allows no changes as long as it is not ripped apart.
Leonard Euler, as quoted in [1], page 241.

Euler's above sentiment expresses a long-standing, unquestioned, and perhaps natural belief that all polyhedra are rigid. Even
if constructed with hinged edges Euler states, a polyhedron will not bend or flex without distorting the faces. The statement is
true of convex  polyhedra.  In fact, Cauchy proved the stronger statement  that any  two combinatorially  equivalent  convex
polyhedra with congruent faces are themselves congruent.  (For an elementary proof of Cauchy's theorem, as well as a nice
introduction to this topic, see chapter 6 of [1].)

However, there are non-convex polyhedra which do in fact flex. In this issue's column, we construct a model of the simplest
such flexible polyhedron discovered by Klaus Steffen. Although Steffen does not seem to have published this result, it has
become well known and often cited in the literature of rigidity of structures.  In addition to construction of the model, we
investigate the range of genuine non-intersecting flexibility.

2. The construction

Our construction is based on the following net which describes how to make a model of the polyhedron out of paper by
cutting and folding. Note that solid lines should be thought of as “mountain folds” and dotted lines as “valley folds”. (The
SteffenNet command is defined in this notebook's initialization cells, as are several related functions.)



SteffenNet@ShowEdgeLengths Ø True,
ShowBoundaryLabels Ø True,
ShowVertexLabels Ø TrueD êê Show;

17

12

12

5

10
10

12 12

11

12
5

5

10
10

5

12

12

5

10
10

1212

11

12
5

5

10
10

5

a

a

b

b

c
c

d
d

e e
f f

g
g

h
h

1

11

23

4

5

66

7

77

77

8

9

Fig. 1  A net for Steffen's polyhedron

Note that each edge is labelled with its length. Edges on the boundary are labelled with letters and edges with matching labels
should match up when the model is folded. Similarly, the vertices are labelled with numbers in such a way that the numbers
should match correctly. The resulting polyhedron has 14 triangular faces, 21 edges, and 9 vertices.

Using this net, it is now fairly straightforward to set up a system of equations to determine the 3D locations of the vertices for
the folded model.  We begin by  choosing three points  p1 , p2 ,  and p3  that  satisfy the distance  relations  described  in the
diagram, but which are otherwise arbitrary.

p1 = 80, 0, 0<;
p2 = 8-12, 0, 0<;
p3 = 81ê 24, -17 Sqrt@287D ê24, 0<;

Now, since the polyhedron flexes, there will be a degree of flexibility in choosing the next point p4 . In fact, the polyhedron
has one degree of freedom, so we will need one independent parameter to determine the coordinates of p4 . Note that p1  and
p2  both lie on the x-axis and that p4  will be rotated at some angle q about that axis. Thus we might suppose that the coordi-
nates of p4  are given by

p4 = 8x, r Cos@qD, r Sin@qD<;

Note that q represents the angle between the face bound by p1 , p2 , and p3  and the face bound by p1 , p2 , and p4 .

Next, we need to set up two equations describing the distance relations between p4  to p1  and p4  to p2 . We can then solve
those equations for the two unknowns r and x to determine the location of p4 . These, and subsequent, equations will be set up
using the mag2 function,  which stands for “magnitude squared”. Of course, we'll need a specific value of q to generate an
actual picture. For the purposes of this example, we choose q = p ê12.

q = Piê 12; mag2 = #.# &;
conditions1 = 8mag2@p1 - 8x, r Cos@qD, r Sin@qD<D ã 25,

mag2@p2 - 8x, r Cos@qD, r Sin@qD<D ã 100<;
sols = FindRoot@conditions1, 8r, 4<, 8x, -3<D;
p4 = p4 ê. sols;

The next 3 points must satisfy the following set of 9 equations in 9 unknowns.

p5 = 8x5, y5, z5<; p6 = 8x6, y6, z6<; p7 = 8x7, y7, z7<;
conditions2 = 8mag2@p5 - p4D ã 121,

, ,

2



mag2@p5 - p2D ã 100, mag2@p6 - p4D ã 144,
mag2@p6 - p1D ã 100, mag2@p7 - p2D ã 144,
mag2@p7 - p3D ã 144, mag2@p5 - p6D ã 144,
mag2@p6 - p7D ã 100, mag2@p7 - p5D ã 25<;

sols = FindRoot@conditions2, 8x5, -5<, 8y5, -6<,
8z5, -3.5<, 8x6, 3.5<, 8y6, 0.1<, 8z6, -9<,
8x7, -5<, 8y7, -5<, 8z7, -8<D;

8p5, p6, p7< = 8p5, p6, p7< ê. sols;

Finally, the eighth and ninth vertices are fairly simple to find.

p8 = 8x8, y8, z8<;
conditions3 = 8mag2@p8 - p3D ã 100,

mag2@p8 - p6D ã 144, mag2@p8 - p7D ã 25<;
sols = FindRoot@conditions3, 8x8, -3.4<,

8y8, -9.7<, 8z8, -9.1<D;
p8 = p8 ê. sols;
p9 = 8x9, y9, z9<;
conditions4 = 8mag2@p9 - p1D ã 25,

mag2@p9 - p3D ã 100, mag2@p9 - p6D ã 144<;
sols = FindRoot@conditions4, 8x9, -4<,

8y9, -3<, 8z9, -.5<D;
p9 = p9 ê. sols;

We now have the coordinates of the of the nine vertices and we need to transform this into a graphic. More than this, we will
be interested in performing a number of computational operations on the polyhedron, so it makes sense to store the polyhe-
dron in an appropriate data structure. Considering this, we'll follow the lead of Byrge Birkeland who described a very natural
data structure to store a polyhedron in this journal [2].  Our polyhedron (or  polytope,  as Birkeland calls it) will have  the
following form.

polytopePattern = 8v : 88_?NumericQ, _?NumericQ, _?NumericQ< ...<,
f : 88__Integer?Positive< ..<< ê; Max@Flatten@fDD § Length@vD;

Note that v is the list of vertices and f is a list of faces; each face is a list of integers indicating which vertices of v are the
vertices of the face. Thus we can represent Steffen's polyhedron as follows.

steffenPolyhedron = 8
8p1, p2, p3, p4, p5, p6, p7, p8, p9<,
881, 2, 3<, 87, 3, 2<, 81, 4, 2<, 82, 4, 5<,
82, 5, 7<, 81, 6, 4<, 84, 6, 5<, 85, 6, 7<,
86, 8, 7<, 86, 9, 8<, 81, 9, 6<, 83, 7, 8<,
83, 8, 9<, 81, 3, 9<<<;

MatchQ@steffenPolyhedron, polytopePatternD
True

Now it's a straightforward matter to convert this into a Graphics3D object and display it.

3



PolytopeToGraphics3D@8v_, f_< ê; MatchQ@8v, f<, polytopePatternD,
opts___D := Graphics3D@Polygon@v@@#DDD & êü f, opts,
ViewPoint Ø 82.594, 1.647, 1.418<, Boxed Ø FalseD;

Show@PolytopeToGraphics3D@steffenPolyhedronDD;

These commands have all been encapsulated in the SteffenPolyhedron command defined in the initialization cells. This
makes it easy to create a list of graphics to generate an animation.

Show@GraphicsArray@Partition@Table@PolytopeToGraphics3D@
SteffenPolyhedron@qDD,

8q, Piê 60, Piê 6, Piê 20<D, 2DDD;

Several questions now arise naturally. Perhaps the most basic is, how can we generate better images? For example, how can
we make an animated image that we can grab and rotate to see various viewpoints? It seems that the best  tool for this is
currently JavaView [3].  Assuming you have JavaView installed on your machine, the following commands will open an
interactive animation of the flexing polyhedron which you can rotate with a mouse in a separate window. (Note that these
cells are set to non-evaluatable to prevent problems on machines where JavaView is not present.)

Needs@"JavaView`JLink`"D;
viewer = InstallJavaView@D;

4



gs = Table@PolytopeToGraphics3D@SteffenPolyhedron@tD,
PlotRange Ø 88-12., 5<, 8-12, 5<, 8-10, 4<<,
PolygonIntersections Ø FalseD,

8t, Piê 60, Piê 6, Piê 20<D;
JavaView@gs, Animatable Ø TrueD;

We won't go into anymore details here, since JavaView's integration with Mathematica is well documented on its homepage.
I  have  also  set  up  a  pre-generated  JavaView  animation  on  my  Mathematica  graphics  webpage:
http://facstaff.unca.edu/mcmcclur/mathematicaGraphics/SteffenPolyhedron/.

3. Testing for intersection points

Looking at Steffen's polyhedron from several different viewpoints, it is not easy to tell which values of q lead to a genuine
non-intersecting polyhedron. To help determine this, we've defined a function NonIntersectingQ in the initialization cells.
This command accepts a polyhedron with triangular faces and returns either True or False.

The concepts  behind  NonIntersectingQ  are fairly  basic  techniques  in three-dimensional  computational  geometry.  For
example, we can use vector algebra to write a simple command to check if the point p0  is on the line segment @p1 , p2 D as
follows.

PointOnSegmentQ@p0 : 8x0_, y0_, z0_<,
seg : 8p1 : 8x1_, y1_, z1_<, p2 : 8x2_, y2_, z2_<<D := Module@
8v1, v2<,
v1 = p1 - p0;
v2 = p2 - p0;
v1.v2 ã -Sqrt@Hv1.v1L Hv2.v2LDD;

We can then use this to check if two segments intersect, which can then be used to check if two triangles intersect, which can
then be used to check if a triangulated polyhedron has points of intersection..  The code is a bit tedious, as many different
cases need to be considered; it  is all contained in an initialization  cell.  Note that  this code based on ideas in Joseph O’
Rourke's outstanding text on computational geometry [4].

Using NonIntersectingQ we can now find a nice range of q values for which Steffen's polyhedron is non-intersecting.

Table@NonIntersectingQ@SteffenPolyhedron@tDD,
8t, Piê 60, Piê6, Piê60<D

8True, True, True, True, True, True, True, True, True, True<

We can generate a very nice image to see how close the polyhedron is to intersection using JavaView's transparency option.

g = PolytopeToGraphics3D@SteffenPolyhedron@Piê 60DD;
JavaView@g, Transparency Ø .5D;

4. Volume

Finally, there is a lovely result stating that the volume of a polyhedron which does flex must maintain a constant volume
throughout the flex. This was conjectured by Bob Connelly in the 1970s and became known as the bellows conjecture, since
it states that such a polyhedron would not make a good bellows.

5



The following formula computes the volume of a polyhedron with triangular faces in terms of the vertices. Note that the
vertices of the faces are presumed to be listed in a common orientation.

Volume@8v : 88_?NumericQ, _?NumericQ, _?NumericQ< ...<,
f : 88_Integer?Positive, _Integer?Positive, _Integer?Positive< ..<< ê;
Max@Flatten@fDD § Length@vDD := Module@

8contrib<,
contrib@88x0_, y0_, z0_<, 8x1_, y1_, z1_<, 8x2_, y2_, z2_<<D :=
Hz0 + z1 + z2L Hx0 Hy1 - y2L + x1 Hy2 - y0L + x2 Hy0 - y1LLê 6;
Abs@Plus üü Hcontrib@v@@#DDD & êü fLD

D;

Let's test the bellows conjecture on Steffen's polyhedron. Note that it is strangely valid even for self-intersecting polyhedra.

Volume@SteffenPolyhedron@#DD & êü Range@0, Piê 4, Piê20.D
8200.777, 200.777, 200.777, 200.777, 200.777, 200.777<

 References

1. Cromwell, P. Polyhedra. Cambridge University Press. Cambridge, UK 1997.

2. Birkeland, B. Three Dimensional Polytopes Mathematica in Education and Research. 10 (2) 2005

3. JavaView - http://www.javaview.de/.

4. O’Rourke. Computational Geometry in C (2nd Ed). Cambridge University Press. Cambridge, UK 1998.

6


