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1 Introduction

Self-similarity is a concept often associated with fractal geometry. There

are many interesting self-similar sets in the plane which would not generally
be considered fractal, however (although their boundaries might be fractal).
Such sets provide a fresh way of looking at tilings of the plane. Furthermore,
a generalization of self-similarity, called digraph self-similarity, provides a

way to construct aperiodic tilings.

2 Self-similarity and tiling

A set which is composed of several scaled images of itself may be thought of
as self-similar as described in [5] and [6]. (We will write a more mathematical

de�nition shortly.) A square is a simple example of a self-similar set in the
plane, being composed of four copies of itself, scaled by the factor 1

2
. Each of

these four copies are in turn composed of smaller copies, etc. By iterating the

decomposition and scaling up, we generate an obvious checkerboard tiling of
the plane. A tiling is simply a family of closed sets which cover the plane

and intersect only in their boundaries. A tremendous amount of information
on tilings may be found in [8].

The connection with self-similarity suggests the possibility of introduc-

ing fracticality into the picture. Figure 1 illustrates this with a set called

the terdragon, which is composed of three copies of itself all scaled by the

factor 1p
3
. A tiling using the terdragon is illustrated in �gure 2. Sets with
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fractal boundaries which tile the plane are called \fractiles" in [5]. General
techniques for creating self-similar tiles are discussed in [2] and [4].

3 Iterated function systems

A precise description of self-similarity may be stated using an iterated func-

tion system, or IFS. If r is a positive real number, a similarity with ratio r is

a function f : R2 ! R
2 such that jf(x) � f(y)j = rjx � yj for all x; y 2 R2.

If r < 1, the similarity is called contractive. An iterated function system is

a �nite collection of contractive similarities ffigmi=1. For any IFS, there is a
unique non-empty, closed, bounded subset E of R2 such that

E =
m[
i=1

fi(E):

The set E is called the invariant set of the IFS and sets constructed in this
manner are also called self-similar.

Iterated function systems are easily described using matrix representa-

tions. Any contractive similarity fi may be expressed in the form A~x + ~b,
where A is a matrix and ~b is a translation vector. A rotation about the origin

through angle � may be represented using the matrix

R(�) =

 
cos � � sin �
sin � cos �

!
:

Dividing the matrix through by r achieves the desired contractivity factor.

For example, the following list of functions de�nes the IFS for the terdragon.

f1(~x) =
1p
3
R

�
��

6

�
~x

f2(~x) =
1p
3
R

�
�

2

�
~x+

 
1=2

�1=(2
p
3)

!

f3(~x) =
1p
3
R
�
��

6

�
~x+

 
1=2

1=(2
p
3)

!

4 Digraph self-similarity and aperiodic tilings

Figure 3 illustrates a generalization of self-similarity called digraph self-

similarity or mixed self-similarity. Digraph self-similarity was introduced
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in [9] and also described in [5]. The terminology mixed self-similarity was
introduced in [1] to describe the same idea. We will use the terminology

of [5]. Digraph self-similarity is exhibited by a collection of sets, each of

which is composed of scaled images chosen from the collection. In �gure 3

for example, the type A triangle is composed of two copies of itself together

one copy of the type B triangle. The type B triangle is composed of one copy

of itself together with one copy of the type A triangle. The scaling factor for
all images is 1

�
where � is the golden ratio.

As with self-similar sets, the basic decomposition may be iterated to ob-

tain tilings of the plane. In �gure 4, we see the fourth step in the decompo-
sition.

5 Digraph iterated function systems

Any collection of digraph self-similar sets can be described using a directed-

graph iterated function system, or digraph IFS. A digraph IFS consists of a
directed multigraph G together with a contractive similarity fe from R

2 to

R
2 associated with each edge of G. A directed multigraph consists of a �nite

set V of vertices and a �nite set E of directed edges between vertices. Given

two vertices, u and v, we denote the set of all edges from u to v by Euv.
Given a digraph IFS, there is a unique set of non-empty, closed, bounded
sets Kv, one for each v 2 V , such that for every u 2 V

Ku =
[

v2V; e2Euv

fe(Kv):

Sets constructed using a digraph IFS are said to exhibit digraph self-similarity.

The digraph IFS for the type A and B triangles is shown in �gure 5.
The labels on the edges correspond to the following similarities mapping one

triangle to part of another (perhaps the same) triangle. Note that these

similarities involve re
ections as well as rotations.

a1(~x) =
1

�
R

�
3�

5

�
~x+

 
1

0

!

a2(~x) =
1

�
R

�
4�

5

� �1 0

0 1

!
~x+

 
cos(2�

5
)

sin(2�
5
)

!

a3(~x) =
1

�
R

�
3�

5

�
~x+

 
cos(�

5
)

sin(�
5
)

!
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b1(~x) =
1

�
R

�
�3�

5

� �1 0

0 1

!
~x+

 
1

�

0

!

b2(~x) =
1

�
R

�
�4�

5

�
~x+

 
cos(�

5
)

sin(�
5
)

!

6 Penrose tilings

In 1973 and 1974, Roger Penrose discovered several families of sets which tile

the plane aperiodically and (if certain matching conditions are enforced) only

aperiodically. Introductions to Penrose tilings may be found in [7] and [8].

The most well known of these are tilings by kites and darts. It turns out

that this type of tiling is closely related to the digraph self-similar triangular

tilings of the previous section.
Figure 6 illustrates the kite and dart. The dotted lines indicate that

the kite is union of two type A triangles and the dart is the union of two
type B triangles. The �lled and un�lled disks at the vertices are used to
enforce a matching condition. When tiling the plane with kites and darts,
we demand that �lled disks meet �lled disks and un�lled disks meet un�lled

disks. This matching condition guarantees that any tiling by kites and darts
will be aperiodic, i.e. no translation of the tiling maps each tile to another
tile. Figure 7 shows how we may generate a tiling by kites and darts using

the digraph self-similar set strategy by simply deleting certain edges of the
initial triangles. Note that we have marked the vertices of the triangles to

match the markings of the kite and dart and that the functions a2 and b1
from the previous section involve re
ections to get deleted edges to line up.

Figure 8 shows the tiling after four steps in the iteration.

7 Penrose pentacles and fractal boundaries

Just as with strictly self-similar sets, we can use digraph self-similarity to

generate aperiodic tilings by sets with fractal boundaries. The �rst such
example, a modi�cation of the kite and dart tilings, was published in [1]. We

present a di�erent such tiling here.

Our aperiodic fractiles will be based on the �rst aperiodic set of tiles

discovered by Penrose. These tiles are called the pentacles and are illustrated
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in �gure 9. All of the sides have length one and the angles are all integer
multiples of �

5
. The labels indicate a matching condition, which again assures

aperiodicity. The edges labeled 0 must �t against edges labeled �0, 1 against
�1, and 2 against �2. Note that the three pentagons are congruent, but have

di�erent matching conditions. A portion of a tiling by pentacles is shown in

�gure 10.

In Penrose's analysis, he indicates that these sets may be assembled into
\patches" approximately resembling the original tiles as illustrated in �g-

ure 11. If we iterate his patchwork, we generate tilings such as the one

illustrated in �gure 10. Penrose goes through an additional step at each
iteration, however, to eliminate the fractal boundary. From our viewpoint,

it is more natural to embrace the fractal nature of the boundary. Fractal
boundary versions of the pentacles are shown in �gure 12. We see how these

sets �t together to form a collection of digraph self-similar sets in �gure 13.

The digraph IFS for these sets is shown in �gure 14. The digraph has been
abbreviated by collapsing all edges between two vertices and labelling them
with a list of functions. For example, the function s1 maps the red star-like

shape in the upper left of �gure 12 onto the red sub-shape in the upper left
of �gure 13. The function s1 is de�ned by

s1(~x) =
1

� 2
R(�)~x;

where R(�) represents the matrix which rotates through the angle �. The

digraph IFS is composed of 42 functions in all. Part of an aperiodic tiling by
these sets is shown in �gure 15.

8 Implementation Notes

All of the images in this paper were generated by the DigraphFractals

Mathematica package written by the author and described in [10]. All the

code for these images and more examples are available at the author's web

page:
http://www.unca.edu/~mcmcclur/mathematicaGraphics/DigraphFractiles.
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Figure 1: The terdragon
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Figure 2: A tiling using terdragons
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Type A triangle Type B triangle
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Figure 3: A digraph pair of triangles
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Figure 4: Generating a tiling with the digraph triangles
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Figure 5: The digraph IFS for the triangles
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The Kite The Dart
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Figure 6: Penrose's kite and dart
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Figure 7: An alteration of the digraph triangles
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Figure 8: Generating a tiling by kites and darts

14



0 0

0

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

2

2 2

�0

�0 �0

�0

�0

�0 �0 �1 �1

�1 �1

�2

Figure 9: Penrose's Pentacles
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Figure 10: Part of a tiling by pentacles
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Figure 11: Penrose's patches of pentacles
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Figure 12: Versions of the pentacles with fractal boundaries
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Figure 13: Fitting the pieces together
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s1-s6

h2-h4

h1

d1
d2

d3
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Figure 14: The digraph IFS for the fractal boundary pentacles
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Figure 15: Part of a tiling using the pentacles with fractal boundaries
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