
Inverse Iteration Algorithms
for Julia Sets

by Mark McClure

Inverse iteration algorithms are extremely fast methods to generate images of
Julia sets. While they are fairly simple to understand and implement, a little
thought can improve their performance dramatically. In this article, we discuss
several variations of the basic inverse iteration scheme.

Introduction
Julia sets form a beautiful and varied class of fractals. Spectacular color images of these sets may
be generated using the well known escape time algorithm (see [Peitgen and Richter 1989]). In
this article, however, we discuss several variations of the inverse iteration algorithm. Inverse
iteration algorithms are extremely fast, broadly applicable, and easily understood. Furthermore,
an understanding of inverse iteration illuminates the connection between Julia sets of quadratic
functions, more general rational functions and, even, self-similar sets.
 We begin with a brief look at the theory of Julia sets. An intuitive understanding of the theory
will explain the idea behind inverse iteration and why it works. We then look at the
implementation of inverse iteration for certain quadratic functions, carefully refine the technique,
and generalize it to more arbitrary functions. Finally, we discuss a stochastic algorithm, which is
reminiscent of the chaos game.
 All the code in this article is encapsulated in the package JuliaSet, whose use will be
illustrated throughout.

The Theory of Fatou and Julia
Julia Sets arise in the study of complex dynamics. This study was initiated in the late teens
through the seminal works of Fatou and Julia [Fatou 1919; Julia 1918]. Many expositions at
various levels have appeared in recent years. [Beardon1991] and [Carleson and Gamelin 1993]
are both outstanding texts, the first being more advanced. [Devaney 1992] is an excellent choice
for those with a calculus background. It, also, has information on algorithms, including a version
of the inverse iteration algorithm (sec. 16.6).
 In complex dynamics, we study the iteration of a function mapping the complex plane into
itself, f :ℂ ⟶ ℂ. The function, f , is usually assumed to be rational. The complex plane, ℂ, may
be thought of as the state space and the application of f represents the passage of one unit of time.
If z0 is an initial point, then the position of z0 after the passage of n units of time is f n(z0) and the
orbit of z0 is defined to be { f n(z0)}n.
 In this study, two subsets of ℂ naturally arise - the Fatou set and the Julia set. The Fatou set,
F, may be defined to be the largest open set on which the set of iterates of f , { f n}n, form a normal
family. Intuitively, this may be thought of as the largest open set on which the dynamics of f are
relatively tame in the sense that points close to one another have similar long term behavior. The
Julia set, J, is defined to be the complement of the Fatou set and the dynamics of f are quite
chaotic on J.
 For example, suppose f (z) = z2. Then, J = {z : z = 1}, the unit circle. To see this, note that
if z0 is in the interior of the unit circle, then f n(z0) ⟶ 0 as n ⟶ ∞. Thus, the entire interior of
the unit circle is attracted to the fixed point 0. Similarly, if z0 is in the exterior of the unit circle,
then f n(z0) ⟶ ∞ as n ⟶ ∞. Again, the dynamics of any point outside the unit circle is similar
to that of any other point, outside the unit circle. On the other hand, the dynamics on the unit
circle itself are quite complex. Note that any point z on the unit circle may be written z = eα π i.
It may be shown that if α is rational, then the orbit of z consists of finitely many points, while the
orbit of z is dense in the unit circle for irrational α [Beardon 1991, sec. 1.3]. Thus we may find
distinct points in the unit circle, arbitrarily close to one another, with distinctly different long term
behavior.
 We will begin by developing algorithms to generate Julia sets for functions of the form
fc = z2 + c. We denote the Julia Set of fc by Jc. This seemingly small subset of the rational
functions is much less restrictive than it may first appear. It may be shown that the dynamical
behavior of any quadratic function is exhibited by fc for exactly one c [Carleson and Gamelin
1993, p. 123]. Thus, the Julia set of any quadratic will be closely related (homeomorphic) to Jc
for some c. Furthermore, our techniques will easily generalize to more arbitrary functions.

 A Simple Deterministic Inverse Iteration Algorithm
Note that in the preceeding example, points in F were repelled from J under the dynamics of f .
This is true in general. In fact, J may be characterized as the closure of the set of repelling
periodic points of f [Beardon 1991, Thm. 6.9.2] Thus, the Julia set of f may be thought of as a
dynamical repeller for f . This observation lies at the heart of all inverse iteration algorithms.
Let's use it to construct a first algorithm to generate the Julia set, Jc, for the function
fc(z) = z 2 + c. Since Jc is a repeller for fc, it should, also, be an attractor for an inverse of fc. Of
course, fc has two inverses f1-1 = z- c and f2-1 = - z- c . Thus, if {z0} is an initial point,
then f1-1(z0), f2-1(z0) are two points that will be closer to the Julia set Jc,
 f1-1f1-1(z0), f1-1f2-1(z0), f2-1f1-1(z0), f2-1f2-1(z0) are four points that will be even closer to
Jc, and so on.
 To apply the above idea, we need a Mathematica function, invImage, that accepts a list of
complex numbers and returns the inverse image. Our first attempt will generate Jc for c = 0,
which we know to be the unit circle.

2 Julia.nb

Note that in the preceeding example, points in F were repelled from J under the dynamics of f .
This is true in general. In fact, J may be characterized as the closure of the set of repelling
periodic points of f [Beardon 1991, Thm. 6.9.2] Thus, the Julia set of f may be thought of as a
dynamical repeller for f . This observation lies at the heart of all inverse iteration algorithms.
Let's use it to construct a first algorithm to generate the Julia set, Jc, for the function
fc(z) = z 2 + c. Since Jc is a repeller for fc, it should, also, be an attractor for an inverse of fc. Of
course, fc has two inverses f1-1 = z- c and f2-1 = - z- c . Thus, if {z0} is an initial point,
then f1-1(z0), f2-1(z0) are two points that will be closer to the Julia set Jc,
 f1-1f1-1(z0), f1-1f2-1(z0), f2-1f1-1(z0), f2-1f2-1(z0) are four points that will be even closer to
Jc, and so on.
 To apply the above idea, we need a Mathematica function, invImage, that accepts a list of
complex numbers and returns the inverse image. Our first attempt will generate Jc for c = 0,
which we know to be the unit circle.

In[138]:= c = 0.;
invImage[complexPoints_] :=

Flatten[({1, -1} Sqrt[#1 - c] &) /@
complexPoints];

In[140]:= invImage[{1}]

Out[140]= {1., -1.}

In[141]:= invImage[%]

Out[141]= {1., -1., 0. + 1. ⅈ, 0. - 1. ⅈ}

Now, we'll nest invImage several times and plot the points after converting them to ordered
pairs.

Julia.nb 3

In[142]:= depth = 10;
points = ({Re[#1], Im[#1]} &) /@ Nest[invImage,

{1},depth];
ListPlot[points, AspectRatio -> Automatic,

Axes -> False,
PlotStyle -> {AbsolutePointSize[0.4]}]

Out[144]=

 The package function which encapsulates these commands is JuliaSimple. Note that the
second argument to JuliaSimple represents the depth rather than the total number of points.
Thus, the following command generates 212 points of an interesting Julia set.

In[145]:= Needs["JuliaSet`"]

4 Julia.nb

In[146]:= JuliaSimple[-0.123 + 0.745 I, 12,
PlotLabel -> "c = -0.123 + 0.745 I"]

Out[146]=

Improving The Simple Deterministic Algorithm
JuliaSimple is a short, fast, and easily understood algorithm. However, our first interesting
image above already indicates a weakness in the algorithm. Some parts of the image seem more
detailed than others. This is because some parts of the Julia set are more attractive than others
under the action of invImage. In this section, we'll describe the function JuliaModified
which fixes the problem. Here is an example which compares the algorithms.

Julia.nb 5

In[147]:= Show[GraphicsArray[{
{JuliaSimple[0.68 I, 12,

DisplayFunction -> Identity,
PlotLabel -> "Simple"]},

{JuliaModified[0.68 I,
DisplayFunction -> Identity,
PlotLabel -> "Modified"]}}],

PlotLabel -> "c = 0.68 I"]

— GraphicsArray::obs : GraphicsArrayis obsolete. SwitchingtoGraphicsGrid.!

Out[147]=

6 Julia.nb

Out[147]=

 The simple algorithm clearly misses a great amount of detail. A naive solution would be to
increase the depth. However, the required depth is frequently greater than 50, resulting in more
than 250 points in the image.
 Here is a solution. After a certain depth, we'll keep track of all of the points that have been
plotted. Points close together, as measured by the variable res, will be treated the same. With
each iteration, we'll apply invImage and discard points that have already been plotted. As a
result, the program will be able to run to a much larger depth since the length of the list of points
no longer grows as 2depth.
 First, we need to rewrite invImage to treat points close together similarly. We'll regenerate
Jc for c = -0.123 + 0.745 I.

In[148]:= c = -0.123 + 0.745 I; res = 200;
invImage[points_] := Flatten[(Floor[{1, -1}

res Sqrt[#1 - c]]/res &) /@
points];

The function reducedInvImage will accept a list of points, apply invImage, and return only
those points that don't appear in the auxiliary variable, pointsSoFar. As a side effect, it will
update pointsSoFar.

In[150]:= reducedInvImage[points_] := Module[{newPoints},
newPoints = Complement[invImage[points],

pointsSoFar];
pointsSoFar = Union[newPoints, pointsSoFar];
newPoints];

Next, we'll iterate invImage several times from an arbitrary starting value to obtain some points
close to Jc. We'll store the result in pointsSoFar.

In[151]:= pointsSoFar = Nest[invImage, {1}, 5];

Now, we'll iterate reducedInvImage, starting with pointsSoFar, until it returns the empty
list.

In[152]:= FixedPoint[reducedInvImage, pointsSoFar];

Finally, we ListPlot the points in pointsSoFar, after converting the complex numbers to
ordered pairs.

Julia.nb 7

Finally, we ListPlot the points in pointsSoFar, after converting the complex numbers to
ordered pairs.

In[153]:= ListPlot[({Re[#1], Im[#1]} &) /@ pointsSoFar,
AspectRatio -> Automatic,
Axes -> False,
PlotStyle -> {AbsolutePointSize[0.4]},
PlotLabel -> "c = -0.123 + 0.745 I, Modified"]

Out[153]=

 Note that the level of detail is controlled by the option Resolution. The default is
Resolution→200. We may get a quick, less detailed image by using a smaller value for
Resolution. Here is an illustration of the effect of Resolution.

8 Julia.nb

In[154]:= Show[GraphicsArray[{
{JuliaModified[-0.77 + 0.22 I,

Resolution -> 40,
PlotLabel -> "Resolution → 40",
DisplayFunction -> Identity]},

 {JuliaModified[-0.77 + 0.22*I,
PlotLabel -> "Resolution → 200",
DisplayFunction -> Identity]}}],

PlotLabel -> "c = -0.77 + 0.22 I"]

— GraphicsArray::obs : GraphicsArrayis obsolete. SwitchingtoGraphicsGrid.!

Out[154]=

Julia.nb 9

■ Comparing The Algorithms
The above images show much greater detail than was possible with JuliaSimple. We can
measure how large depth would have to be in JuliaSimple to achieve the same level of
detail by replacing FixedPoint with FixedPointList and measuring its length. Note that
this computation will depend on the complexity of the Julia set. We'll measure the depth for a
fairly complicated Julia set.

In[155]:= c = 0.68 I; res = 200;
invImage[points_] := Flatten[(Floor[{1, -1}

res Sqrt[#1 - c]]/res &) /@
points];

reducedInvImage[points_] := Module[{newPoints},
newPoints = Complement[invImage[points],

pointsSoFar];
pointsSoFar = Union[newPoints, pointsSoFar];
newPoints];

pointsSoFar = Nest[invImage, {1}, 5];
Length[FixedPointList[reducedInvImage, pointsSoFar]]

Out[159]= 77

Thus, JuliaSimple would need a depth of 77+5 to plot this particular Julia set resulting in a
list of 282 points. JuliaModified used barely 20,000 points to plot much more detail, as the
following computation shows.

In[160]:= Length[pointsSoFar]

Out[160]= 20 399

The Mandelbrot Set
Julia sets for quadratic functions of the form z2 + c are among the most important, because of their
relationship with the Mandelbrot set. The Mandelbrot set is defined to be the set of all c values
that lead to connected Julia sets, Jc. While it is not the purpose of this article to discuss the
Mandelbrot set in detail, it is nice to have an image of it to assist in choosing interesting values of
c. The following code generates an image of the Mandelbrot set. It is a minor modification of the
code found in [Dickau 1997]. Points near the boundary frequently lead to interesting Julia sets.

10 Julia.nb

In[161]:= MandelbrotFunction = Compile[{{c, _Complex}},
Length[FixedPointList[#1^2 + c & , c, 100,

SameTest -> (Abs[#2] > 2. &)]]];
DensityPlot[MandelbrotFunction[x + y*I],

{x, -2, 0.6}, {y, -1.3, 1.3},
Mesh -> False, AspectRatio -> Automatic,
PlotPoints -> 300,
ColorFunction -> (If[#1 == 1,

RGBColor[0, 0, 0], Hue[0.9*#1]] &)]

Out[162]=

Generalizing the Deterministic Algorithm
The algorithms described above apply only to functions of the specific form fc(z) = z2 + c, but the
theory is much more broadly applicable. We should be able to apply the same ideas to any
rational function whose inverses are known. Let's apply these ideas to plot the Julia set of
f (z) = z3 + z+ .6 I.

Julia.nb 11

In[163]:= f[z_] = z^3 + z + 0.6*I; res = 200;
inverses = z /. NSolve[f[z] == #1, z];
funcs = (Function[anInverse, N[Floor[anInverse*res]/res] &
]) /@ inverses;

A list of the inverses of f (z) is now held in funcs. We need to turn this into invImage.

In[166]:= invImage[points_] :=
Flatten[(Through[funcs[#1]] &) /@ points, 1];
invImage[{1}]

Out[167]= {-0.48 - 1.055 ⅈ, -0.26 + 1.285 ⅈ, 0.73 - 0.24 ⅈ}

In[168]:= invImage[%]

Out[168]= {0.745 - 0.86 ⅈ, 0.085 + 1.465 ⅈ, -0.835 - 0.615 ⅈ,
0.07 - 1.255 ⅈ, 0.4 + 0.775 ⅈ, -0.475 + 0.47 ⅈ,
-0.515 - 0.95 ⅈ, -0.18 + 1.315 ⅈ, 0.685 - 0.37 ⅈ}

Now the algorithm proceeds as before.

In[169]:= reducedImage[points_] := Module[{newPoints},
newPoints = Complement[invImage[points],

pointsSoFar];
pointsSoFar =

Union[newPoints, pointsSoFar]; newPoints];
pointsSoFar = Nest[invImage, {1.}, 5];
FixedPoint[reducedImage, pointsSoFar];
ListPlot[({Re[#1], Im[#1]} &) /@ pointsSoFar,

AspectRatio -> Automatic,
Axes -> False,
PlotStyle -> {AbsolutePointSize[0.4]}]

Out[172]=

12 Julia.nb

Out[172]=

 These commands are encapsulated in the package function Julia. Here are two more
examples.

Julia.nb 13

In[173]:= ShowGraphicsArray

Juliaz3 - I, z,

PlotLabel → "f(z) = z3 - I",
DisplayFunction → Identity,

Julia
1

z2 - 1
, z,

PlotLabel → "f(z) =
1

z2 - 1
",

DisplayFunction → Identity

— GraphicsArray::obs : GraphicsArrayis obsolete. SwitchingtoGraphicsGrid.!

14 Julia.nb

Out[173]=

 Note that the second image in the preceeding example is the Julia set of a rational function.
We, actually, need to make one final adjustment to generate Julia sets of rational functions. Our
method for pruning points depends upon the fact that the Julia set is bounded. While this
assumption is valid for polynomials, the Julia set of a rational function need not be bounded. In
this case, the function reducedImage should throw out points that are larger than some
specified bound, in addition to points that have already been plotted. Here is the modified version
of reducedImage.

Julia.nb 15

 Note that the second image in the preceeding example is the Julia set of a rational function.
We, actually, need to make one final adjustment to generate Julia sets of rational functions. Our
method for pruning points depends upon the fact that the Julia set is bounded. While this
assumption is valid for polynomials, the Julia set of a rational function need not be bounded. In
this case, the function reducedImage should throw out points that are larger than some
specified bound, in addition to points that have already been plotted. Here is the modified version
of reducedImage.

In[174]:= bound = 4;
reducedImage[points_] := Module[{newPoints},

newPoints =
Complement[image[points], pointsSoFar];

newPoints =
Select[newPoints, N[Abs[#1]] <= bound &];

pointsSoFar =
Union[newPoints, pointsSoFar];

newPoints]

The package function Julia uses this version of reducedImage when called with a rational
function. The value of bound is controlled by the option Bound. The default is Bound→4.
We illustrate the use of Bound by plotting the Julia set of the rational function used to find the
roots of z3 = 1 with Newton's method.

16 Julia.nb

In[176]:= Julia
2 z

3
+

1

3 z2
, z,

Bound → 12,

PlotLabel → "f(z) =
2 z

3
+

1

3 z2
"

Out[176]=

Julia.nb 17

A Stochastic Algorithm
This article would not be complete without a discussion of the random inverse iteration algorithm.
This is probably the simplest, and fastest, way to generate the Julia set of a quadratic function.
The random inverse iteration algorithm, also, highlights the similarities between Julia sets and
self-similar sets, because of its resemblance to the chaos game [Devaney 1992, sec. 14.1].

Suppose we would like to generate 1000 points of the Julia set for c = 0.

In[177]:= c = 0.; numPoints = 1000;

As we've seen, Jc is attractive under the action of both inverses of fc.

In[178]:= inv1 = Sqrt[#1 - c] & ; inv2 = -Sqrt[#1 - c] & ;

We choose the number 1 as an arbitrary starting point. We then choose one of the inverses inv1
or inv2 randomly and apply it to the starting point 1. Continuing, we iterate this procedure,
choosing a random inverse and applying it to the previous point. This generates a list of points
converging to Jc. We drop the first few points, since they might not be close to Jc, and plot the
rest. We implement this idea in Mathematica by using Table to generate a list of length
numPoints, where each entry is either inv1 or inv2 with equal probability. We then use
ComposeList to build the list of points.

In[179]:= points = Drop[ComposeList[Table[chooser = Random[];
If[chooser < 0.5, inv1,

inv2], {numPoints}], 1], 10];

Finally, we plot these points, after converting them to ordered pairs.

18 Julia.nb

In[180]:= ListPlot[({Re[#1], Im[#1]} &) /@ points,
AspectRatio -> Automatic,
Axes -> False,
PlotStyle -> {AbsolutePointSize[0.4]}]

Out[180]=

 These commands are encapsulated in the package function JuliaStochastic.
Unfortunately, images generated in this manner frequently display the same nonuniform
distribution we saw with JuliaSimple. The random inverse iteration algorithm may be
improved, for some Julia sets, by skewing the probability of choosing one inverse over the other.
This accomplished in our function JuliaStochastic with the option OneBias, which is a
real number, strictly between 0 and 1, indicating the probability of choosing inv1. The
probability of choosing inv2 is then, necessarily, 1-OneBias. The following example
illustrates the effect of OneBias.

Julia.nb 19

In[181]:= Show[GraphicsArray[{
{JuliaStochastic[-1, 8000,

PlotLabel -> "OneBias → 0.5",
DisplayFunction -> Identity]},

 {JuliaStochastic[-1, 8000,
OneBias -> 0.28,
PlotLabel -> "OneBias → 0.28",
DisplayFunction -> Identity]}}],

PlotLabel -> "c = -1"]

— GraphicsArray::obs : GraphicsArrayis obsolete. SwitchingtoGraphicsGrid.!

Out[181]=

 In general, the inverse which is more contractive about its fixed point should be assigned a
lower probability. The contractivity of a function about its fixed point is measured by the value of
its derivative. Thus for c = -1, as above we have the following.

20 Julia.nb

In[182]:= c = -1.;
inv1 = Sqrt[#1 - c] & ;
inv2 = -Sqrt[#1 - c] & ;
{inv1FixedPoint, inv2FixedPoint} = Chop[{FixedPoint[inv1,
1, 1000], FixedPoint[inv2, 1, 1000]}]

Out[185]= {1.61803, -0.618034}

With the fixed points, we may now measure the contractivity.

In[186]:= {Abs[D[inv1[x], x]] /.
x -> inv1FixedPoint,

Abs[D[inv2[x], x]] /.
x -> inv2FixedPoint}

Out[186]= {0.309017, 0.809017}

This suggests we should choose OneBias to be less than .5, since inv1 is more contractive than
inv2. Unfortunately, many Julia sets have much more detail than the random inverse algorithm
will generate for any choice of OneBias. For example, suppose c = 0.68 I.

Julia.nb 21

In[187]:= JuliaStochastic[0.68 I, 40000, OneBias -> 0.23]

Out[187]=

 Experimentation suggests that a value of 0.23 is close to optimal for OneBias. However, the
modified inverse iterated algorithm shows much more detail using far fewer points. Therefore,
we will not pursue the random algorithm further.

References
Beardon, A.F. 1991. Iteration of Rational Functions. Springer-Verlag New York
Graduates Texts in Mathematics 132.
Carleson, L. and Gamelin, T.W. 1993. Complex Dynamics. Springer-Verlag New York.
Devaney, R.L. 1992. A First Course in Chaotic Dynamical Systems. Addison-Wesley
Reading, Mass.
Dickau, R.M. 1997. Compilation of iterative and list operations in "Tricks of the Trade."
The Mathematica Journal. 7(1): 14-15.
Fatou, M.P. 1919. Sur les equations fonctionelles. Bull. Soc. Math. France. 47:161-271.

22 Julia.nb

Julia, G. 1918. Memoire sur l'iteration des fonctions rationelles. Math. Pures Appl.,
8:47-245.
Peitgen, H.O. and Richter, P. 1989. The Beauty of Fractals. Springer-Verlag Heidelberg.

About the Author
Mark McClure is an assistant professor of mathematics at the University of North Carolina at
Asheville. He received his Ph.D. in mathematics from the Ohio State University under the
direction of Gerald Edgar. His primary research interest is the study of fractal dimensions of
various sets arising in real analysis. He was introduced to Mathematica through the
Calculus&Mathematica program at OSU.

Mark McClure
Department of Mathematics
University of North Carolina at Asheville
Asheville, North Carolina 28804
mcmcclur@bulldog.unca.edu
http://www.unca.edu/~mcmcclur/

Julia.nb 23

