
The Kings problem
Mark McClure
Department of Mathematics

Universiry of North Carolina at Asheville

Asheville, NC 28804
mcmcclur@unca.edu

Abstract
The män Kings problem asks how many ways non-attacking may Kings be placed on an
män chess board. Recent work by Neil Calkin and his undergraduate research students has
produced an elegant way to approach the problem, which also leads to the enumeration of all
possible boards for small m and n. Furthermore, a surprising connection to self-similar
fractals arises leading to challenging open questions.

1. The basic problem
The basic problem of the Kings is the following: How many different ways may we place kings on an
m ´ n chessboard so that no two are attacking one another? This is a natural combinatorial question
which has been considered by several authors. It's first appearance in print seems to be in a paper of
Wilf [1], who attributes the problem to Donald Knuth. Substantial progress on the asymptotics of the
problem have been made by Neil Calkin and his students Shannon Purvis and Keith Schneider. It is
this work and, in particular, the occurence of fractals in the solution which sparked the interest of this
column.

One dimensional boards

We begin our attack on the problem with the simple mä1 case. We call such a board a column and
will construct the more general män board by stringing n columns together. It is not hard to construct
the set Cm of all possible columns of length m using recursion on m. We will represent a column as a
list of zeros and ones of length m. Zero represents an empty square and one represents an occupied
square. Clearly, there are two 1 ´ 1 boards, the empty square and the occupied square.

In[1]:= C1 = 880<, 81<<;
It's also fairly clear that there are three possible columns of length 2.

In[2]:= C2 = 880, 0<, 81, 0<, 80, 1<<;
Now the general m ´ 1 board may be generated in one of two ways. We may place an empty square at
the end of an Hm - 1L ´ 1 board or an empty square and then a king at the end of a Hm - 2L ´ 1 board.
This leads to the following recursive defintion.

In[3]:= Cm_ := Cm = Join@
Join@#, 80<D & êü Cm-1,
Join@#, 80, 1<D & êü Cm-2D;

MatrixForm êü C4

Out[4]= 9i
k
jjjjjjjjjjjj
0
0
0
0

y
{
zzzzzzzzzzzz, i

k
jjjjjjjjjjjj
1
0
0
0

y
{
zzzzzzzzzzzz, i

k
jjjjjjjjjjjj
0
1
0
0

y
{
zzzzzzzzzzzz, i

k
jjjjjjjjjjjj
0
0
1
0

y
{
zzzzzzzzzzzz, i

k
jjjjjjjjjjjj
1
0
1
0

y
{
zzzzzzzzzzzz, i

k
jjjjjjjjjjjj
0
0
0
1

y
{
zzzzzzzzzzzz, i

k
jjjjjjjjjjjj
1
0
0
1

y
{
zzzzzzzzzzzz, i

k
jjjjjjjjjjjj
0
1
0
1

y
{
zzzzzzzzzzzz=

It's easy to see from this recursion that the number of columns of length m is Fm+2 , the m + 2nd

Fibonacci number.

Adjacency matrices

An män board may be generated by stringing n columns of length m together. However, care must be
taken not to introduce an illegal configuration. We will keep track of which columns may be placed
next to one another using an adjacency matrix Am . The rows and columns of Amwill be indexed by
Cm . The entry in row i and column j will be 1 if column i may be placed next to column j and 0
otherwise.

For m = 1 note that the empty square may be placed next to itself or the occupied square, but the
occupied square may only be placed next to the empty square. Thus A1 is the following matrix.

In[5]:= A1 = J 1 1
1 0

N;
Similarly, A2 is given by

In[6]:= A2 =
ikjjjjjjj 1 1 1
1 0 0
1 0 0

y{zzzzzzz;
The general matrix Am may be also be computed by a recursive procedure.

Am = J Am-1 Am-2

Am-2 0
N

In this formula, we assume that the 0 is a zero matrix of size Fm and the copies of Am-2 are padded
with zeros appropriately to make the result a square matrix of size Fm+2 .

The recurrence may be derived as follows. Recall that there are Fm+2 = Fm+1 + Fm possible columns
of length m in Cm . Furthermore, the first Fm+1 elements in Cm are exactly the columns in Cm-1 with an
empty square at the end and these columns of length m have the exact same adjacency conditions as
the corresponding in Cm-1 . This leads to the copy of Am-1 in the upper left hand corner of the recur-
rence. Similarly, the first Fm columns in Cm are exactly the columns in Cm-2 with two empty squares
appended and the last Fm columns in Cm are exactly the columns in Cm-2 with an empty square and
then a king. These columns have the adjacency relationships described by the copy of Am-2 in the
upper right of the recurrence. The copy of Am-2 in the lower left appears by symmetry. Of course, the
final Fm columns in Cm all have a king in the last square so no two of these may appear next to one
another. This leads to the zero block in the lower right.

The matrix Am will be quite sparse for large m, thus we will use SparseArrays to implement the
recurrence.

In[7]:=

2 Author

In[7]:= F = Fibonacci;
Am_ := Am = Module@8rules1, rules2, newRules<,

rules1 = Drop@ArrayRules@Am-1D, -1D;
rules2 = Drop@ArrayRules@Am-2D, -1D;
newRules = Join@rules1,

rules2 ê. 8x_Integer, y_Integer< ® 8x + F@m + 1D, y<,
rules2 ê. 8x_Integer, y_Integer< ® 8x, y + F@m + 1D<D;

SparseArray@newRules, 8F@m + 2D, F@m + 2D<DD;
A3 êê MatrixForm

Out[9]//MatrixForm=i
k
jjjjjjjjjjjjjjjjj
1 1 1 1 1
1 0 0 1 0
1 0 0 0 0
1 1 0 0 0
1 0 0 0 0

y
{
zzzzzzzzzzzzzzzzz

Counting the boards

Our objective is to count how many different ways we may place non-attacking kings on an m ´ n
board. We can generate any such board by placing n columns of length m next to one another. Recall
that Am is an adjacency matrix telling us which columns may be placed next to one another. This
adjacency matrix corresponds to a graph and a board with n columns corresponds to a walk through n
nodes. The length of this walk is n - 1, since length of a walk corresponds to the number of edges
traversed. It is a standard result in graph theory that we count the total number of such walks by
summing the entries in Am

n-1 . For example, the following computation shows that there are 21 different
4 ´ 2 boards.

In[10]:= Plus üü A4.Table@1, 8F@6D<D
Out[10]= 21

We may square Am to obtain the number of paths of length 2 or, equivalently, the m ´ 3 boards. For
example, there are 35 different 3 ´ 3 boards.

In[11]:= Plus üü Flatten@A3.A3.Table@1, 8F@5D<DD
Out[11]= 35

There are over a billion ways to place non-attacking kings on an actual 8 ´ 8 chessboard.

In[12]:= Plus üü MatrixPower@A8, 7D.Table@1, 8F@10D<D
Out[12]= 1355115601

Article title 3

2. Enumerating the boards
Basic enumeration

By replacing standard matrix multiplication with a more general inner product, we can actually
enumerate the boards for small m and n. The following matrix describes the paths of length one
through the graph represented by A3 . The element in row i and column j is the set of all paths of
length 1 from vertex i to vertex j.

In[13]:= length1PathsMatrix =
MapIndexed@8#1 * #2< &, A3, 82<D ê. 880, 0<< ® 8<;

length1PathsMatrix êê MatrixFormi
k
jjjjjjjjjjjjjjjjj

881, 1<< 881, 2<< 881, 3<< 881, 4<< 881, 5<<882, 1<< 8< 8< 882, 4<< 8<883, 1<< 8< 8< 8< 8<884, 1<< 884, 2<< 8< 8< 8<885, 1<< 8< 8< 8< 8<
y
{
zzzzzzzzzzzzzzzzz

Here are the paths of length 2. By examining the element in the first row and column, we see that
there are five paths of length two from the first vertex to itself. This is because the first vertex A3

corresponds to the empty column and may therefore be adjacent to any column.

In[15]:= nextSteps = MapIndexed@#1 * #2@@2DD &, A3, 82<D;
takeStep@8<, _D := 8<;
takeStep@_, 0D := 8<;
takeStep@partialPaths_, nextStep_IntegerD :=
Join@#, 8nextStep<D & êü partialPaths;

length2PathsMatrix =
Inner@takeStep, length1PathsMatrix , nextSteps , JoinD;

length2PathsMatrix@@1, 1DD
Out[20]= 881, 1, 1<, 81, 2, 1<, 81, 3, 1<, 81, 4, 1<, 81, 5, 1<<

Note that each of these paths corresponds to a legal 3ä3 board. It is very easy to construct the board
from the path; we simply extract the columns determined by the path from Cm . Here is the board
generated by the path 81, 5, 1< through A3 represented as a zero-one matrix.

In[21]:= Board@m_Integer, path_ListD := Transpose@Cm@@pathDDD;
Board@3, 81, 5, 1<D êê MatrixForm

Out[22]//MatrixForm=ikjjjjjjj 0 1 0
0 0 0
0 1 0

y{zzzzzzz
In general, we can write a function Paths which returns a matrix of paths. The element in row i and
column j of Paths[m,n] will be the list of all possible paths of length n from column i to column j.

In[23]:= takeStep@8<, _D := 8<;
takeStep@_, 0D := 8<;

4 Author

In[23]:=

takeStep@partialPaths_, nextStep_IntegerD :=
Join@#, 8nextStep<D & êü partialPaths;

Paths@m_Integer, n_IntegerD := Module@8length1PathsMatrix, nextSteps<,
length1PathsMatrix =
MapIndexed@8#1* #2< &, Am, 82<D ê. 880, 0<< ® 8<;

nextSteps = MapIndexed@#1 * #2@@2DD &, Am, 82<D;
Nest@Inner@takeStep, # , nextSteps , JoinD &,
length1PathsMatrix, n - 1DD;

Now that we can enumerate all possible paths, we can generate the correpsonding boards. Here are all
35 of the 3 ´ 3 boards.

In[27]:= Boards@m_Integer, n_IntegerD := Board@m, #D & êü
Partition@Flatten@Paths@m, n - 1DD, nD;

MatrixForm êü Boards@3, 3D
Out[28]= 9ikjjjjjjj 0 0 0

0 0 0
0 0 0

y{zzzzzzz, ikjjjjjjj 0 1 0
0 0 0
0 0 0

y{zzzzzzz, ikjjjjjjj 0 0 0
0 1 0
0 0 0

y{zzzzzzz, ikjjjjjjj 0 0 0
0 0 0
0 1 0

y{zzzzzzz, ikjjjjjjj 0 1 0
0 0 0
0 1 0

y{zzzzzzz,ikjjjjjjj 0 0 1
0 0 0
0 0 0

y{zzzzzzz, ikjjjjjjj 0 0 1
0 0 0
0 1 0

y{zzzzzzz, ikjjjjjjj 0 0 0
0 0 1
0 0 0

y{zzzzzzz, ikjjjjjjj 0 0 0
0 0 0
0 0 1

y{zzzzzzz, ikjjjjjjj 0 1 0
0 0 0
0 0 1

y{zzzzzzz,ikjjjjjjj 0 0 1
0 0 0
0 0 1

y{zzzzzzz, ikjjjjjjj 1 0 0
0 0 0
0 0 0

y{zzzzzzz, ikjjjjjjj 1 0 0
0 0 0
0 1 0

y{zzzzzzz, ikjjjjjjj 1 0 1
0 0 0
0 0 0

y{zzzzzzz, ikjjjjjjj 1 0 1
0 0 0
0 1 0

y{zzzzzzz,ikjjjjjjj 1 0 0
0 0 1
0 0 0

y{zzzzzzz, ikjjjjjjj 1 0 0
0 0 0
0 0 1

y{zzzzzzz, ikjjjjjjj 1 0 1
0 0 0
0 0 1

y{zzzzzzz, ikjjjjjjj 0 0 0
1 0 0
0 0 0

y{zzzzzzz, ikjjjjjjj 0 0 1
1 0 0
0 0 0

y{zzzzzzz,ikjjjjjjj 0 0 0
1 0 1
0 0 0

y{zzzzzzz, ikjjjjjjj 0 0 0
1 0 0
0 0 1

y{zzzzzzz, ikjjjjjjj 0 0 1
1 0 0
0 0 1

y{zzzzzzz, ikjjjjjjj 0 0 0
0 0 0
1 0 0

y{zzzzzzz, ikjjjjjjj 0 1 0
0 0 0
1 0 0

y{zzzzzzz,ikjjjjjjj 0 0 1
0 0 0
1 0 0

y{zzzzzzz, ikjjjjjjj 0 0 0
0 0 1
1 0 0

y{zzzzzzz, ikjjjjjjj 0 0 0
0 0 0
1 0 1

y{zzzzzzz, ikjjjjjjj 0 1 0
0 0 0
1 0 1

y{zzzzzzz, ikjjjjjjj 0 0 1
0 0 0
1 0 1

y{zzzzzzz,ikjjjjjjj 1 0 0
0 0 0
1 0 0

y{zzzzzzz, ikjjjjjjj 1 0 1
0 0 0
1 0 0

y{zzzzzzz, ikjjjjjjj 1 0 0
0 0 1
1 0 0

y{zzzzzzz, ikjjjjjjj 1 0 0
0 0 0
1 0 1

y{zzzzzzz, ikjjjjjjj 1 0 1
0 0 0
1 0 1

y{zzzzzzz=
Making the boards pretty

As this is a graphics column, we would like our boards to look as nice as possible. One approach is to
install a special font which renders certain characters as chess pieces. A large number of possible fonts
are available at http://www.enpassant.dk/chess/fonteng.htm. The code below assumes that the Chess
Leipzig font is installed on the system, altough the images are not so bad without it. The board may
then be set up using a GridBox.

In[29]:=

Article title 5

In[29]:= PrettySquare@val : 0 È 1, pos_D := ButtonBox@
StyleForm@If@val ã 0, " ", "k"D, FontSize ® 55,
FontColor ® Black,
FontFamily ® "Chess Leipzig"D,

ButtonMinHeight ® 3.5,
Background ® If@EvenQ@Plus üü posD, GrayLevel@0.95D,

GrayLevel@0.4DDD;
PrettyBoard@m_Integer, path_ListD := GridBox@

MapIndexed@PrettySquare, Board@m, pathD, 82<D,
RowSpacings ® 0, ColumnSpacings ® 0,
RowsEqual ® True, ColumnsEqual ® TrueD;

Here is a 4ä5 board, for example.

In[32]:= a4x5Board = PrettyBoard@4, 88, 1, 2, 6, 3<D êê DisplayForm

k
k k

k k
Without the special fonts installed, the above command should yield a chessboard with each king
rendered as a "k". With the fonts, the kings should look quite nice. A gif image of the result is shown
below.

In[47]:= Show@Import@"a4x5Board.gif"DD;

6 Author

A list of all possible män boards may be generated using the PrettyBoards command defined
below.

In[48]:= PrettyBoards@m_Integer, n_IntegerD :=
DisplayForm@PrettyBoard@m, #DD & êü
Partition@Flatten@Paths@m, n - 1DD, nD;

A 1 GHz iMac will typeset all 6427 5ä5 boards in about 10 seconds.

3. Self-similar matrices
It turns out that the number of possible configurations on an män chessboard grows asymptotically as
lm

n , where lm is the larges eigenvalue of Am . Furthermore, lm grows exponentially: lm » hm , where
h » 1.34. These results were discovered experimentally and then proved. To do this, it is necessary to
experiment with Am for somewhat larger values of m. The need for this type of computation is the
main reason for the implementation using sparse matrices. For example, the following computation
provides some justification that lm » hm .

In[64]:= Eigenvalues@N@A16D, 1D ê Eigenvalues@N@A15D, 1D
Out[64]= 81.34263<

Such experimentation leads to some intriguing connections with fractal geometry. Here is a simple
array plot of A12 , for example.

In[63]:= ArrayPlot@A12D;

Article title 7

It's quite easy to prove that there is a natural limiting object of the sequence of matrices. This limit is a
self-similar set consisting of three pieces - one scaled by the factor 1 ê f and two scaled by the factor
1 ê f2 , where f is the golden ratio.

Also of tremendous interest is the apparent limit of the dominant eigenvectors. Here is a ListPlot
of the dominant eigenvector of A14 .

In[69]:= ListPlot@-Eigenvectors@N@A14D, 1D@@1DD,
PlotJoined ® True, PlotRange ® AllD;

0 200 400 600 800 1000
0

0.05

0.1

0.15

0.2

0.25

0.3

Here is a similar picture for A14 .

8 Author

In[70]:= ListPlot@-Eigenvectors@N@A16D, 1D@@1DD,
PlotJoined ® True, PlotRange ® AllD;

0 500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

It certainly appears that there is a similarity between these pictures. However, the definite existence of
a limit has not been proved.

References

[1] This is a reference cell.

Article title 9

