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Abstract

The Read-Bajraktarevic  operator  is a fairly abstract  construct  from the area of functional  equations.  It has been used in recent  years  in connection  with self-affine
functions.  This yield a nice example  of mathematical  graphics  illustrating  abstract  mathematics.

ü Mathematica Initializations

1. A functional equation

A major  objective  of  this  column is the  exposition  and  illustration  of  high-level  mathematics  using  computer  graphics.
Frequently, the graphics themselves are a lure whose aesthetic appeal,  hopefully, draws the interest and curiosity of some
readers. Explanation of algorithms then proceeds after interest is piqued. In this issue's column, we turn this formula around
by starting with a very abstract statement; the question then becomes, “what could that possibly mean?” In this case, we can
use computer graphics to illustrate the abstract statement.

The theorem of interest  comes from the  subject  of functional  equations.  This theorem was proved in the  1950s by two
mathematicians  working independently.  In recent years,  it has been used to describe functions  with fractal properties,  for
example in [1].  The main tool  arising from this  work has  been dubbed the  Read-Bajraktarevic  operator  in honor  of  the
original discoverers.

Consider the following theorem:
Let I  be a  closed interval  and suppose  that  b : I ö

onto
I  and v : I ä Ø   are continuous.  Furthermore,  suppose  there is an

r œ H0, 1L such that for every x œ I  and y1 , y2 œ , » vHx, y1 L - vHx, y2 L » § r » y1 - y2 ». Define an operator F : C¶ HIL Ø C¶ HIL
by F f HxL = vHx, f HbHxLLL. Then F is a contractive operator on C¶  and, therefore, has a unique fixed point fF œ C¶ HIL.

Let's make sure we understand the notation. First, note that C¶ HIL simply refers to the set of all bounded, continuous, and real
valued  functions  defined  on  the  interval  I.  The  distance  between  any  two  such  functions  f  and  g  is  simply
max 8 » f HxL - gHxL » : x œ I<. Given continuous functions b : I ö

onto
I  and v : I ä Ø , the theorem describes how to generate a

function F : C¶ HIL Ø C¶ HIL. The theorem furthermore states that this function is contractive.

We could now try to illustrate this by simply jumping in with Mathematica. The standard way to find the fixed point of a
contraction is via iteration. Thus, we choose functions b and v which satisfy the hypotheses for some interval I, we set up the
corresponding  operator  F  and  iterate  from  an  arbitrary  starting  function.  Suppose  for  example  that  bHxL = x2  and
vHx, yL = 3 Hx + yL ê4. These functions certainly satisfy the hypotheses for the unit interval I = @0, 1D. Here's how to set up the
operator F and iterate it 8 times starting from the zero function f0 HxL = 0. We also Expand  the results and place them in
TableForm to reveal the convergence more clearly.

ReadBajPP.nb 1



We could now try to illustrate this by simply jumping in with Mathematica. The standard way to find the fixed point of a
contraction is via iteration. Thus, we choose functions b and v which satisfy the hypotheses for some interval I, we set up the
corresponding  operator  F  and  iterate  from  an  arbitrary  starting  function.  Suppose  for  example  that  bHxL = x2  and
vHx, yL = 3 Hx + yL ê4. These functions certainly satisfy the hypotheses for the unit interval I = @0, 1D. Here's how to set up the
operator F and iterate it 8 times starting from the zero function f0 HxL = 0. We also Expand  the results and place them in
TableForm to reveal the convergence more clearly.

In[1]:= b@x_D := x2;
v@x_, y_D := 3 Hx + yLê 4;
F@f_D := v@x, f ê. x Ø b@xDD;
NestList@F, 0, 8D êê Expand êê TableForm

Out[4]//TableForm=
0
3 xÅÅÅÅÅÅ4
3 xÅÅÅÅÅÅ4 + 9 x2ÅÅÅÅÅÅÅÅ16

3 xÅÅÅÅÅÅ4 + 9 x2ÅÅÅÅÅÅÅÅ16 + 27 x4ÅÅÅÅÅÅÅÅÅÅ64

3 xÅÅÅÅÅÅ4 + 9 x2ÅÅÅÅÅÅÅÅ16 + 27 x4ÅÅÅÅÅÅÅÅÅÅ64 + 81 x8ÅÅÅÅÅÅÅÅÅÅ256

3 xÅÅÅÅÅÅ4 + 9 x2ÅÅÅÅÅÅÅÅ16 + 27 x4ÅÅÅÅÅÅÅÅÅÅ64 + 81 x8ÅÅÅÅÅÅÅÅÅÅ256 + 243 x16ÅÅÅÅÅÅÅÅÅÅÅÅÅ1024

3 xÅÅÅÅÅÅ4 + 9 x2ÅÅÅÅÅÅÅÅ16 + 27 x4ÅÅÅÅÅÅÅÅÅÅ64 + 81 x8ÅÅÅÅÅÅÅÅÅÅ256 + 243 x16ÅÅÅÅÅÅÅÅÅÅÅÅÅ1024 + 729 x32ÅÅÅÅÅÅÅÅÅÅÅÅÅ4096

3 xÅÅÅÅÅÅ4 + 9 x2ÅÅÅÅÅÅÅÅ16 + 27 x4ÅÅÅÅÅÅÅÅÅÅ64 + 81 x8ÅÅÅÅÅÅÅÅÅÅ256 + 243 x16ÅÅÅÅÅÅÅÅÅÅÅÅÅ1024 + 729 x32ÅÅÅÅÅÅÅÅÅÅÅÅÅ4096 + 2187 x64ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ16384

3 xÅÅÅÅÅÅ4 + 9 x2ÅÅÅÅÅÅÅÅ16 + 27 x4ÅÅÅÅÅÅÅÅÅÅ64 + 81 x8ÅÅÅÅÅÅÅÅÅÅ256 + 243 x16ÅÅÅÅÅÅÅÅÅÅÅÅÅ1024 + 729 x32ÅÅÅÅÅÅÅÅÅÅÅÅÅ4096 + 2187 x64ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ16384 + 6561 x128ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ65536

From these computations, it's fairly clear that the fixed point fF  may be represented as the following power series:

‚
n=0

¶

J 3
ÅÅÅÅÅ
4
N

n

 x2n .

While illustrative of the basic idea, the previous example is not particularly exciting. It turns out that the Read-Bajraktarevic
operator  may be used to generate graphs  with fractal properties.  For this  to happen,  the function b  needs  to mix up the
domain a bit. For example, suppose we choose b to be the logistic function bHxL = 4 xH1 - xL. This is a standard example in
chaos theory of a function which “mixes up” the unit interval. In fact, as it's graph shows, it maps both the first and second
half of the unit interval onto the entire unit interval. Under iteration, the unit interval is folded over onto itself multiple times.

In[5]:= b@x_D := 4 x H1 - xL;
Plot@b@b@xDD, 8x, 0, 1<D;
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We now define vHx, yL as before, iterate the corresponding operator F say 10 times and plot the result.
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In[7]:= v@x_, y_D := 3 Hx + yLê 4;
F@f_D := v@x, f ê. x Ø b@xDD;
app = Nest@F, 0, 10D;
Plot@app, 8x, 0, 1<,
PlotRange Ø All, PlotPoints Ø 100D;
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Note that convergence is not as easy to see analytically, in this example. While the iterates are polynomials, there is not an
obvious limiting series.

In[11]:= NestList@F, 0, 4D êê Expand êê TableForm

Out[11]//TableForm=
0
3 xÅÅÅÅÅÅ4

3 x - 9 x2ÅÅÅÅÅÅÅÅ4
39 xÅÅÅÅÅÅÅÅ4 - 36 x2 + 54 x3 - 27 x4

30 x - 1845 x2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ4 + 3456 x3 - 13392 x4 + 28512 x5 - 33696 x6 + 20736 x7 - 5184 x8

In retrospect, this should not be too surprising. If the limit were a power series, it would necessarily be everywhere differentia-
ble; the graph,  however, indicates  that this is not the case  here. The convergence can certainly be illustrated graphically,
however.
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In[12]:= b@x_D := 4 x H1 - xL;
v@x_, y_D := 3 Hx + yLê 4;
F@f_D := v@x, f ê. x Ø b@xDD;
apps = NestList@F, 0, 9D;
pics = Plot@#, 8x, 0, 1<,

PlotRange Ø 80, 2<,
PlotPoints Ø 100,
FrameTicks Ø 880, 1<, 80, 1, 2<, 8<, 8<<,
DisplayFunction Ø IdentityD & êü apps;

Show@GraphicsArray@Partition@Drop@pics, 3D, 2DDD;
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2. Self-affine graphs

While we have illustrated the convergence described in the Read-Bajraktarevic theorem in a couple of examples, it is still not
clear what type of functions we might expect to generate. In fact, the theorem has a very concrete, geometrical interpretation.
The function b is a transformation of the domain of any f œ C¶ HIL, while the function v returns values in the range of f .
Expressed geometrically,  if Gf  is the graph of the function f  over the interval I  in the plane, then b transforms Gf  in the
x-direction, while v transforms Gf  in the y-direction. The graph of a fixed point of F therefore displays some type invariance
under these geometrical transformations.

Consider, for example, the function f HxL = x2 . Then f H2 xL ê4 = H2 xL2 ê4 = 4 x2 ê4 = x2 = f HxL. We can express this in terms
of the Read-Bajraktarevic operator as follows.
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In[18]:= b@x_D := 2 x;
v@x_, y_D := yê 4;
F@f_D := v@x, f ê. x Ø b@xDD;
F@x2D

Out[21]= x2

Geometrically, this states that the graph of f HxL = x2  is invariant under the affine transformation THx, yL = Hx ê2, y ê4L. Note
that the fixed point is not unique in this example.

In[22]:= F@0D
Out[22]= 0

There is no contradiction here since the hypotheses of the theorem are not quite satisfied.  In particular, there is no interval
which  is invariant  under  b.  Nonetheless,  the function  f HxL = x2  is an  example  of an important  class  of  functions  called
self-affine functions and the hypotheses of the Read-Bajraktarevic theorem may be weakened slightly to include this class.

To explain this, we must define the self-affine functions. An affine transformation of the plane is simply a function T :  Ø 

of the form 

TJ x
y N = AJ x

y N + b

where A is a two dimensional matrix and b is a two dimensional vector. Now suppose that f  is a real valued function defined
on a closed interval I and denote its graph by Gf = 8Hx, f HxLL : x œ I<. We say that f  is a self-affine function if G f  is a self-af-
fine set. This means that Gf  is composed of smaller affine images of itself. More precisely, there are affine transformations
T1 , T2 , …, Tm  such that

G f = Ê
i=1

m

Ti HGf L.

The list of transformations T1 , T2 , …, Tm  is usually called an iterated function system.

Consider for example the graph of f HxL = x2  over the unit interval I = @0, 1D. This is a self-affine function with respect to the
iterated function system

T1 J x
y N = J 1 ê2 0

0 1 ê4 N J x
y N and T2 J x

y N = J 1 ê2 0
1 ê2 1 ê4 N J x

y N + J 0
1 ê4 N.

As described above, T1  maps G f  to the portion of Gf  over @0, 1 ê2D. The second transformation T2  maps G f  to the portion of
Gf  over @1 ê2, 1D. To see the second part, suppose that Hx, x2 L is any point on Gf  and note that

T2
i
k
jjj x

x2
y
{
zzz = J 1 ê 2 0

1 ê 2 1 ê4 N ik
jjj x

x2
y
{
zzz + J 1 ê 2

1 ê 4 N =
i
k
jjjjjj

1ÅÅÅÅ2  x + 1ÅÅÅÅ2

H 1ÅÅÅÅ2  x + 1ÅÅÅÅ2 L
2

y
{
zzzzzz .

Now our question is how to fit this type of function into the Read-Bajraktarevic framework. In order to do so, we need the
following somewhat more general version of their theorem:

Let I  be a closed interval and suppose that b : I ö
onto

I  and v : I ä Ø . Furthermore, suppose there is an r œ H0, 1L such that
for  every  x œ I  and  y1 , y2 œ ,  » vHx, y1 L - vHx, y2 L » § r » y1 - y2 ».  Define  an  operator  F : C¶ HIL Ø C¶ HIL  by
F f HxL = vHx, f HbHxLLL  and suppose  there is a  subset  of C¶  which  is invariant  under  F.  Then  F  has a  unique fixed point
fF œ C¶ HIL.
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Let I  be a closed interval and suppose that b : I ö
onto

I  and v : I ä Ø . Furthermore, suppose there is an r œ H0, 1L such that
for  every  x œ I  and  y1 , y2 œ ,  » vHx, y1 L - vHx, y2 L » § r » y1 - y2 ».  Define  an  operator  F : C¶ HIL Ø C¶ HIL  by
F f HxL = vHx, f HbHxLLL  and suppose  there is a  subset  of C¶  which  is invariant  under  F.  Then  F  has a  unique fixed point
fF œ C¶ HIL.

Note that b and v are no longer assumed to be continuous but we explicitly assume that there is a subset of C¶  which is
invariant under F, ie. the subset maps into itself under the action of F. Of course, if b and v are continuous, then all of C¶  is
invariant under F. Thus the hypotheses of the original theorem have been weakened. 

Now that b and v are no longer required to be continuous, we may define them in a piecewise manner. In the following code,
b maps each half of the unit interval onto the whole unit interval and v is defined differently for values of x in these two
domains. In this way, the Read-Bajraktarevic operator can mimic the behavior of an iterated function system.

In[23]:= b@x_D := Mod@2 x, 1D;
v@x_, y_D := µ

y ê 4 0 § x < 1 ê 2
y ê 4 + x - 1 ê 4 1 ê 2 § x < 1

;

F@f_D := v@x, f ê. x Ø b@xDD;
fF = F@x2D

Out[26]=
Ø
±


1ÅÅÅ4 Mod@2 x, 1D2 0 § x < 1ÅÅÅ2

- 1ÅÅÅ4 + x + 1ÅÅÅ4 Mod@2 x, 1D2 1ÅÅÅ2 § x < 1

Note that any function continuous function f  which satisfies F f H1 ê2L = limxØ1ê2- F f HxL after application of F will again be
continuous. In particular, f HxL = x2  satisfies this property. In fact, fF  is really just x2  in disguise.

In[27]:= Plot@fF, 8x, 0, 1<D;
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For our final example, we look at a more typical self-affine function which consists of three pieces.
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In[28]:= b@x_D := Mod@3 x, 1D;

v@x_, y_D :=
Ø
±


2 y ê 3 0 § x < 1 ê 3
-y ê3 + 2 ê 3 1 ê 3 § x < 2 ê 3
2 y ê 3 + 1 ê 3 2 ê 3 § x < 1

;

F@f_D := v@x, f ê. x Ø b@xDD;
fF = Nest@F, x, 7D;
Plot@fF, 8x, 0, 1<D;
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