
The Kings problem
Mark McClure
Department of Mathematics

Universiry of North Carolina at Asheville

Asheville, NC 28804
mcmcclur@unca.edu

Abstract
The  män  Kings  problem  asks  how  many  ways  non-attacking  may  Kings  be  placed  on  an
män  chess  board. Recent work by Neil  Calkin and his undergraduate  research students  has
produced an elegant way to approach the problem, which also leads to the enumeration of all
possible  boards  for  small  m  and  n.   Furthermore,  a  surprising  connection  to  self-similar
fractals arises leading to challenging open questions.

1.  The basic problem
The basic problem of the Kings is the following: How many different ways may we place kings on an
m ´ n  chessboard  so  that  no  two  are  attacking  one  another?   This  is  a  natural  combinatorial  question
which has been considered by several authors.  It's first appearance in print seems to be in a paper of
Wilf [1], who attributes the problem to Donald Knuth.  Substantial progress on the asymptotics of the
problem have been made by Neil  Calkin and his students  Shannon Purvis and Keith Schneider.   It is
this work and, in particular, the occurence of fractals in the solution which sparked the interest of this
column.

One dimensional boards

We begin our  attack on the problem with the simple mä1 case.   We call  such a board a column and
will construct the more general män board by stringing n columns together.  It is not hard to construct
the set Cm  of all possible columns of length m using recursion on m.  We will represent a column as a
list  of  zeros  and ones  of  length m.   Zero  represents  an  empty square  and one represents  an  occupied
square.  Clearly, there are two 1 ´ 1 boards, the empty square and the occupied square.

In[1]:= C1 = 880<, 81<<;
It's also fairly clear that there are three possible columns of length 2.

In[2]:= C2 = 880, 0<, 81, 0<, 80, 1<<;
Now the general m ´ 1 board may be generated in one of two ways.  We may place an empty square at
the end of an Hm - 1L ´ 1 board or an empty square and then a king at the end of a Hm - 2L ´ 1 board.
This leads to the following recursive defintion.

In[3]:= Cm_ := Cm = Join@
Join@#, 80<D & êü Cm-1,
Join@#, 80, 1<D & êü Cm-2D;
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It's  easy  to  see  from  this  recursion  that  the  number  of  columns  of  length  m  is  Fm+2 ,  the  m + 2nd

Fibonacci number.

Adjacency matrices

An män board may be generated by stringing n columns of length m together.   However, care must be
taken not to introduce an illegal configuration.  We will  keep track of which columns may be placed
next  to  one  another  using an  adjacency matrix  Am .   The rows and columns of  Amwill  be indexed by
Cm .   The  entry  in  row i  and  column  j  will  be  1  if  column  i  may  be  placed  next  to  column j  and  0
otherwise.

For  m = 1  note  that  the  empty  square  may  be  placed  next  to  itself  or  the  occupied  square,  but  the
occupied square may only be placed next to the empty square.  Thus A1  is the following matrix.

In[5]:= A1 = J 1 1
1 0

N;
Similarly, A2  is given by

In[6]:= A2 =
ikjjjjjjj 1 1 1
1 0 0
1 0 0

y{zzzzzzz;
The general matrix Am  may be also be computed by a recursive procedure.

Am = J Am-1 Am-2

Am-2 0
N

In  this  formula,  we assume that  the 0  is  a  zero matrix of  size Fm  and the  copies of  Am-2  are padded
with zeros appropriately to make the result a square matrix of size Fm+2 .  

The recurrence may be derived as follows.  Recall that there are Fm+2 = Fm+1 + Fm  possible columns
of length m in Cm . Furthermore, the first Fm+1  elements in Cm  are exactly the columns in Cm-1  with an
empty square  at  the  end and these columns of length m  have the exact  same adjacency conditions as
the corresponding in Cm-1 .  This leads to the copy of Am-1  in the upper left hand corner of the recur-
rence.  Similarly, the first Fm  columns in Cm  are exactly the columns in Cm-2  with two empty squares
appended and the last  Fm  columns in Cm  are exactly the columns in Cm-2  with an empty square and
then  a  king.   These  columns  have  the  adjacency  relationships  described  by  the  copy  of  Am-2  in  the
upper right of the recurrence.  The copy of Am-2  in the lower left appears by symmetry.  Of course, the
final Fm  columns in Cm  all  have a king in the last  square so no two of these may appear next to one
another.  This leads to the zero block in the lower right.

The  matrix  Am  will  be  quite  sparse  for  large  m,  thus  we will  use  SparseArrays  to  implement  the
recurrence.

In[7]:=
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In[7]:= F = Fibonacci;
Am_ := Am = Module@8rules1, rules2, newRules<,

rules1 = Drop@ArrayRules@Am-1D, -1D;
rules2 = Drop@ArrayRules@Am-2D, -1D;
newRules = Join@rules1,

rules2 ê. 8x_Integer, y_Integer< ® 8x + F@m + 1D, y<,
rules2 ê. 8x_Integer, y_Integer< ® 8x, y + F@m + 1D<D;

SparseArray@newRules, 8F@m + 2D, F@m + 2D<DD;
A3 êê MatrixForm
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Counting the boards

Our  objective  is  to  count  how  many  different  ways  we  may  place  non-attacking  kings  on  an  m ´ n
board.  We can generate any such board by placing n columns of length m next to one another.  Recall
that  Am  is  an  adjacency  matrix  telling  us  which  columns  may  be  placed  next  to  one  another.   This
adjacency matrix corresponds to a graph and a board with n columns corresponds to a walk through n
nodes.   The  length  of  this  walk  is  n - 1,  since  length  of  a  walk  corresponds  to  the  number  of  edges
traversed.   It  is  a  standard  result  in  graph  theory  that  we  count  the  total  number  of  such  walks  by
summing the entries in Am

n-1 .  For example, the following computation shows that there are 21 different
4 ´ 2 boards.

In[10]:= Plus üü A4.Table@1, 8F@6D<D
Out[10]= 21

We may square Am  to obtain the number of paths of length 2 or, equivalently, the m ´ 3 boards.  For
example, there are 35 different 3 ´ 3 boards.

In[11]:= Plus üü Flatten@A3.A3.Table@1, 8F@5D<DD
Out[11]= 35

There are over a billion ways to place non-attacking kings on an actual 8 ´ 8 chessboard.

In[12]:= Plus üü MatrixPower@A8, 7D.Table@1, 8F@10D<D
Out[12]= 1355115601
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2.  Enumerating the boards
Basic enumeration

By  replacing  standard  matrix  multiplication  with  a  more  general  inner  product,  we  can  actually
enumerate  the  boards  for  small  m  and  n.   The  following  matrix  describes  the  paths  of  length  one
through  the  graph  represented  by  A3 .   The  element  in  row i  and  column  j  is  the  set  of  all  paths  of
length 1 from vertex i to vertex j.

In[13]:= length1PathsMatrix =
MapIndexed@8#1 * #2< &, A3, 82<D ê. 880, 0<< ® 8<;

length1PathsMatrix êê MatrixFormi
k
jjjjjjjjjjjjjjjjj

881, 1<< 881, 2<< 881, 3<< 881, 4<< 881, 5<<882, 1<< 8< 8< 882, 4<< 8<883, 1<< 8< 8< 8< 8<884, 1<< 884, 2<< 8< 8< 8<885, 1<< 8< 8< 8< 8<
y
{
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Here  are  the  paths  of  length  2.   By  examining  the  element  in  the  first  row and  column,  we  see  that
there  are  five  paths  of  length  two  from  the  first  vertex  to  itself.   This  is  because  the  first  vertex  A3

corresponds to the empty column and may therefore be adjacent to any column.

In[15]:= nextSteps = MapIndexed@#1 * #2@@2DD &, A3, 82<D;
takeStep@8<, _D := 8<;
takeStep@_, 0D := 8<;
takeStep@partialPaths_, nextStep_IntegerD :=
Join@#, 8nextStep<D & êü partialPaths;

length2PathsMatrix =
Inner@takeStep, length1PathsMatrix , nextSteps , JoinD;

length2PathsMatrix@@1, 1DD
Out[20]= 881, 1, 1<, 81, 2, 1<, 81, 3, 1<, 81, 4, 1<, 81, 5, 1<<

Note that each of these paths corresponds to a legal 3ä3 board.  It is very easy to construct the board
from  the  path;  we  simply  extract  the  columns  determined  by  the  path  from  Cm .   Here  is  the  board
generated by the path 81, 5, 1< through A3  represented as a zero-one matrix.

In[21]:= Board@m_Integer, path_ListD := Transpose@Cm@@pathDDD;
Board@3, 81, 5, 1<D êê MatrixForm

Out[22]//MatrixForm=ikjjjjjjj 0 1 0
0 0 0
0 1 0
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In general, we can write a function Paths which returns a matrix of paths.  The element in row i and
column j of Paths[m,n] will be the list of all possible paths of length n from column i to column j.

In[23]:= takeStep@8<, _D := 8<;
takeStep@_, 0D := 8<;
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In[23]:=

takeStep@partialPaths_, nextStep_IntegerD :=
Join@#, 8nextStep<D & êü partialPaths;

Paths@m_Integer, n_IntegerD := Module@8length1PathsMatrix, nextSteps<,
length1PathsMatrix =
MapIndexed@8#1* #2< &, Am, 82<D ê. 880, 0<< ® 8<;

nextSteps = MapIndexed@#1 * #2@@2DD &, Am, 82<D;
Nest@Inner@takeStep, # , nextSteps , JoinD &,
length1PathsMatrix, n - 1DD;

Now that we can enumerate all possible paths, we can generate the correpsonding boards. Here are all
35 of the 3 ´ 3 boards.

In[27]:= Boards@m_Integer, n_IntegerD := Board@m, #D & êü
Partition@Flatten@Paths@m, n - 1DD, nD;

MatrixForm êü Boards@3, 3D
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Making the boards pretty

As this is a graphics column, we would like our boards to look as nice as possible.  One approach is to
install a special font which renders certain characters as chess pieces.  A large number of possible fonts
are  available  at  http://www.enpassant.dk/chess/fonteng.htm.   The  code below assumes  that  the  Chess
Leipzig font is installed on the system, altough the images are not so bad without it.  The board may
then be set up using a GridBox.

In[29]:=
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In[29]:= PrettySquare@val : 0 È 1, pos_D := ButtonBox@
StyleForm@If@val ã 0, " ", "k"D, FontSize ® 55,
FontColor ® Black,
FontFamily ® "Chess Leipzig"D,

ButtonMinHeight ® 3.5,
Background ® If@EvenQ@Plus üü posD, GrayLevel@0.95D,

GrayLevel@0.4DDD;
PrettyBoard@m_Integer, path_ListD := GridBox@

MapIndexed@PrettySquare, Board@m, pathD, 82<D,
RowSpacings ® 0, ColumnSpacings ® 0,
RowsEqual ® True, ColumnsEqual ® TrueD;

Here is a 4ä5 board, for example.

In[32]:= a4x5Board = PrettyBoard@4, 88, 1, 2, 6, 3<D êê DisplayForm

k
k k

k k
Without  the  special  fonts  installed,  the  above  command  should  yield  a  chessboard  with  each  king
rendered as a "k".  With the fonts, the kings should look quite nice.  A gif image of the result is shown
below.

In[47]:= Show@Import@"a4x5Board.gif"DD;
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A  list  of  all  possible  män  boards  may  be  generated  using  the  PrettyBoards  command  defined
below.

In[48]:= PrettyBoards@m_Integer, n_IntegerD :=
DisplayForm@PrettyBoard@m, #DD & êü
Partition@Flatten@Paths@m, n - 1DD, nD;

A 1 GHz iMac will typeset all 6427 5ä5 boards in about 10 seconds.

3.  Self-similar matrices
It turns out that the number of possible configurations on an män chessboard grows asymptotically as
lm

n ,  where lm  is the larges eigenvalue of  Am .   Furthermore,  lm  grows exponentially: lm » hm ,  where
h » 1.34.  These results were discovered experimentally and then proved.  To do this, it is necessary to
experiment  with  Am  for  somewhat  larger  values  of  m.   The  need  for  this  type  of  computation  is  the
main  reason  for  the  implementation  using  sparse  matrices.   For  example,  the  following  computation
provides some justification that lm » hm .

In[64]:= Eigenvalues@N@A16D, 1D ê Eigenvalues@N@A15D, 1D
Out[64]= 81.34263<

Such  experimentation  leads  to  some  intriguing  connections  with  fractal  geometry.   Here  is  a  simple
array plot of A12 , for example.

In[63]:= ArrayPlot@A12D;
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It's quite easy to prove that there is a natural limiting object of the sequence of matrices.  This limit is a
self-similar  set consisting of  three pieces - one scaled by the factor 1 ê f  and two scaled by the factor
1 ê f2 , where f is the golden ratio.

Also of tremendous interest is the apparent limit of the dominant eigenvectors.  Here is a ListPlot
of the dominant eigenvector of A14 .

In[69]:= ListPlot@-Eigenvectors@N@A14D, 1D@@1DD,
PlotJoined ® True, PlotRange ® AllD;
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Here is a similar picture for A14 .
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In[70]:= ListPlot@-Eigenvectors@N@A16D, 1D@@1DD,
PlotJoined ® True, PlotRange ® AllD;
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It certainly appears that there is a similarity between these pictures.  However, the definite existence of
a limit has not been proved.
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