
Generating self-affine tiles and their
boundaries

This preprint is an expanded version of a paper to appear in
The Mathematica Journal.

Mark McClure

Abstract

A self-affine tile is a two-dimensional set satisfying an expansion identity which allows tiling images to be generated. In this article, we discuss the generation of
such images paying particular attention to the boundary of the set, which frequently displays a fractal structure.

Introduction

A tile is a bounded subset of the plane copies of which may be used to cover the whole plane without gaps or overlap. There
are many sources (such as [1]) of beautiful images involving tiling, from medieval Islamic art, through Escher, to more
modern work. Perhaps the simplest example of a tile though is a solid square, which may tile the plane in a familiar checker-
board pattern. The square is also an example of an important subclass of tiles called the self-affine tiles. A tile T is called
self-affine if there is an expanding matrix A and a collection of vectors (called the digit set) such that

A HTL = T + ª Ê
d œ

HT + dL,

where the pieces in the union are assumed to intersect only in their boundaries. Note that if T is a self-affine tile with respect
to A and , then AHTL is a self-affine tile with respect to A and AHL. Thus iteration of equation 1 yields arbitrarily large
tiling images. The unit square is an example of a self-affine tile where

A = J2 0
0 2

N and = 9J0
0
N, J1

0
N, J0

1
N, J1

1
N=.

Iteration of equation 2 yields the checkboard pattern.
As we will see, self-affine tiles of surprising intricacy may be generated using the notion of an iterated function

system from fractal geometry. For example, the image in figure 1 is a self-affine four-tile (i.e. it consists of four parts)
corresponding to the matrix and digit set

A =
i
k
jjjj

1 -
è!!!3

è!!!3 1

y
{
zzzz and = 9J0

0
N, J1

0
N, i

k
jjjj

-1 ê 2
è!!!3 ë 2

y
{
zzzz,

i
k
jjjj

-1 ê 2
-
è!!!3 ë 2

y
{
zzzz=.

Figure 1 - A self-affine four tile.

Construction of interesting images is greatly simplified by the existence of fairly simple rules dictating possible
choices for the matrix A and digit set . Also of interest is the boundary between the constituent parts. The boundary of a
self-affine tile frequently has a fractal structure and may be generated and analyzed using a generalized notion of iterated
function system. The boundary of the tile above, for example, may be shown to have a fractal dimension of
logH3L ê logH2L º 1.585.

Self-affine sets and tiling

Self-similarity and iterated function systems are, by now, fairly well known concepts. See, for example, [2, 3] for a general
introduction or [4, 5] which describe implementations using Mathematica. Here, we briefly define our terms to set notation
and clarify important results.

Roughly speaking, a set is called self-similar if it is composed of two or more sets geometrically similar to the whole.
Self-similarity is more rigorously defined and analyzed using an important tool called an iterated function system, or IFS. An
IFS is simply any finite collection of contractive mappings of the plane. Associated with an IFS there is always a unique
non-empty, closed, bounded set E satisfying

E = Ê
i=1

m

 fi HEL.

The set E defined in equation 4 is called the invariant set or attractor of the IFS. The functions in an IFS describe the exact
relationship between the invariant set and its constituent parts. If the IFS consists entirely of contractive similarities, then E
is called self-similar. If the IFS consists of affine functions, then E is called self-affine.

Self-affine sets have played an important role in the development of fractal geometry in part because they provide a
dazzling class of images, even though affine functions are very easy to describe and implement on a computer. Thus it takes
a small amount of information to store very interesting images. In Mathematica (in particular, in the packages described
here), an affine function may be represented as {A,b} where A is a two-dimensional matrix and b is a shift vector. Thus the
following code represents an IFS for the unit square.

2

The set E defined in equation 4 is called the invariant set or attractor of the IFS. The functions in an IFS describe the exact
relationship between the invariant set and its constituent parts. If the IFS consists entirely of contractive similarities, then E
is called self-similar. If the IFS consists of affine functions, then E is called self-affine.

Self-affine sets have played an important role in the development of fractal geometry in part because they provide a
dazzling class of images, even though affine functions are very easy to describe and implement on a computer. Thus it takes
a small amount of information to store very interesting images. In Mathematica (in particular, in the packages described
here), an affine function may be represented as {A,b} where A is a two-dimensional matrix and b is a shift vector. Thus the
following code represents an IFS for the unit square.

A = J1 ê 2 0
0 1 ê 2N;

f1 = 8A, 80, 0<<;
f2 = 8A, 81ê 2, 0<<;
f3 = 8A, 81ê 2, 1 ê 2<<;
f4 = 8A, 80, 1 ê 2<<;
squareIFS = 8f1, f2, f3, f4<;

In order to generate an image of the square, we use the ShowIFS command defined in the IFS package. The imple-
mentation of the ShowIFS command is similar to commands described in [4, 5].

Needs@"FractalGeometry`IFS`"D;

ShowIFS@squareIFS, 9, Color Ø True,
Colors Ø 8Maroon, Gray, Maroon, Gray<D;

Figure 2 - A square generated from an IFS.

In the above command, the second argument (9 in this case) indicates the depth of the approximation. Thus the image
consists of 49 = 262, 144 points distributed over the unit square. A large number of points is typically required as we want to
fill a two dimensional region. The Color option is nice when investigating tiles to highlight the constituent parts. When
Color is set to True, the Colors option may be set to Automatic (the default), in which case the Hue function is used to
generate a spectrum of colors or Colors may be set to a list of colors.

Now, a self-affine tile is also a self-affine set. If a self-affine tile T satisfies equation 1, then after applying A-1 to
both sides we see that

T = Ê
d œ

HA-1 T + A-1 dL.

In fact, this is the exact relationship between the description of the square as a self-affine tile given by equations 2 and the
iterated function system defined by squareIFS; it is easy to pass from one description to the other. The major question now is
how to choose a matrix A and digit set to generate interesting images. A beautiful theorem, published by Christoph Bandt
[7], provides an answer. This theorem is also described in [8] at a more elementary level.

3

In fact, this is the exact relationship between the description of the square as a self-affine tile given by equations 2 and the
iterated function system defined by squareIFS; it is easy to pass from one description to the other. The major question now is
how to choose a matrix A and digit set to generate interesting images. A beautiful theorem, published by Christoph Bandt
[7], provides an answer. This theorem is also described in [8] at a more elementary level.

Theorem
Let A be a two-dimensional expansive matrix with integer entries and let form a residue system for A. Then, there is a
unique self-affine tile T with matrix A and digit set . In fact, T is the invariant set of the IFS consisting of the affine
functions defined by 8A-1 , A-1 d< for d œ .

An expansive matrix is simply a matrix whose eigenvalues are all larger than one in absolute value. The terminology
residue system and digit set originates from work of Gilbert [6] describing certain self-similar sets in terms of number
representation in the complex plane. By definition, a residue system for A is a complete set of coset representatives for the
quotient group 2 êA 2 . While this definition is fairly abstract, it is fairly easy to describe how to construct a residue
system. Given the matrix A, denote its column vectors by v1 and v2 . The simplest residue system for A consists of those
points with integer coordinates lying on the closed parallelogram determined by v1 and v2 , but not on either side of that
parallelogram not containing the origin. For example, the figure below illustrates this simple digit set for the matrix

J 2 2
-1 2 N

We may construct other residue systems from this simple one as follows: Two integer points are said to be equivalent if their
difference is a linear combination of v1 and v2 . Any vector from our simple residue system may be replaced by another from
its equivalence class. That is starting from our simplest residue system, we may simply shift some of its members by some
linear combination of v1 and v2 to obtain another residue system. A digit set which forms a residue system for A is called a
standard digit set. Note that the shift of a standard digit set by an integer vector is again a standard digit set; thus, we may
suppose that the zero vector is one of the digits. Some of our package functions use this simplifying assumption, so it is best
to use digit sets containing the origin.

Let us demonstrate how easily interesting self-affine tiles may now be generated using this theorem. We first
describe a simple modification of the square's IFS. We use the same matrix, a simple expansion by the factor 2, but we
replace one of the digits by a shift. In particular, we shift the digit H1, 1L by -Hv1 + v2 L = H-2, -2L to obtain H-1, -1L. Note
how easy it is to use the substitution operator to translate the digit set and matrix into the IFS.

4

A = J2 0
0 2

N;
 = 880, 0<, 81, 0<, 8-1, -1<, 80, 1<<;
modifiedIFS = ê. 8x_?NumericQ, y_< Ø

8Inverse@AD, Inverse@AD.8x, y<<;
ShowIFS@modifiedIFS, 8, Color Ø True,
Colors Ø 8Gray, Maroon, Maroon, Maroon<,
Axes Ø TrueD;

Figure 3 - A "minor" modification of figure 2.

This simple modification is already interesting and the result is difficult to even recognize as a tile. We can get an inkling of
how it might tile by examining all shifts of the set by the digit set.

5

Show@% ê. Point@p_D ß Point@p + #D & êü ,
Axes Ø TrueD;

Our next example is called the twin dragon. It is defined by the following matrix.

A = J 1 1
-1 1

N;

Note that the determinant of this matrix is two. In general, the absolute value of the determinant indicates the number of
pieces constituting the tile. This is because the union on the right of equation 1 increases the area of T by the factor # HL,
while the matrix on the left side of equation 1 increases the area of T by the factor » detHAL ». Thus in this case, our digit set
will have two elements. Using the column vectors it is easy to determine the simplest digit set.

 = 880, 0<, 81, 0<<;

Now we translate this matrix and digit set to an IFS as in the last example.

twindragonIFS = ê. 8x_?NumericQ, y_< Ø
8Inverse@AD, Inverse@AD.8x, y<<;

Here is the result.

6

twindragonPic = ShowIFS@twindragonIFS, 17,
Color Ø True,
Colors Ø 8Maroon, Gray<,
Axes Ø TrueD;

Figure 4 - The Twindragon

The rotation induced by the matrix A, and therefore by A-1 , makes it slightly more difficult to see how equation 1 is satisfied.
In figure 5, we see the image of figure 4 under the mapping x Ø A x. The red part of the twin dragon has clearly mapped
onto the whole original twindragon, while the gray part has mapped onto the original shifted to the right one unit.

Show@twindragonPic ê. Point@p_D Ø Point@A.pDD;

7

Figure 5 - The image of figure 4 under the mapping x Ø A x.

Digraph iterated function systems

Before examining more examples, we turn to the question of how to highlight the boundary between the parts. It
turns out that the boundary of a self-affine tile may be generated by a generalized type of IFS called a digraph iterated
function system. To illustrate this concept, consider the two curves C1 and C2 shown below. The curve C1 is composed of 1
copy of itself, scaled by the factor 1 ê2, and 2 copies of C2 , rotated and scaled by the factor 1 ê2. C2 is composed of 1 copy
of itself, scaled by the factor 1 ê2, and 1 copy of C1 , reflected and scaled by the factor 1 ê2.

C2 C2

C1
C2 C1

C1

C2

In general, digraph self-similarity is exhibited by a family of sets 8Ki <. Each set is composed of parts which are
scaled images of sets chosen from the collection. A digraph IFS is a matrix M whose elements are lists of affine functions.
The elements in row i indicate how the set Ki is composed. Thus, the element Mij in row i and column j should be a list of
affine functions mapping Kj into Ki . The analog of equation 4 for a digraph IFS is

Ki = Ê
j

Ê
fœMij

f HKjL.

As with iterated function systems, the list of sets 8Ki < is uniquely determined by the digraph IFS. The curves C1 and C2 may
be generated using a digraph IFS which is represented as follows.

8

a11 = 9881ê 2, 0<, 80, 1ê 2<<, 91ê 4, è!!!!
3 ë 4==;

a12 = 81 ê2 RotationMatrix@p ê3D, 80, 0<<;
b12 = 91 ê2 RotationMatrix@-p ê 3D, 93ê 4, è!!!!

3 ë 4==;
a21 = 8881ê 2, 0<, 80, -1 ê 2<<, 81ê 2, 0<<;
a22 = 8881ê 2, 0<, 80, 1ê 2<<, 80, 0<<;
curvesDigraph = J8a11< 8a12, b12<

8a21< 8a22< N;

The RotationMatrix function is defined for all of the FractalGeometry packages. The DigraphFractals package also defines
the command ShowDigraphFractals, which may be used to generate the curves.

Needs@"FractalGeometry`DigraphFractals`"D;

ShowDigraphFractals@curvesDigraph, 9D;

The terminology “digraph fractal” arises from a description of the combinatorics involved using directed multi-
graphs. A directed multi-graph consists of a finite set of vertices and a finite set of directed edges between vertices. We use
the terminology multi-graph because we allow more than one edge between any two vertices. Figure 6 depicts the digraph
for the curves C1 and C2 . There are two edges from node C1 to node C2 and one edge from node C1 to itself since C1

consists of two copies of C2 together with one copy of itself. Similarly, there is one edge from node C2 to node C1 and one
edge from C2 to itself since C2 consists of one copy of C1 together with one copy of itself.

9

Figure 6 - The digraph for the curves C1 and C2 .

A path through a digraph is a finite sequence of edges so that the terminal vertex of any edge is the initial vertex of
the subsequent edge. The digraph is called strongly connected if for every pair of vertices u and v, there is a path from u to v.
The concept of strong connectivity is important to understand for the following reason. As with standard iterated function
systems, there are two common algorithms for generating images using a digraph IFS; one algorithm is stochastic and the
other deterministic. The stochastic algorithm works only when the digraph is strongly connected, while the deterministic
algorithm works whether the digraph is strongly connected or not. For the purposes of this paper, the stochastic algorithm
typically works better but, as we will see, it is not always applicable.

The DigraphFractals package is fully described in [9] along with more complete descriptions of the theory and
implementation.

The boundary of a tile

Now we wish to use the digraph IFS scheme to describe the boundary of a self-affine tile. The following technique to
do so was published in [10]. Suppose that T is a self-affine tile and there is a lattice G of points in the plane so that the
translates of T by the points of G form a tiling of the plane. The lattice should be invariant under the action of A in the sense
that A HGL Õ G. (Note that the lattice condition is frequently, but not always satisfied.) Given a œ G, define
Ta = T › HT + aL. The boundary of T is formed by the collection of sets Ta which are non-empty, excluding the case a = 0.
It turns out that these sets Ta are digraph self-affine; i.e., if we let = 8a œ G : Ta ≠ « and a ≠ 0<, then the collection
8Ta : a œ < forms the invariant list of a digraph IFS. This can be demonstrated by examining how the expansion matrix A
affects each set Ta and then translating to a digraph IFS by applying A-1 .

A HTaL = A HTL › A HT + aL
=

i
k
jjjjjÊ
dœ

HT + dLy
{
zzzzz › i

k
jjjjj Ê
d'œ

HT + d' + A aLy
{
zzzzz

= Ê
d,d'œ

HHT + dL › HT + d' + A aLL

= Ê
d,d'œ

@HT › HT - d + d' + A aLL + dD

= Ê
d,d'œ

HHTA a-d+d'L + dL.

We are only interested in the non-empty intersections so, given a and b in , let MHa, bL denote the set of pairs of digits
Hd, d 'L so that b = A a - d + d '. Then applying A-1 to both sides of equation 7 we see that

10

Ta = Ê
bœ

Ê
Hd,d'LœM Ha,bL

HA-1 Tb + A-1 dL.

Equation 8 defines a digraph IFS to generate the sets Ta . Given a and b in , the functions mapping Tb into Ta are precisely
those affine functions defined by 8A-1 , A-1 d< for all digits d so that there is a digit d ' satisfying b = A a - d + d '.

We now implement the above ideas, to generate the boundary of the twin dragon. We first define A and .

A = J 1 1
-1 1

N;
 = 880, 0<, 81, 0<<;

We also need to know the set . In general, it can be difficult to determine . Fortunately, [10] describes an algorithm to
automate the procedure. The algorithm is fairly difficult, however, and the technique seems rather far removed from the
other techniques described here. Thus we refer the interested reader to [10] and the code defining the NonEmptyShifts
function in the SelfAffineTiles package. Examining figure 4, it is not to difficult to see that the correct set of vectors for
the twindragon is defined as follows.

 = 88-1, -1<, 80, -1<, 81, 0<,
81, 1<, 80, 1<, 8-1, 0<<;

The following code illustrates the six translates of the twin dragon and colors them so that we may easily distinguish them.

points = Cases@twindragonPic, _Point, InfinityD;
points = points ê. Point@p_D ß Point@p + #D & êü ;
coloredPoints = Inner@Prepend, h êü points,

8Maroon, Gray, Maroon,
Gray, Maroon, Gray<, ListD ê. h Ø List;

coloredTranslates = Show@Graphics@coloredPointsD,
AspectRatio Ø Automatic, Axes Ø True,
Prolog Ø AbsolutePointSize@.4DD;

11

Figure 7 - Translates of the twindragon defining the boundary.

The original twin dragon from figure 4 is the central white region in figure 7. The six pieces of the boundary are the bound-
aries between the white region and the six colored shifted regions.

Now for each pair Ha, bL where a and b are chosen from , we want MHa, bL to denote the set of pairs of digits
Hd, d 'L so that b = A a - d + d '. This can be accomplished as follows.

pairs@l_ListD := HFlatten@Outer@h, l, l, 1DD ê. h ß ListL;
M@a_, b_D := Select@pairs@D,

#@@1DD - #@@2DD ã b - A.a &D;
digitPairsMatrix = Outer@M, , , 1D;

In order to make sense of this, let's look at the length of each element of the matrix.

Map@Length, digitPairsMatrix, 82<D êê MatrixForm

i

k

jjjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 1
2 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 1 0
0 0 0 0 1 0

y

{

zzzzzzzzzzzzzzzzzzzzzzz

This matrix is called the substitution matrix of the tile and tells us simply the combinatorial information of how the pieces of
the boundary fit together. Reading the rows, for example, we see that the first piece is composed of one copy of the last
piece, the second piece is composed of one copy of itself and two copies of the first, etc. Note also that the order of the rows
and columns is dictated by the order of the set . Thus the first piece refers to the boundary along the maroon image in the
lower left of figure 7, since H-1, -1L is the first shift vector in the set . The subsequent pieces are numbered counterclock-
wise around the central tile, since that is the way that is set up.

We can transform the digitPairsMatrix into a digraph IFS defining the boundary by simply replacing each pair Hd, d 'L
with the affine function HA-1 , A-1 dL.

boundaryDigraphIFS = digitPairsMatrix ê.
8_, 8x_?NumericQ, y_<< Ø 8Inverse@AD, Inverse@AD.8x, y<<;

Let's see how it worked. We'll use the function ShowDigraphFractalsStochastic defined in the DigraphFractals package.
This stochastic algorithm frequently seems to work better for this particular task than the deterministic version defined by
ShowDigraphFractals. We'll use color to distinguish the constituent parts.

12

boundaryParts = ShowDigraphFractalsStochastic@
boundaryDigraphIFS, 20000,
PlotRange Ø 88-.7, .7<, 8-.4, 1.4<<,
Ticks Ø 88-.5, .5<, 81<<, Color Ø True,
Axes Ø True, DisplayFunction Ø IdentityD;

Show@GraphicsArray@Partition@boundaryParts, 3DDD;

We can collect all of the pieces to form the entire boundary.

13

boundary = Show@boundaryParts ê. Hue@_D Ø GrayLevel@0D,
DisplayFunction Ø $DisplayFunctionD;

We can display the boundary with the original image of the twindragon.

14

Show@8twindragonPic, boundary<D;

Note that we have outlined the boundary of the entire set. If we would like to highlight the boundaries of the constituent
parts, we need simply feed the boundary to the ShowIFS command using the boundaryPoints as an option to Initiator.

15

boundaryPoints = Cases@boundary, _Point, InfinityD;
boundaries = ShowIFS@twindragonIFS, 1,

Initiator Ø boundaryPoints,
DisplayFunction Ø IdentityD;

Show@8twindragonPic, boundaries<D;

More examples

The algorithms described above are encapsulated in the package SelfAffineTiles. We can use the package to look at
many more examples. We first load the package.

Needs@"FractalGeometry`SelfAffineTiles`"D;

The main graphical command which ties all of the previous algorithms together is the ShowTile command. ShowTile[A,
depth] accepts the matrix A and generates an approximation to the corresponding self-affine tile to level depth. The bound-
ary is automatically generated and the parts are colored differently.

16

A = 881, 2<, 8-1, 1<<;
ShowTile@A, 10D;

Figure 8 - A self-affine three-tile.

The ShowTile command accepts the option DigitSet. When DigitSet is set to the default of Automatic, ShowTile
calls the BaseDigitSet function to compute the simple digit set described before. We can illustrate this simple digit set using
the command ShowBaseDigitSet.

ShowBaseDigitSet@AD;

We can also look at the tiles generated by alternative digit sets using the DigitSet option. In the following, we subtract the

first column vector of A, J 1
-1N, from the digit J20N to obtain the shifted digit J11N.

17

 = 880, 0<, 81, 0<, 81, 1<<;
ShowTile@A, 10, DigitSet Ø D;

Figure 9 - A self-affine three tile using an alternative digit set.

The tiles in figures 8 and 9 consists of three pieces since detHAL = 3. Three-tiles are more diverse than two-tiles as
we have more flexibility in choosing the matrix A and relative position of the digits. Here is another three-tile using a
different matrix.

A = 882, -1<, 81, 1<<;
ShowTile@A, 10D;

Figure 10 - Another self-affine three tile.

18

The examples in this section so far have been self-affine, but not self-similar. Sometimes, such a set is affinely
equivalent to a self-similar set. In this case, the self-similar set will correspond to the same matrix and digit set expressed in
another basis. As explained in [8], if A has a pair of complex conjugate eigenvalues, then A is similar (i.e. conjugate) to a
similarity matrix. In this case, we may find the change of basis matrix B as follows. Suppose that the vector

Jv11 + Â v12
v21 + Â v22

N

is an eigenvector for A, let B be the inverse of the matrix

Jv11 v12
v21 v22

N.

Then, B A B-1 will be a similarity transformation. The self-affine tile shown if figure 10 falls into this case as the following
computation shows.

Eigenvalues@AD

9 1
ÅÅÅÅ2 H3 + Â

è!!!3 L, 1
ÅÅÅÅ2 H3 - Â

è!!!3 L=

We can now find one of the corresponding eigenvectors.

eigenvec = Eigenvectors@AD@@1DD êê Simplify

9 1
ÅÅÅÅ2 H1 + Â

è!!!3 L, 1=

And we can use this to find the change of basis matrix.

B = Inverse@88Re@eigenvec@@1DDD, Im@eigenvec@@1DDD<,
8Re@eigenvec@@2DDD, Im@eigenvec@@2DDD<<D;

B êê MatrixForm

i
k
jjjj

0 1
2ÅÅÅÅÅÅÅè!!!!3 - 1ÅÅÅÅÅÅÅè!!!!3

y
{
zzzz

The matrix B should conjugate A to a similarity matrix.

B.A.Inverse@BD êê MatrixForm

i
k
jjjjjj

3ÅÅÅ2
è!!!!3ÅÅÅÅÅÅÅ2

-
è!!!!3ÅÅÅÅÅÅÅ2

3ÅÅÅ2

y
{
zzzzzz

We can see that B A B-1 does indeed induce a similarity transformation. In fact, it is simply a clockwise rotation through the
angle p ê6 together with an expansion of è!!!3 .

è!!!!
3 RotationMatrix@-p ê 6D êê MatrixForm

i
k
jjjjjj

3ÅÅÅ2
è!!!!3ÅÅÅÅÅÅÅ2

-
è!!!!3ÅÅÅÅÅÅÅ2

3ÅÅÅ2

y
{
zzzzzz

Now the point is that while this last matrix does not have integer entries, so it does not seem to fall into the scheme
outlined by Bandt's theorem, it may be expressed as a matrix with integer entries with respect to the correct choice of basis.
In fact, if we choose our basis to be the column vectors of B, then this similarity is expressed as the matrix A. The statement
and proof of Bandt's theorem are essentially algebraic, so the choice of basis does not affect the result. The ShowTile
function accepts the option Basis which assumes that the matrix is expressed with respect to the given basis. If we rerender
the tile defined by A with respect to this new basis, we will see that we generate a self-similar set.

19

Now the point is that while this last matrix does not have integer entries, so it does not seem to fall into the scheme
outlined by Bandt's theorem, it may be expressed as a matrix with integer entries with respect to the correct choice of basis.
In fact, if we choose our basis to be the column vectors of B, then this similarity is expressed as the matrix A. The statement
and proof of Bandt's theorem are essentially algebraic, so the choice of basis does not affect the result. The ShowTile
function accepts the option Basis which assumes that the matrix is expressed with respect to the given basis. If we rerender
the tile defined by A with respect to this new basis, we will see that we generate a self-similar set.

ShowTile@A, 10,
Basis Ø Transpose@BDD;

When A is conjugate to a similarity, the fractal dimension of the boundary may be calculated by the formula log lÅÅÅÅÅÅÅÅÅÅÅÅlog r ,
where l is the spectral radius of the substitution matrix and r is the spectral radius of A. (The spectral radius is simply the
largest of the absolute values of the eigenvalues.) This formula is encoded in the package function BoundaryDimension. For
example, here is the dimension of the boundary of the previous tile.

BoundaryDimension@AD
1.26186

A change of basis can be useful even if the matrix A is already a similarity matrix. For example, the self-similar tile
of figure 3 may be expressed in another basis to yield the tile in figure 11 which has three-fold rotational symmetry. Note
that the matrix and digit set have not changed; only the Basis option has been added. Also notice that the ShowTile com-
mand accepts a Colors option, which is similar to the Colors option for the ShowIFS command.

20

A = 882, 0<, 80, 2<<;
ShowTileAA, 8,
Colors Ø 8Gray, Maroon, Maroon, Maroon<,
DigitSet Ø 880, 0<, 81, 0<, 8-1, -1<, 80, 1<<,

Basis Ø 99-

è!!!!
3

ÅÅÅÅÅÅÅÅÅÅ
2

, -
1
ÅÅÅÅ
2
=, 80, 1<=E;

SelfAffineTiles ::nonStronglyConnected :
The digraph IFS for the boundary does not appear to be strongly connected. Results may be incomplete. If

so, try setting Boundary -> False or BoundaryAlgorithm -> Deterministic and BoundaryDepth -> anInt.

Figure 11 - A self-similar four-tile with three-fold rotational symmetry.

We will explain the warning message in the next section, although it does not appear to have genuinely caused a problem in
this case.

As a final example, we generate Gosper's famous snowflake.

21

A = 881, -2<, 82, 3<<;
 = 880, 0<, 80, 1<, 8-1, 1<,

8-1, 0<, 80, -1<, 81, -1<, 81, 0<<;
basis = 981, 0<, 91ê 2, è!!!!

3 ë 2==;
ShowTile@A, 6,
DigitSet Ø ,
Basis Ø basis,
Colors Ø 8MidnightBlue,
Gold, IndianRed,
Gold, IndianRed,
Gold, IndianRed<D;

Note that Gosper's flake was also generated using the change of basis technique, as was the tile shown in figure 1.

Potential problems and tricks

There are subtle difficulties that may arise when generating images of self-affine tiles, particularly when dealing with
the boundary. In this section, we outline some of the tricks that the SelfAffineTiles package provides to assist in dealing
these potential problems.

First, it should be understood that many tiling pictures are simply not very attractive. In fact, a randomly chosen digit
set is not likely to generate an nice image. Those who play with the package are likely to find several such examples.

Even when the image is quite attractive, subtle issues can arise with the boundary. One of the most important issues
is that the digraph describing the boundary may not be strongly connected. In this case, the stochastic algorithm to generate
the boundary might not be effective. This situation arises in the simplest of examples, that of the unit square. Let us try to
generate the unit square as simply as possible. For example, the following command will lead to trouble.

22

A = 882, 0<, 80, 2<<;
ShowTile@A, 9,
Colors Ø 8

Maroon, Gray,
Gray, Maroon<D;

SelfAffineTiles ::nonStronglyConnected :
The digraph IFS for the boundary does not appear to be strongly connected. Results may be incomplete. If

so, try setting Boundary -> False or BoundaryAlgorithm -> Deterministic and BoundaryDepth -> anInt.

The ShowTile command recognizes that the boundary digraph IFS is not strongly connected and suggests two possibilities.
Let's follow the first suggestion.

A = 882, 0<, 80, 2<<;
ShowTile@A, 9,

Colors Ø 8Maroon, Gray, Gray, Maroon<,
Boundary Ø FalseD; êê Timing

825.03 Second, Null<

In fact, it is frequently a good idea to set Boundary Ø False when experimenting with ShowTile if you don't know what to
expect.

Next, we try the second suggestion.

23

A = 882, 0<, 80, 2<<;
ShowTile@A, 9,

Colors Ø 8Maroon, Gray, Gray, Maroon<,
BoundaryAlgorithm Ø Deterministic,
BoundaryDepth Ø 6D; êê Timing

880.54 Second, Null<

Now an approximation to the boundary has been generated, but this command took considerably longer than the
previous command to yield a fairly poor image of the boundary. In this case, an understanding of the boundary digraph IFS
allows us to refine it and improve the performance. The SelfAffineTiles package contains several functions to assist us.
First, we look at the substitution matrix of the tile.

subsMatrix = SubstitutionMatrix@AD;
subsMatrix êê MatrixForm

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0 0 0 0 0
1 0 0 2 0 1 0 0
0 0 0 0 0 1 0 0
1 2 1 0 0 0 0 0
0 0 0 0 0 1 2 1
0 0 1 0 0 0 0 0
0 0 1 0 2 0 0 1
0 0 0 0 0 0 0 1

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

This tells us that the boundary consists of 8 pieces. Note that the first and last pieces each consist of one copy of themselves,
while the third and fifth pieces each consist of one copy of the other. Such simple parts of the digraph IFS will generate
single points and, in fact, these parts correspond to the vertices of the square. We can verify this by examining the shift set
used by the program.

NonEmptyShifts@AD
88-1, -1<, 8-1, 0<, 8-1, 1<, 80, -1<, 80, 1<, 81, -1<, 81, 0<, 81, 1<<

Indeed, the first portion of the boundary is simply T › HT - H1, 1LL where T is the unit square. Of course, this intersection is
simply the vertex at the origin. In fact, we may generate the entire boundary using only the shifts {1,0}, {0,1}, {-1,0}, and
{0,-1}. This will make the boundary digraph IFS much smaller and speed up the rendering of the boundary considerably.
This approach can be implemented using the Shifts option.

24

Indeed, the first portion of the boundary is simply T › HT - H1, 1LL where T is the unit square. Of course, this intersection is
simply the vertex at the origin. In fact, we may generate the entire boundary using only the shifts {1,0}, {0,1}, {-1,0}, and
{0,-1}. This will make the boundary digraph IFS much smaller and speed up the rendering of the boundary considerably.
This approach can be implemented using the Shifts option.

ShowTile@A, 9,
Colors Ø 8Maroon, Gray, Gray, Maroon<,
BoundaryAlgorithm Ø Deterministic,
BoundaryDepth Ø 8,
Shifts Ø 881, 0<, 80, 1<, 8-1, 0<, 80, -1<<D; êê Timing

835.4 Second, Null<

Note how much faster this image was generated, even though the greater Depth has rendered the boundary in much more
detail. We can use the SubstitutionMatrix command to look at the new substitution matrix for the boundary.

SubstitutionMatrix@A,
Shifts -> 881, 0<, 80, 1<, 8-1, 0<, 80, -1<<D êê MatrixForm

i

k

jjjjjjjjjjjj

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

y

{

zzzzzzzzzzzz

It appears that the new boundary digraph IFS is not strongly connected either, so we still could not use the stochastic algo-
rithm for the boundary. We can use the StronglyConnectedBoundaryQ command to verify this.

StronglyConnectedBoundaryQ@A,
Shifts -> 881, 0<, 80, 1<, 8-1, 0<, 80, -1<<D
False

Finally, we outline a technique to generate the boundary of what appears to be the most challenging type of situation
(with the exception of tiles simply consisting of a very large number of pieces). Lagarias and Wang [12, 13] carry out a
careful analysis of how self-affine tiles can tile the plane and prove that every self-affine tile does indeed tile using translates
chosen from some lattice. However, that lattice need not be A invariant meaning that the technique of [10] which we have
implemented here might not work. The work of Lagarias and Wang shows that frequently the lattice G can be chosen to be
the lattice generated by ‹ AHL and, if so, that lattice will be A invariant. In fact, that is exactly the lattice generated by
the SelfAffineTiles package using the LatticeReduce command. They also outline a special case where this might not work
and call such an example a stretched tile (since its area is too large to tile by the usual lattice). The basic example of a
stretched tile is defined by the matrix A and digit set given here.

25

Finally, we outline a technique to generate the boundary of what appears to be the most challenging type of situation
(with the exception of tiles simply consisting of a very large number of pieces). Lagarias and Wang [12, 13] carry out a
careful analysis of how self-affine tiles can tile the plane and prove that every self-affine tile does indeed tile using translates
chosen from some lattice. However, that lattice need not be A invariant meaning that the technique of [10] which we have
implemented here might not work. The work of Lagarias and Wang shows that frequently the lattice G can be chosen to be
the lattice generated by ‹ AHL and, if so, that lattice will be A invariant. In fact, that is exactly the lattice generated by
the SelfAffineTiles package using the LatticeReduce command. They also outline a special case where this might not work
and call such an example a stretched tile (since its area is too large to tile by the usual lattice). The basic example of a
stretched tile is defined by the matrix A and digit set given here.

A = J 2 1
0 2

N; = 880, 0<, 83, 0<, 80, 1<, 83, 1<<;

Note that the lattice as described above is the integer lattice in this example.

LatticeReduce@Join@, A.# & êü DD
881, 0<, 80, 1<<

As we shall see by simply generating the tile, however, it's area is too large to tile via shifts by the integer lattice. In fact, the
area of this tile is 3, while any set which tiles via the integer lattice must have area only 1.

ShowTile@A, 8, DigitSet Ø ,
Colors Ø 8Maroon, Gray, MidnightBlue, Gold<,
Axes Ø True, BoundaryAlgorithm Ø Deterministic,
BoundaryDepth Ø 5D;

SelfAffineTiles ::stretchedTile :
This self-affine tile appears to be stretched. There may be difficulty computing the non-empty shifts.

Note that the boundary is not complete. Of course, we didn't really expect this to work. We can however use the Shifts
option to specify the set of all vectors a from the integer lattice so that T › HT + aL is a portion of the boundary. We may

neglect single point intersections such as a = J 2
1 N.

ShowTile@A, 8, DigitSet Ø , Axes Ø True,
Colors Ø 8Maroon, Gray, MidnightBlue, Gold<,
BoundaryAlgorithm Ø Deterministic, BoundaryDepth Ø 5,
Shifts Ø 88-1, -1<, 80, -1<, 82, -1<, 83, -1<, 83, 0<,

81, 1<, 80, 1<, 8-2, 1<, 8-3, 1<, 8-3, 0<<D;

828.79 Second, Null<

26

Note that our technique essentially works, but the boundary is still not very well approximated. In the next section,
we outline a technique to generate very high quality images which works quite well with this example.

Polygonal initiators

Many of the examples we have seen are tiles which are topological disks. When this is the case, we might try to
approximate the boundary with a polygon and feed this result to the ShowIFS command. Let's illustrate this technique using
the stretched tile of the previous section. We choose to work with this tile for three reasons: The previous techniques proved
unsatisfactory; the structure of the tile makes it easy to set up the polygonal approximation; and it is an important theoretical
example. We start by taking another look at the boundary.

A = J 2 1
0 2

N; = 880, 0<, 83, 0<, 80, 1<, 83, 1<<;
pic = ShowTile@A, 8, DigitSet Ø ,

Colors Ø 8Gray, Gray, Gray, Gray<,
OutlineParts Ø False,
BoundaryAlgorithm Ø Deterministic,
BoundaryDepth Ø 8D;

SelfAffineTiles ::stretchedTile :
This self-affine tile appears to be stretched. There may be difficulty computing the non-empty shifts.

Once again, we are warned that there might be problems. But notice that the defining points in the boundary have been
generated. If we can get them in the correct order, we could simply pass a line through them to generate the boundary.
Here's one way to do this. We first grab the points corresponding to the left half of boundary, and then sort them according
to the y-coordinate. The other half of the boundary is simply a reverse-order translate.

points = First êü Flatten@Cases@pic, 8_Point<, InfinityDD;
halfPoints = Select@points, #@@1DD < .01 &D êê Union;
orderedHalf = Sort@halfPoints, #1@@2DD § #2@@2DD &D;
boundary = Join@orderedHalf,

Reverse@orderedHalfD ê. 8x_, y_< Ø 8x + 3, y<,
8First@orderedHalfD<D;

goodPic = Show@Graphics@Polygon@boundaryDD,
AspectRatio Ø AutomaticD;

Now let's feed the result to the ShowIFS command to see how the set decomposes.

27

ifs = TileIFS@A, DigitSet Ø D;
init1 = Polygon@boundaryD;
init2 = Line@boundaryD;
Block@8$DisplayFunction = Identity<,
polys = ShowIFS@ifs, 1, Color Ø True,
Colors Ø 8Maroon, Gray, MidnightBlue, Gold<,
Initiator Ø init1D;

boundaries = ShowIFS@ifs, 1, Initiator -> init2DD;
Show@8polys, boundaries<D;

This technique can be extended to many of the other tiles we have looked at in this paper. For example, this is how
figure 1 was generated. Unfortunately, most situations require a careful refinement of the digraph IFS algorithms them-
selves, which is outside the scope of this paper. Furthermore, there is no way to expect that the technique could work in
general, since not all self-affine tiles are even connected. Our final example illustrates exactly this point.

A = 883, 0<, 80, 3<<;
 = 8

80, 0<, 80, 1<, 80, 2<,
81, 0<, 87, 1<, 81, 2<,
82, 0<, 82, 1<, 82, 2<

<;
ShowTile@A, 5, DigitSet Ø , PlotRange Ø All,
BoundaryAlgorithm Ø Deterministic, BoundaryDepth Ø 4,
Shifts Ø 88-3, 0<, 8-2, 0<, 8-1, -1<, 8-1, 0<, 8-1, 1<,

80, -1<, 80, 1<, 81, -1<, 81, 0<, 81, 1<, 82, 0<, 83, 0<<D;

References

1. Grünbaum, B. and Shepard, G. C. Tilings and Patterns W. H. Freeman, New York. 1987.

2. Barnsley, M.F. Fractals Everywhere 2nd ed., Academic Press Boston. 1993.

3. Falconer, K. J. Fractal Geometry: Mathematica Foundations and applications. John Wiley and Sons, West Sussex,
England. 1990.

4. Gutierrez, J.M., Iglesias, A., Rodriguez, M. A., and Rodriguez, V.J. Generating and rendering fractal images. The
Mathematica Journal. 1997. 7(1):6–13.

5. Wagon, S.. Mathematica in Action, 2nd ed. Springer-Verlag, New York. 1999

28

6. Gilbert, W. Fractal geometry deived from complex number bases. Math. Inteligencer. 1982. 4:78-86.

7. Bandt, C. Self-similar sets 5. Integer matrices and fractal tilings of n . Proc. Amer. Math. Soc. 1991. 112: 549-562.

8. Darst, R., Palagallo, J., and Price, T. Fractal tilings in the plane. Math. Mag. 1998. 71(1):12-23.

9. McClure, M. Directed-graph iterated function systems. Mathematica in Education and Research. 2000. 9(2)

10.Strichartz, R. and Wang, Y. Geometry of self-affine tiles I. Indiana University Mathematics Journal. 1999. 7:1-23.

11.Gröchenig, K. and Haas, Y. Self-similar lattice tilings. J. Fourier Analysis and Appl. 1994. 1:131-170.

12.Lagarias, J. and Wang, Y. Integral self-affine tiles in n I: Standard and non-standard digit sets. J. London Math. Soc.
1996. 53:21-49.

13.Lagarias, J. and Wang, Y. Integral self-affine tiles in n II: Lattice tilings. J. Fourier Analysis and Appl. 1997. 3:84-102.

29

