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WW
hen a computer with an attached camera points at
an external display showing the current screen,
one sees a familiar visual feedback loop related to

the iteration of an affine function [5]. Of course, the same
effect occurs when one looks into a mirror that faces another
mirror; this is in essence the same as the familiar audio
feedback that occurs when one speaks into a microphone
that can also hear the output from nearby speakers. The term
Droste effect [11] has been used to describe the visual loop
because of the infinite recursion caused by self-reference on
a packet of Droste cocoa (also on many other products). M.
C. Escher used the phenomenon in an original way in Print
Gallery, and it was the first author’s analysis of a gap in
Escher’s work [9] that led to the discovery of the higher-order
effect described here.

Frame and Neger [6] showed how one can modify the
classic linear feedback method to obtain some fractal images.
The new idea we present is to interpose a nonlinear mathe-
matical filter into the image-capturing process. The filter can
be complicated, such as one based on a complex function
f (z). Surprisingly, this idea, when used in a self-referential
way, leads to the Julia set for f (z) + c appearing on the
screen, where the offset c arises from the camera pointing
away from the exact center of the screen. If f (z) = z2 then the
classic Julia sets of z2 + c pop out. See [3] for an introduction
to Julia sets and the Mandelbrot set.

To be precise, a quadratic filter works as follows: given a
pixel located at z = (x, y) = x + iy, one forms f ðzÞ ¼ z2 ¼

x2 $ y2 þ 2xyi; finds the color that the camera sees at the
point f (z), and uses that color on the display at the point z.
Figure 1 shows the result of aiming such a quadratic camera
at a rectangular grid; the origin is the black dot just southwest
of center. To see why there are two copies of each letter,
consider the Q at ð1:5;$0:5Þ in the grid. In the transformed
image, points near ð1; 0Þ get mapped to points near (1, 0), but
so do points near ð$1; 0Þ: This square-root behavior (two
solutions to z2 = 1) is why two copies of Q appear. Plots of
the four sides of the rectangle using the complex square-root
function explain the eight hyperbolic borders of the trans-
formed image (e.g., the line y = y0 becomes the hyperbola
2xy ¼ y0). Loosely speaking, this operation computes the
complex square root of theoriginal image. In the general case
with nonzero offset, the transforming function is z 7! z2 + c,
and the quadratic camera’s image is derived from the inverse
functions z 7!

ffiffiffiffiffiffiffiffiffiffiffi
z $ c
p

:
Figure 2 shows how the Statue of Liberty would look to a

tourist using a quadratic lens. Note that the black borders in
Figures 1 and 2 arise because those points square to points
outside the domain of the original image; by default, the
programming uses black for such points.

We have programs available that implement the quadratic
camera for either a Macintosh [10] or a Linux or Windows
platform [8; this web site contains more images related to our
study]; code that implements the camera in Mathematica, as
well as some other supplementary material, is available at the
location described in reference [7]. The program includes an
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inset that shows the raw image together with the focal point.
The location of that point indicates the value of the offset c,
the parameter that gives us the large variety of feedback
images from the single camera. As we shall see, the relationof
c to the Mandelbrot set controls the sort of feedback image
that results.

Before we get into feedback by pointing the quadratic
camera at the display of the camera, let’s review Julia sets.
A simple characterization is that the Julia set of f is the

boundaryof the set of points whose f-orbits remainbounded.
To see why iterating the inverse of a function f leads to the
Julia set of f, consider the direct iteration of the function
f (z) = z2 in the complex plane. Start with an initial value z0

and compute zn recursively by zn = f (zn-1) = zn-1
2 . If

z0j j\1, then znj j forms adecreasing sequence, but if z0j j[ 1,
then znj j is increasing. From both directions, the unit circle is
a dynamical repeller. It is exactly this dynamical behavior that
makes the unit circle the Julia set of z2.

On the other hand, it now makes sense that the unit circle
is attractive under inverse iteration of z2. If we start with an
initial point z0, we can find its two square roots & ffiffiffiffiffi

z0
p

to get
two points closer to the unit circle. We can then find the
square roots of these points to get four points even closer to
the unit circle. After n steps, we have 2n points that are quite
close to the unit circle.

This process can be performed with any quadratic func-
tion (or any polynomial) to yield a large variety of Julia sets.
Figure 3 shows the inverse iteration for f ðzÞ ¼ z2 þ 0:15þ

Figure 1. The image at right shows how the alphabet grid

appears when viewed by the quadratic camera pointing at the

black dot at the origin.

Figure 2. A quadratic camera view of the Statue of Liberty.

Figure 3. Starting with 1 + i and repeatedly applying the

inverse of f ðzÞ ¼ z2 þ 0:15þ 0:43i leads to points that

approach the Julia set of f.
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0:43i: The initial point is red, the two inverse iterates are
green, the next four are blue, and so on.

As many readers know, varying c can lead to visually
attractive and mathematically intricate Julia sets, especially
when c is near the boundary of the Mandelbrot set; see
Figure 4, where c ¼ $0:83$ 0:18i: Note the articulation
points where symmetric spirals converge to a single point.

Now to the main point: we set things up so that the qua-
dratic camera points at itself. This can be done either by
attaching a camera to one’s computer and pointing it at the
display, or by using a computer with a built-in camera and
pointing it at an external monitor or even just at a mirror that
reflects the display. Then the feedback loop becomes a
pseudo-analog version of the inverse iteration method for
generating Julia sets.

Figure 5 presents an example with offset c near $0:83
$0:18i, the value used in Figure 4. The feedback image is a
nice match to the algorithmically generated Julia set.

An explanation ofwhy these sets arise starts by considering
the inverse of z2 + c, because those two functions determine
the quadratically transformed image. The inverse map trans-
forms the image seen by the camera to an octagon. That
octagonal image is then, temporarily, placed onto the screen,
with points outside the octagon shown as black because the
applicationof z 7! z2 + c to such points yields values outside

the original image (see Fig. 6). The camera then repeats this
process with this new image, places that on the screen, and so
on. Thus the complete process is one of continual overlaying,
with parts of the image not changing after a certain point. For
example, the background never changes.

A classic result [1] is that the Julia set of a rational function is
the closure of the set of repelling periodic points of that
function. Because the Julia set repels points under iteration of
f, it is an attractor for the inverse of f, as we saw above. The
overlaying process just described corresponds to iteration of
the inverse function, and so the sequence of iterates con-
verges to the Julia set of z2 + c.

Figure 6 simulates this process when c = 0. We start at the
upper left with a computer screen and a checkerboard pat-
tern forming the background; the yellow circle indicates the
unit circle. We assume here that the camera has a square view
and sees exactly this imagebefore thequadratic filter kicks in.
Then the upper right image shows the result of placing the
quadratically transformed camera image on the screen. The
black border arises, because the complex square of those
points ends up outside the camera’s image. The final image
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Figure 4. The filled Julia set for z2 $ 0:83$ 0:18i.

Figure 5. A quadratic feedback image with complex offset

near $0:83$ 0:18i, a point near the boundary of the

Mandelbrot set.
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then shows the result of five iterations of this operation. The
filled Julia set — the set of points whose orbits under z 7! z2

are bounded — shows up as a disk; it is gray, because the
original screen is gray in the region near the origin, and that
region expands to fill the disk.

The simulation of Figure 6 differs from the situation in
Figure 5 in one subtle way. For the actual feedback image,
thewindowshowingwhat the camera seesoccupies less than
the full screen. The part of the screen around this window
should therefore be considered part of the background.

As first pointed out by Crutchfield [2], who experimented
with feedback loops in 1984, there is a damping effect as the
light progresses through many iterations of the camera. Thus
we see increasing levels of cyan (or another color, depending
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Figure 6. A simulation of quadratic camera feedback using the function f (z) = z2. The upper left shows what the camera sees, the

upper right is the result of placing the transformed image on the screen, and the lower image shows five iterations of this process.
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on the equipment and the ambient light) as the feedback
progresses. For points in the interior of the Julia set, the
damping factor completely dominates, and we generally see
just a single color.

In the feedback image of Figure 5, the articulation points
are notwell resolved, as opposed to thedelicacy so evident in
the mathematical rendering of Figure 4. We believe this is
because of the combination of a damping effect with the fact
that points near the articulation points require a long time to
escape. Thus the damping effect overwhelms the idealized
iteration procedure.

Our approach does not explain all details of the feedback,
but it is a start at understanding the intriguing effects that arise
when the quadratic camera looks at itself. It is somewhat
similar to audio feedback, where it is clear that the sound
should intensify, but analysis of every detail of the final
screech is difficult.

The screen shot in Figure 5 just scratches the surfaceof the
wide variety of effects one sees with the quadratic camera. If
the camera is tilted or rotated, then effects related to those
transformations will arise. The exact colors generated
depend on the monitor used and the type and amount of
ambient light. And of course one can modify the idea here to
generate feedback Julia sets of cubics or other functions.

Here is a mathematical question that arose from our
investigations. When we point the quadratic camera at itself,
certain affine effects can come into play because of rotation,
tilt, and issues related to screen size. In particular, there might
be a stretch in the x-direction only. Such a function is not
conformal in C, so we move to R2: Define a function f by
f (x, y) = ((x/s)2 - y2, 2(x/s)y) + (a, b), where ða; bÞ 2 R2

corresponds to the complex offset c used earlier, and s is a
(real) horizontal stretching factor. Let R be a closed rectangle
in the plane such that f $1ðRÞ ' R, and let X ¼ \ff $nðRÞ :
n\1g, the part of the feedback image we see as white (or
cyan). What can be said about this closed set X?

We can experiment using standard iteration algorithms to
investigate X; Figure 7 shows an example. In the first case,
s = 1.22, the offset is (-0.9, 0.3), and the filled set has several
components with nonempty interior; we can prove this,
because the yellow point is an attracting fixed point. Such
components cannot occur for the traditional filled Julia sets of
z2 + c (see [4]). Another interesting example arises with
s = 1.3 and (a, b) = (-1, 0.05).

We conclude with a question of physics. The approach
here is only partially analog since the light signal is repeatedly
transformed in a digital way. Can one construct a physical
lens that realizes the complex function z2 as described here?
We hope the answer is YES, for such a lens used with a mirror
would yield truly analog Julia sets at the speed of light.

REFERENCES

[1] A. F. Beardon, Iteration of Rational Functions, Graduate Texts in

Mathematics 132, Springer, New York, 1991.

[2] J. P. Crutchfield, Space-time dynamics in video feedback,

Physica D: Nonlinear Phenomena, 10:1–2 (1984) 229–245.

[3] R. Devaney, A First Course in Chaotic Dynamical Systems,

Westview Press, Boulder, Colo., 1992.

[4] R. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd

ed., Westview Press, Boulder, Colo., 2003.

[5] R. Dickau, Nested image rotations, from The Wolfram Demon-

strations Project, http://demonstrations.wolfram.com/Nested

ImageRotations.

[6] M. Frame and N. Neger, Fractal videofeedback as analog iterated

function systems, Fractals 16 (2008) 275–285.

[7] M. McClure, The quadratic camera, http://stanwagon.com/

public/ARCHIVE/QuadraticCamera.

[8] W. J. Palenstijn and B. de Smit, Quadratic camera program for

Linux and Windows, http://www.math.leidenuniv.nl/*desmit/

qcam.

[9] B. de Smit and H. W. Lenstra Jr., Artful mathematics: The

heritage of M. C. Escher, Notices Amer. Math. Soc. 50 (2003)

446–451; http://www.ams.org/notices/200304/fea-escher.pdf.

[10] E. I. Sparling, Quadratic camera program for Macintosh’s

PhotoBooth application, available at http://stanwagon.com/

public/julia.app.zip.

[11] Wikipedia: Droste effect, http://en.wikipedia.org/wiki/Droste_

effect.

Figure 7. An image showing an approximate Julia-like set

arising from an affine variation of the complex squaring

function. There are several components with nonempty

interior.
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