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Abstract

We present a three state, stochastic cellular automaton that runs

on Penrose tilings and seems to evolve to a three-colored equilibrium.

1 Introduction

In 1973 and 1974, Roger Penrose discovered three sets of polygons each of

which tiles the plane aperiodically and (if certain matching conditions are

enforced) only aperiodically. Later, John H. Conway asked if such tilings can

be three-colored, where adjacent tiles are to receive di�erent colors. This

question has been answered a�rmatively for two types of Penrose tilings,

but appears to be open for the remaining type. In this paper, we present an

algorithm that seems to three-color �nite parts of Penrose tilings of all types.

The algorithm works by running a particular three-state, stochastic cellular

automaton on a given Penrose tiling. The cellular automaton is chosen so

that three-colorings are stable and it seems to generally evolve to such an

equilibrium.
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2 Penrose tilings

There are three types of Penrose tilings: tilings by kites and darts, tilings

by rhombs, and tilings by pentacles. We describe them briey here. More

detailed references are [2] and [3].

2.1 Tilings by kites and darts

Figure 1 shows the kite and dart. The sides have length either 1 or � , the

golden ratio, and the angles are all integer multiples of �

5
. The �lled and

un�lled disks at the vertices are used to enforce a matching condition. When

tiling the plane with kites and darts, we demand that �lled disks meet �lled

disks and un�lled disks meet un�lled disks. This matching condition guar-

antees that any tiling by kites and darts will be aperiodic, i.e. no translation

of the tiling maps each tile to another tile. Figure 2 shows part of such a

tiling.

2.2 Tilings by rhombs

Figure 3 shows the fat and skinny rhombs. The sides all have length 1 and the

angles are all integer multiples of �

5
. The matching condition is slightly more

complicated. We demand that �lled disks meet �lled disks, un�lled disks

meet un�lled disks, and oriented edges meet with the correct orientation.

Again, this matching condition guarantees that any tiling by rhombs will be

aperiodic. Figure 4 shows part of such a tiling.

2.3 Tilings by pentacles

Figure 5 shows the pentacles. As with the rhombs, all of the sides have

length one and the angles are all integer multiples of �

5
. The labels indicate

a matching condition, which again assures aperiodicity. The edges labeled

0 must �t against edges labeled �0, 1 against �1, and 2 against �2. Note that

the three pentagons are congruent, but have di�erent matching conditions.

A portion of a tiling by pentacles is shown in �gure 6.
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3 Coloring the tiles

A tiling is called three-colorable if we may assign one of three distinct colors

to each tile such that adjacent tiles have di�erent colors. Tiles are said to

be adjacent if their intersection is a line segment. Figures 7, 8, and 9 show

three-colored tilings by kites and darts, rhombs, and pentacles respectively.

Sibley and Wagon [5] proved that tilings by rhombs are three-colorable and

Babilon [1] proved that tilings by kites and darts are three-colorable. The

equivalent question for the pentacles seems to be open.

Our pictures are the �nal stage of a three-state, stochastic cellular au-

tomaton that can run on any tiling. The cellular automaton works as follows.

First, assign one of three possible colors to each tile randomly. Then, allow

the cellular automaton to evolve according to the following set of rules:

� If the value of a cell (or tile) equals the value of a bordering cell that is

closer to the origin (as measured by some arbitrary point chosen within

each tile), then with 90% probability, the cell changes value randomly

to one of the other two colors.

� If the value of a cell does not equal the value of a bordering cell that

is closer to the origin, but does equal the value of a cell farther away

from the origin, then with 10% probability, the cell changes value.

� If the value of the cell does not equal the value of any bordering cell,

the cell does not change value.

Note that three-colorings are stable under these rules. The hope is that three-

colorings are attractive equilibria. Figure 10 demonstrates the algorithm on

a small piece of a kite and dart tiling. The origin is located at the lower

left corner of the triangle. The probabilities are chosen so that tiles close

to the origin are generally colored correctly before tiles farther away from

the origin. The values of 90% and 10% were chosen experimentally. Larger

dynamic images are available on the author's web page:

http://www.unca.edu/~mcmcclur/mathematicaGraphics/PenroseColoring/

4 Related coloring schemes

Clearly the basic idea of this paper is applicable in other situations. A

change in the number of states yields a class of algorithms for n-coloring

3



planar maps or graphs in general. For example, taking the number of states

to be two, we can use the algorithm to two-color a checker board. While two-

coloring a checker board is very simple, this gives us a rudimentary way of

measuring the e�ciency of the algorithm. Experiments indicate that a 8� 8

checkerboard is two-colored in about 32 generations on average. A 16 � 16

checkerboard is two-colored in about 82 generations on average. This seems

e�cient considering that an n�n checkerboard has 2n
2

distinct colorings by

two colors, only two of which are two-colorings. The algorithm may also be

used to four color maps. A map of the United States is four colored in about

114 generations on average.

While the algorithm is broadly applicable, it does not seem quite as good

as more speci�cally designed algorithms. The recursive algorithm based on

Kempe chains described in chapter 24 of [6] four-colors most maps a little

faster, for example. Furthermore, all of the maps described here so far have

adjacency graphs all of whose vertices have small degree. More complicated

maps (like Martin Gardner's April fools map described in [6]) can stump the

algorithm completely.

5 Implementation notes

All the images for this paper were generated with Mathematica. The tilings

were generated using the DigraphFractals Mathematica package by the

author as described in [4] These images were then converted to PlanarMap

and PlanarGraph objects as de�ned in the GraphColoring Mathematica

package by Stan Wagon [6]. Code to run the cellular automaton on the

PlanarGraph objects was written by the author. Final three-colored images

were rendered by the ShowMap function de�ned in the GraphColoring

package.

All code, dynamic images, and more examples are available on the au-

thor's web page:

http://www.unca.edu/~mcmcclur/mathematicaGraphics/PenroseColoring/
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The Kite The Dart

Figure 1: The kite and dart
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Figure 2: Part of a tiling by kites and darts

7



The Skinny RhombThe Fat Rhomb

Figure 3: The fat and skinny rhombs
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Figure 4: Part of a tiling by rhombs
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Figure 5: The pentacles
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Figure 6: Part of a tiling by pentacles
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Figure 7: Part of a three-colored tiling by kites and darts
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Figure 8: Part of a three-colored tiling by rhombs
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Figure 9: Part of a three-colored tiling by pentacles

14



Figure 10: Evolution to a three-coloring
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