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Inverse iteration algorithms are extremely fast methods to generate images of 
Julia sets.  While they are fairly simple to understand and implement, a little 
thought can improve their performance dramatically.  In this article, we discuss 
several variations of the basic inverse iteration scheme.

Introduction
Julia sets form a beautiful and varied class of fractals.  Spectacular color images of these sets may
be  generated  using  the  well  known  escape  time  algorithm (see  [Peitgen  and  Richter  1989]).   In
this  article,  however,  we  discuss  several  variations  of  the  inverse  iteration  algorithm.   Inverse
iteration  algorithms  are  extremely  fast,  broadly  applicable,  and  easily  understood.   Furthermore,
an  understanding  of  inverse  iteration  illuminates  the  connection  between  Julia  sets  of  quadratic
functions, more general rational functions and, even, self-similar sets.
     We begin with a brief look at the theory of Julia sets.  An intuitive understanding of the theory
will  explain  the  idea  behind  inverse  iteration  and  why  it  works.   We  then  look  at  the
implementation of inverse iteration for certain quadratic functions, carefully refine the technique,
and generalize it to more arbitrary functions.  Finally, we discuss a stochastic algorithm, which is
reminiscent of the chaos game.
     All  the  code  in  this  article  is  encapsulated  in  the  package  JuliaSet,  whose  use  will  be
illustrated throughout.



The Theory of Fatou and Julia
Julia  Sets  arise  in  the  study  of  complex  dynamics.   This  study  was  initiated  in  the  late  teens
through  the  seminal  works  of  Fatou  and  Julia  [Fatou  1919;  Julia  1918].   Many  expositions  at
various  levels  have  appeared  in  recent  years.  [Beardon1991]  and  [Carleson  and  Gamelin  1993]
are both outstanding texts, the first being more advanced.  [Devaney 1992] is an excellent choice
for those with a calculus background.  It, also, has information on algorithms, including a version
of the inverse iteration algorithm (sec. 16.6).
     In  complex  dynamics,  we  study  the  iteration  of  a  function  mapping  the  complex  plane  into
itself, f :ℂ ⟶ ℂ.  The function, f , is usually assumed to be rational.  The complex plane, ℂ, may
be thought of as the state space and the application of f  represents the passage of one unit of time.
If z0 is an initial point, then the position of z0 after the passage of n units of time is f n(z0) and the
orbit of z0 is defined to be { f n(z0)}n.  
     In this study, two subsets of ℂ naturally arise - the Fatou set and the Julia set.  The Fatou set,
F, may be defined to be the largest open set on which the set of iterates of f , { f n}n, form a normal
family.  Intuitively, this may be thought of as the largest open set on which the dynamics of f  are
relatively tame in the sense that points close to one another have similar long term behavior.  The
Julia  set,  J,  is  defined  to  be  the  complement  of  the  Fatou  set  and  the  dynamics  of  f  are  quite
chaotic on J.  
     For example, suppose f (z) = z2.  Then, J = {z : z = 1}, the unit circle.  To see this, note that
if z0  is in the interior of the unit circle, then f n(z0) ⟶ 0 as n ⟶ ∞.  Thus, the entire interior of
the unit circle is attracted to the fixed point 0.  Similarly, if z0  is in the exterior of the unit circle,
then f n(z0) ⟶ ∞ as n ⟶ ∞.  Again, the dynamics of any point outside the unit circle is similar
to  that  of  any  other  point,  outside  the  unit  circle.   On  the  other  hand,  the  dynamics  on  the  unit
circle itself are quite complex.  Note that any point z on the unit circle may be written z = eα π i.
It may be shown that if α is rational, then the orbit of z consists of finitely many points, while the
orbit  of  z  is  dense in the unit  circle  for  irrational  α  [Beardon 1991,  sec.  1.3].  Thus we may find
distinct points in the unit circle, arbitrarily close to one another, with distinctly different long term
behavior.
    We  will  begin  by  developing  algorithms  to  generate  Julia  sets  for  functions  of  the  form
fc = z2 + c.   We  denote  the  Julia  Set  of  fc  by  Jc.   This  seemingly  small  subset  of  the  rational
functions  is  much  less  restrictive  than  it  may  first  appear.   It  may  be  shown that  the  dynamical
behavior  of  any  quadratic  function  is  exhibited  by  fc  for  exactly  one  c  [Carleson  and  Gamelin
1993, p.  123].   Thus, the Julia set of any quadratic will  be closely related (homeomorphic) to Jc
for some c.  Furthermore, our techniques will easily generalize to more arbitrary functions.

 A Simple Deterministic Inverse Iteration Algorithm
Note that  in  the preceeding example,  points  in  F  were repelled from J  under  the dynamics of  f .
This  is  true  in  general.   In  fact,  J  may  be  characterized  as  the  closure  of  the  set  of  repelling
periodic points of f  [Beardon 1991, Thm. 6.9.2]  Thus, the Julia set of f  may be thought of as a
dynamical  repeller  for  f .   This  observation  lies  at  the  heart  of  all  inverse  iteration  algorithms.
Let's  use  it  to  construct  a  first  algorithm  to  generate  the  Julia  set,  Jc,  for  the  function
fc(z) = z 2 + c.  Since Jc is a repeller for fc, it should, also, be an attractor for an inverse of fc.  Of
course,  fc  has two inverses f1-1 = z- c  and f2-1 = - z- c .   Thus,  if  {z0}  is  an initial  point,
then   f1-1(z0), f2-1(z0)  are  two  points  that  will  be  closer  to  the  Julia  set  Jc,
 f1-1f1-1(z0), f1-1f2-1(z0), f2-1f1-1(z0), f2-1f2-1(z0) are four points that will be even closer to
Jc, and so on.
     To apply the above idea, we need a Mathematica function, invImage, that accepts a list of
complex  numbers  and  returns  the  inverse  image.   Our  first  attempt  will  generate  Jc  for  c = 0,
which we know to be the unit circle.
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Note that  in  the preceeding example,  points  in  F  were repelled from J  under  the dynamics of  f .
This  is  true  in  general.   In  fact,  J  may  be  characterized  as  the  closure  of  the  set  of  repelling
periodic points of f  [Beardon 1991, Thm. 6.9.2]  Thus, the Julia set of f  may be thought of as a
dynamical  repeller  for  f .   This  observation  lies  at  the  heart  of  all  inverse  iteration  algorithms.
Let's  use  it  to  construct  a  first  algorithm  to  generate  the  Julia  set,  Jc,  for  the  function
fc(z) = z 2 + c.  Since Jc is a repeller for fc, it should, also, be an attractor for an inverse of fc.  Of
course,  fc  has two inverses f1-1 = z- c  and f2-1 = - z- c .   Thus,  if  {z0}  is  an initial  point,
then   f1-1(z0), f2-1(z0)  are  two  points  that  will  be  closer  to  the  Julia  set  Jc,
 f1-1f1-1(z0), f1-1f2-1(z0), f2-1f1-1(z0), f2-1f2-1(z0) are four points that will be even closer to
Jc, and so on.
     To apply the above idea, we need a Mathematica function, invImage, that accepts a list of
complex  numbers  and  returns  the  inverse  image.   Our  first  attempt  will  generate  Jc  for  c = 0,
which we know to be the unit circle.

In[138]:= c = 0.; 
invImage[complexPoints_] := 

Flatten[({1, -1} Sqrt[#1 - c] & ) /@
complexPoints]; 

In[140]:= invImage[{1}]

Out[140]= {1., -1.}

In[141]:= invImage[%]

Out[141]= {1., -1., 0. + 1. ⅈ, 0. - 1. ⅈ}

Now,  we'll  nest  invImage  several  times  and   plot  the  points  after  converting  them to  ordered
pairs.
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In[142]:= depth = 10; 
points = ({Re[#1], Im[#1]} & ) /@ Nest[invImage,

{1},depth]; 
ListPlot[points, AspectRatio -> Automatic, 

Axes -> False,
PlotStyle -> {AbsolutePointSize[0.4]}]

Out[144]=

     The package function which encapsulates these commands is JuliaSimple.  Note that the
second argument  to  JuliaSimple  represents  the  depth  rather  than the  total  number  of  points.
Thus, the following command generates 212 points of an interesting Julia set.

In[145]:= Needs["JuliaSet`"]

4 Julia.nb



In[146]:= JuliaSimple[-0.123 + 0.745 I, 12, 
PlotLabel -> "c = -0.123 + 0.745 I"]

Out[146]=

Improving The Simple Deterministic Algorithm
JuliaSimple  is  a  short,  fast,  and easily  understood algorithm.   However,  our  first  interesting
image above already indicates a weakness in the algorithm.  Some parts of the image seem more
detailed  than  others.   This  is  because  some parts  of  the  Julia  set  are  more  attractive  than  others
under  the  action  of  invImage.   In  this  section,  we'll  describe  the  function  JuliaModified
which fixes the problem.  Here is an example which compares the algorithms.
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In[147]:= Show[GraphicsArray[{
{JuliaSimple[0.68 I, 12, 

DisplayFunction -> Identity, 
PlotLabel -> "Simple"]},

{JuliaModified[0.68 I,
DisplayFunction -> Identity, 
PlotLabel -> "Modified"]}}], 

PlotLabel -> "c = 0.68 I"]

— GraphicsArray::obs : GraphicsArrayis obsolete. SwitchingtoGraphicsGrid.!

Out[147]=
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Out[147]=

     The simple algorithm clearly misses a great amount of detail.   A naive solution would be to
increase the depth.   However,  the required depth is  frequently greater  than 50,  resulting in more
than 250 points in the image.
     Here is a solution.  After a certain depth, we'll  keep track of all  of the points that have been
plotted.  Points close together, as measured by the variable res,  will be treated the same.  With
each  iteration,  we'll  apply  invImage  and  discard  points  that  have  already  been  plotted.   As  a
result, the program will be able to run to a much larger depth since the length of the list of points
no longer grows as 2depth.  
     First, we need to rewrite invImage to treat points close together similarly.  We'll regenerate
Jc for c = -0.123 + 0.745 I.

In[148]:= c = -0.123 + 0.745 I; res = 200; 
invImage[points_] := Flatten[(Floor[{1, -1}

res Sqrt[#1 - c]]/res & ) /@ 
points]; 

The function reducedInvImage will accept a list of points, apply invImage, and return only
those points that don't appear in the auxiliary variable, pointsSoFar.   As a side effect, it  will
update pointsSoFar.

In[150]:= reducedInvImage[points_] := Module[{newPoints},
newPoints = Complement[invImage[points],

pointsSoFar]; 
pointsSoFar = Union[newPoints, pointsSoFar]; 
newPoints]; 

Next, we'll iterate invImage several times from an arbitrary starting value to obtain some points
close to Jc.  We'll store the result in pointsSoFar.

In[151]:= pointsSoFar = Nest[invImage, {1}, 5]; 

Now, we'll iterate reducedInvImage, starting with pointsSoFar, until it returns the empty
list.

In[152]:= FixedPoint[reducedInvImage, pointsSoFar]; 

Finally,  we  ListPlot  the  points  in  pointsSoFar,  after  converting  the  complex  numbers  to
ordered pairs.
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Finally,  we  ListPlot  the  points  in  pointsSoFar,  after  converting  the  complex  numbers  to
ordered pairs.

In[153]:= ListPlot[({Re[#1], Im[#1]} & ) /@ pointsSoFar, 
AspectRatio -> Automatic, 
Axes -> False, 
PlotStyle -> {AbsolutePointSize[0.4]}, 
PlotLabel -> "c = -0.123 + 0.745 I, Modified"]

Out[153]=

     Note  that  the  level  of  detail  is  controlled  by  the  option  Resolution.   The  default  is
Resolution→200.   We  may  get  a   quick,  less  detailed  image  by  using  a  smaller  value  for
Resolution.  Here is an illustration of the effect of Resolution.
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In[154]:= Show[GraphicsArray[{
{JuliaModified[-0.77 + 0.22 I, 

Resolution -> 40, 
PlotLabel -> "Resolution → 40", 
DisplayFunction -> Identity]}, 

    {JuliaModified[-0.77 + 0.22*I, 
PlotLabel -> "Resolution → 200", 
DisplayFunction -> Identity]}}], 

PlotLabel -> "c = -0.77 + 0.22 I"]

— GraphicsArray::obs : GraphicsArrayis obsolete. SwitchingtoGraphicsGrid.!

Out[154]=
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■ Comparing The Algorithms
The  above  images  show  much  greater  detail  than  was  possible  with  JuliaSimple.   We  can
measure  how  large  depth  would  have  to  be  in  JuliaSimple  to  achieve  the  same  level  of
detail by replacing FixedPoint with FixedPointList and measuring its length.  Note that
this  computation  will  depend  on  the  complexity  of  the  Julia  set.   We'll  measure  the  depth  for  a
fairly complicated Julia set.

In[155]:= c = 0.68 I; res = 200; 
invImage[points_] := Flatten[(Floor[{1, -1} 

res Sqrt[#1 - c]]/res & ) /@ 
points]; 

reducedInvImage[points_] := Module[{newPoints}, 
newPoints = Complement[invImage[points], 

pointsSoFar]; 
pointsSoFar = Union[newPoints, pointsSoFar];
newPoints]; 

pointsSoFar = Nest[invImage, {1}, 5]; 
Length[FixedPointList[reducedInvImage, pointsSoFar]]

Out[159]= 77

Thus,  JuliaSimple  would need a depth of  77+5 to plot  this  particular  Julia  set  resulting in a
list of 282  points.  JuliaModified used barely 20,000 points to plot much more detail, as the
following computation shows.

In[160]:= Length[pointsSoFar]

Out[160]= 20 399

The Mandelbrot Set
Julia sets for quadratic functions of the form z2 + c are among the most important, because of their
relationship with the Mandelbrot set.   The Mandelbrot set is defined to be the set of all  c  values
that  lead  to  connected  Julia  sets,  Jc.   While  it  is  not  the  purpose  of  this  article  to  discuss  the
Mandelbrot set in detail, it is nice to have an image of it to assist in choosing interesting values of
c.  The following code generates an image of the Mandelbrot set.  It is a minor modification of the
code found in [Dickau 1997].  Points near the boundary frequently lead to interesting Julia sets.
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In[161]:= MandelbrotFunction = Compile[{{c, _Complex}}, 
Length[FixedPointList[#1^2 + c & , c, 100,

SameTest -> (Abs[#2] > 2. & )]]]; 
DensityPlot[MandelbrotFunction[x + y*I], 

{x, -2, 0.6}, {y, -1.3, 1.3}, 
Mesh -> False, AspectRatio -> Automatic, 
PlotPoints -> 300, 
ColorFunction -> (If[#1 == 1, 

RGBColor[0, 0, 0], Hue[0.9*#1]] & )]

Out[162]=

Generalizing the Deterministic Algorithm
The algorithms described above apply only to functions of the specific form fc(z) = z2 + c, but the
theory  is  much  more  broadly  applicable.   We  should  be  able  to  apply  the  same  ideas  to  any
rational  function  whose  inverses  are  known.   Let's  apply  these  ideas  to  plot  the  Julia  set  of
f (z) = z3 + z+ .6 I.
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In[163]:= f[z_] = z^3 + z + 0.6*I; res = 200; 
inverses = z /. NSolve[f[z] == #1, z]; 
funcs = (Function[anInverse, N[Floor[anInverse*res]/res] & 
]) /@ inverses; 

A list of the inverses of f (z) is now held in funcs.  We need to turn this into invImage.

In[166]:= invImage[points_] := 
Flatten[(Through[funcs[#1]] & ) /@ points, 1]; 
invImage[{1}]

Out[167]= {-0.48 - 1.055 ⅈ, -0.26 + 1.285 ⅈ, 0.73 - 0.24 ⅈ}

In[168]:= invImage[%]

Out[168]= {0.745 - 0.86 ⅈ, 0.085 + 1.465 ⅈ, -0.835 - 0.615 ⅈ,
0.07 - 1.255 ⅈ, 0.4 + 0.775 ⅈ, -0.475 + 0.47 ⅈ,
-0.515 - 0.95 ⅈ, -0.18 + 1.315 ⅈ, 0.685 - 0.37 ⅈ}

Now the algorithm proceeds as before.

In[169]:= reducedImage[points_] := Module[{newPoints},
newPoints = Complement[invImage[points], 

pointsSoFar]; 
pointsSoFar = 

Union[newPoints, pointsSoFar]; newPoints];
pointsSoFar = Nest[invImage, {1.}, 5]; 
FixedPoint[reducedImage, pointsSoFar]; 
ListPlot[({Re[#1], Im[#1]} & ) /@ pointsSoFar, 

AspectRatio -> Automatic, 
Axes -> False, 
PlotStyle -> {AbsolutePointSize[0.4]}]

Out[172]=

12 Julia.nb



Out[172]=

     These  commands  are  encapsulated  in  the  package  function  Julia.   Here  are  two  more
examples.
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In[173]:= ShowGraphicsArray

Juliaz3 - I, z,

PlotLabel → "f(z) = z3 - I",
DisplayFunction → Identity,

Julia
1

z2 - 1
, z,

PlotLabel → "f(z) =
1

z2 - 1
",

DisplayFunction → Identity

— GraphicsArray::obs : GraphicsArrayis obsolete. SwitchingtoGraphicsGrid.!
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Out[173]=

     Note that  the second image in the preceeding example is  the Julia set  of  a rational  function.
We, actually, need to make one final adjustment to generate Julia sets of  rational functions.  Our
method  for  pruning  points  depends  upon  the  fact  that  the  Julia  set  is  bounded.   While  this
assumption is valid for polynomials, the Julia set of a rational function need not be bounded.  In
this  case,  the  function  reducedImage  should  throw  out  points  that  are  larger  than  some
specified bound, in addition to points that have already been plotted.  Here is the modified version
of reducedImage.
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     Note that  the second image in the preceeding example is  the Julia set  of  a rational  function.
We, actually, need to make one final adjustment to generate Julia sets of  rational functions.  Our
method  for  pruning  points  depends  upon  the  fact  that  the  Julia  set  is  bounded.   While  this
assumption is valid for polynomials, the Julia set of a rational function need not be bounded.  In
this  case,  the  function  reducedImage  should  throw  out  points  that  are  larger  than  some
specified bound, in addition to points that have already been plotted.  Here is the modified version
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In[174]:= bound = 4; 
reducedImage[points_] := Module[{newPoints},

newPoints = 
Complement[image[points], pointsSoFar];

newPoints = 
Select[newPoints, N[Abs[#1]] <= bound & ]; 

pointsSoFar = 
Union[newPoints, pointsSoFar];

newPoints]

The package function Julia  uses  this  version of  reducedImage  when called with a  rational
function.   The  value  of  bound  is  controlled  by  the  option  Bound.   The  default  is  Bound→4.
We illustrate the use of Bound  by plotting the Julia set  of  the rational  function used to find the
roots of z3 = 1 with Newton's method.
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In[176]:= Julia
2 z

3
+

1

3 z2
, z,

Bound → 12,

PlotLabel → "f(z) =
2 z

3
+

1

3 z2
"

Out[176]=
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A Stochastic Algorithm
This article would not be complete without a discussion of the random inverse iteration algorithm.
This  is  probably  the  simplest,  and  fastest,  way  to  generate  the  Julia  set  of  a  quadratic  function.
The  random  inverse  iteration  algorithm,  also,  highlights  the  similarities  between  Julia  sets  and
self-similar sets, because of its resemblance to the chaos game [Devaney 1992, sec. 14.1].  

Suppose we would like to generate 1000 points of the Julia set for c = 0.

In[177]:= c = 0.; numPoints = 1000; 

As we've seen, Jc is attractive under the action of both inverses of fc.

In[178]:= inv1 = Sqrt[#1 - c] & ; inv2 = -Sqrt[#1 - c] & ; 

We choose the number 1 as an arbitrary starting point.  We then choose one of the inverses inv1
or  inv2  randomly  and  apply  it  to  the  starting  point  1.   Continuing,  we  iterate  this  procedure,
choosing a  random inverse and applying it  to  the previous point.   This  generates  a  list  of  points
converging to Jc.   We drop the first few points, since they might not be close to Jc,  and plot the
rest.   We  implement  this  idea  in  Mathematica  by  using  Table  to  generate  a  list  of  length
numPoints,  where  each  entry  is  either  inv1  or  inv2  with  equal  probability.   We  then  use
ComposeList to build the list of points.

In[179]:= points = Drop[ComposeList[Table[chooser = Random[]; 
If[chooser < 0.5, inv1, 

inv2], {numPoints}], 1], 10]; 

Finally, we plot these points, after converting them to ordered pairs.
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In[180]:= ListPlot[({Re[#1], Im[#1]} & ) /@ points, 
AspectRatio -> Automatic, 
Axes -> False, 
PlotStyle -> {AbsolutePointSize[0.4]}]

Out[180]=

     These  commands  are  encapsulated  in  the  package  function  JuliaStochastic.
Unfortunately,  images  generated  in  this  manner  frequently  display  the  same  nonuniform
distribution  we  saw  with  JuliaSimple.   The  random  inverse  iteration  algorithm  may  be
improved, for some Julia sets, by skewing the probability of choosing one inverse over the other.
This  accomplished  in  our  function  JuliaStochastic  with  the  option  OneBias,  which  is  a
real  number,  strictly  between  0  and  1,  indicating  the  probability  of  choosing  inv1.   The
probability  of  choosing  inv2  is  then,  necessarily,  1-OneBias.   The  following  example
illustrates the effect of OneBias.
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In[181]:= Show[GraphicsArray[{
{JuliaStochastic[-1, 8000, 

PlotLabel -> "OneBias → 0.5", 
DisplayFunction -> Identity]}, 

    {JuliaStochastic[-1, 8000, 
OneBias -> 0.28, 
PlotLabel -> "OneBias → 0.28", 
DisplayFunction -> Identity]}}], 

PlotLabel -> "c = -1"]

— GraphicsArray::obs : GraphicsArrayis obsolete. SwitchingtoGraphicsGrid.!

Out[181]=

     In  general,  the  inverse  which  is  more  contractive  about  its  fixed  point  should  be  assigned a
lower probability.  The contractivity of a function about its fixed point is measured by the value of
its derivative.  Thus for c = -1, as above we have the following.
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In[182]:= c = -1.; 
inv1 = Sqrt[#1 - c] & ; 
inv2 = -Sqrt[#1 - c] & ; 
{inv1FixedPoint, inv2FixedPoint} = Chop[{FixedPoint[inv1, 
1, 1000], FixedPoint[inv2, 1, 1000]}]

Out[185]= {1.61803, -0.618034}

With the fixed points, we may now measure the contractivity.

In[186]:= {Abs[D[inv1[x], x]] /. 
x -> inv1FixedPoint, 

Abs[D[inv2[x], x]] /. 
x -> inv2FixedPoint}

Out[186]= {0.309017, 0.809017}

This suggests we should choose OneBias to be less than .5, since inv1 is more contractive than
inv2.  Unfortunately, many Julia sets have much more detail than the random inverse algorithm
will generate for any choice of OneBias.  For example, suppose c = 0.68 I.  
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In[187]:= JuliaStochastic[0.68 I, 40000, OneBias -> 0.23]

Out[187]=

     Experimentation suggests that a value of 0.23 is close to optimal for OneBias.  However, the
modified  inverse  iterated  algorithm shows  much  more  detail  using  far  fewer  points.   Therefore,
we will not pursue the random algorithm further.

References
Beardon,  A.F.   1991.   Iteration  of  Rational  Functions.   Springer-Verlag  New  York
Graduates Texts in Mathematics 132.
Carleson, L. and Gamelin, T.W.  1993.  Complex Dynamics.  Springer-Verlag New York.
Devaney,  R.L.  1992.  A  First  Course  in  Chaotic  Dynamical  Systems.  Addison-Wesley
Reading, Mass.
Dickau,  R.M.   1997.  Compilation  of  iterative  and list  operations  in  "Tricks  of  the  Trade."
The Mathematica Journal.  7(1): 14-15.
Fatou, M.P.  1919.  Sur les equations fonctionelles.  Bull. Soc. Math. France.  47:161-271.

22 Julia.nb



Julia,  G.   1918.   Memoire  sur  l'iteration  des  fonctions  rationelles.   Math.  Pures  Appl.,
8:47-245.
Peitgen, H.O. and Richter, P.  1989.  The Beauty of Fractals.  Springer-Verlag Heidelberg.

About the Author
Mark  McClure  is  an  assistant  professor  of  mathematics  at  the  University  of  North  Carolina  at
Asheville.   He  received  his  Ph.D.  in  mathematics  from  the  Ohio  State  University  under  the
direction  of  Gerald  Edgar.   His  primary  research  interest  is  the  study  of  fractal  dimensions  of
various  sets  arising  in  real  analysis.   He  was  introduced  to  Mathematica  through  the
Calculus&Mathematica program at OSU.

Mark McClure
Department of Mathematics
University of North Carolina at Asheville
Asheville, North Carolina 28804
mcmcclur@bulldog.unca.edu
http://www.unca.edu/~mcmcclur/

Julia.nb 23


