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Abstract

Iteration of quadratic  polynomials  in complex dynamics  leads to the Mandelbrot  set, one of the most beautiful  and famous images in modern  mathematics.  There is
a  generalization  of  this  object  to  higher  degree  polynomials.  In particular,  the  connected  locus  for  cubic  iteration  is  a  four  dimensional  set  analogous  to  the
Mandelbrot  set for quadratic  iteration.

Note:  To reduce the size of the file, the graphics  in this file have all been converted to bitmap form.  Of course,  they may be regenerated  within Mathematica.

ü Initialization

1. Introduction

This is the first column in a regular series exploring intriguing mathematical graphics. One of the most well known images in
all of mathematics is the Mandelbrot set, which arises in the context of the complex dynamics of quadratic polynomials. In
this issue's column, we'll explore the cubic connected locus, a four dimensional analog of the Mandelbrot set which arises in
the complex dynamics of cubic polynomials.

The major focus of this column will be to understand the mathematics behind the graphics. For example, the Mandelbrot set
and the cubic connected locus may technically be defined in just a few lines. However, these definitions make little sense
outside of the context of complex dynamics. Thus,we will attempt to describe just enough dynamics to put the material in
context.



This column describes  the Mathematica  code to generate images  of the cubic connected locus.   This code has also been
encapsulated in a package (tested with Mathematica 4.2 and later) which calls a Java implementation to run quite a bit faster.
Note that the package should be contained in a directory specified by Mathematica's $Path variable and the Java class files
should be  contained in a directory  specified  by JavaClassPath[].   One  possibility  is to  simply leave them all  in the
SupplementaryFiles  directory, which should come with this notebook.  The initialization cell at the beginning of this note-
book contains a line to add that directory to the appropriate paths.

2. Complex dynamics and Julia sets

In complex dynamics, we study the iteration of a function f : Ø . That is, given f  and an initial input z0 , we generate a
sequence 8z0 , z1 , z2 , …<, where zn = f Hzn-1 L. Given z0 , this sequence is called the orbit of z0  under iteration of f . For exam-
ple, here are the first few iterates of the point z0 = 1 ê 2 under the action of f HzL = z2 .

f@z_D := z2;
NestList@f, 1 ê2., 4D
80.5, 0.25, 0.0625, 0.00390625, 0.0000152588<

Note that the orbit tends to 0. For this function, it is not difficult to see that the orbit of z0  will tend to 0 if » z0 » < 1, while the
orbit of z0  will diverge to ¶ if » z0 » > 1.

In order to understand the global behavior of the dynamics of a function, we divide the complex plane into two regions. The
Fatou set F may be defined to be the largest open set on which the set of iterates of f  forms a normal family. Intuitively, this
may be thought of as the largest open set on which the dynamics of f  are relatively tame in the sense that points close to one
another have similar long term behavior. The Julia set J is defined to be the complement of the Fatou set and the dynamics of
f  are quite chaotic on J. 

For example, our observations above suggest that the Fatou set for f HzL = z2  should consist of two disjoint parts, the interior
and the exterior of the unit circle. The dynamics right on the unit circle are much more complicated, however. If » z0 » = 1,
then we may find points as close as we like to z0  which tend to zero under iteration of f , and we may also find points as close
as we like to z0  that tend to ¶ under iteration of f . Thus the unit circle is the Julia set for this function.

Julia  sets  are  not  are  main  focus  here,  but  they  may  be  generated  using  the  Julia  command  defined  in  the
CubicIteration  package.  This command  uses  an inverse  iteration  algorithm and  is  fully  described in [1],  which also
contains a more complete description of Julia sets. Here's the Julia set for f HzL = z2 .
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Needs@"CubicIteration`"D;
Julia@z2, zD;

And here is a more complicated Julia set.

JuliaAz2 -
H1 + ÂL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4
 z - 1 , zE;

3. Quadratic iteration and the Mandelbrot set

The Mandelbrot set arises out of the desire to classify all possible types of dynamics arising out of the family of quadratic
functions.  There  are  two  main  observations  which  simplify  this  objective;  (1)  the  dynamics  of  any  quadratic  is  similar
(conjugate,  to be more precise)  to some quadratic  of the form fc HzL = z2 + c and (2)  the dynamics  of any polynomial  are
dominated by the orbits of the critical points. Let's take a careful look at both of these points.

ü Dynamical conjugacy

The general  quadratic  function has  the form gHzL = a z2 + b z + g.  Thus we could parameterize  the space  of all complex
quadratics using three complex parameters a, b, and g. It turns out that we can reduce this to just one parameter using the
notion of dynamical conjugacy.
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Two complex function f HzL and gHzL are said to be affinely conjugate if there is 
an affine function fHzL = m z + d so that f HfHzLL = fHgHzLL.

Note that, since f is invertible, this could be written g = f-1 Î f Î f. Thus g2 = f-1 Î f Î f Î f-1 Î f Î f = f-1 Î f 2 Î f. More
generally, gn = f-1 Î f n Î f so the two functions have identical dynamics.

It turns out that any function of the form gHzL = a z2 + b z + g is conjugated by fHzL = a z + b ê 2 to  fc HzL = z2 + c, where
c = H2 b - b2 + 4 a gL ê4. We can use Mathematica to check this.

g@z_D := a z2 + b z + g;

f@z_D := z2 +
1
ÅÅÅÅ
4

H2 b - b2 + 4 a gL;
f@z_D := a z + b ê 2;
Expand@f@f@zDDD ã Expand@f@g@zDDD
True

For example, gHzL = H1 + ÂL z2 + 4 z + 1 ê H1 + ÂL is conjugate to f-1 HzL = z2 - 1, since H2 ÿ 4 - 42 + 4 H1 + ÂL ê H1 + ÂLL ê4 = -1.
To illustrate the significance of this, notice the geometric similarity between the Julia sets of these two functions.
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Show@GraphicsArray@
88Julia@H1 + ÂL z2 + 4 z + 1 ê H1 + ÂL, z,

DisplayFunction Ø Identity, Axes Ø True,
Ticks Ø 88-1.5, -1, -.5<, 81.5, 1, 1.5<<D<,

8Julia@z2 - 1, z,
DisplayFunction Ø Identity, Axes Ø True,
Ticks Ø 88-1, 1<, 8-.75, .75<<D<<DD;
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ü Critical points and the definition of the Mandelbrot set

It turns out that the dynamical  behavior of a polynomial  is dominated by the behavior of it's  critical points,  i.e. complex
numbers z such that f £ HzL = 0.  The orbit of such a point is called a critical orbit. The influence of the critical orbits is stated
by the following theorem, the parts of which are essentially theorems III.4.1 and III.4.2 in [2].

Theorem:  Let f :  Ø  be a polynomial.
  (a) The Julia set of f  is connected if and only if all critical orbits are 

bounded.
  (b) If all critical orbits diverge to ¶, then the Julia set of f  is totally 

disconnected.

Of course any function of the form fc HzL = z2 + c has  precisely one critical point, namely z = 0. Thus there are only two
possibilities.

(1) The orbit of 0 under fc  is bounded, in which case the Julia set of fc  is 
connected or 

(2) The orbit of 0 under fc  diverges to ¶, in which case the Julia set of fc  is 
totally disconnected.

Furthermore,  it may be proved that if » fc
n H0L » > 2 for some n, then the critical orbit escapes to ¶. (See, for example, [2]

Theorem VIII.1.2.) We call the first n so that » fcn H0L » > 2, the escape time of the critical orbit of fc .

We now define the Mandelbrot set, M , to be the set of all complex numbers c such that the Julia set of fc  is connected. Thus
M  naturally decomposes the complex plane into two parts corresponding to the two possible types of dynamical behavior for
quadratic functions; c œ M  if the Julia set of fc  is connected and c – M  if the Julia set of fc  is totally disconnected. Further-
more, the role of the critical orbit provides an algorithm to generate an image of the Mandelbrot set. We first write a function
to define a test to check if the complex number is in M  or outside of M .

bail = 100;
MandelbrotFunction = Compile@88c, _Complex<<,

Length@NestWhileList@#2 + c &, 0,
Abs@#D § 2 &, 1, bailDDD;

Note that the NestWhileList  command iterates z2 + c (represented as a pure function) up to 100 times or until the value
exceeds 2 in absolute value. The Length command then returns how many iterations took place. We may now generate the
Mandelbrot set by simply making a DensityPlot of the MandelbrotFunction.
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DensityPlot@MandelbrotFunction@x + y ÂD, 8x, -2, 0.6<,
8y, -1.3, 1.3<, Mesh Ø False, AspectRatio Ø Automatic, PlotPoints Ø 300,
ColorFunction Ø HIf@# ã 1, RGBColor@0, 0, 0D, Hue@0.9 #DD &LD;

The above code is a minor variation of that found in [3].  This technique has been encapsulated in the package function
ShowMandelbrotSet.  While  algorithm  is the  same,  the package  version calls  a java  implementation  which  runs much
faster.  This  allows  us  increase  the  iteration  and  resolution  considerably  to  zoom in  on  the  set.  The  basic  prototype  of
ShowMandelbrotSet is as follows.

ShowMandelbrotSet@cMin, cMax, bail, resD;

The complex  numbers cMin and  cMax determine  the lower  left  and upper  right corners  of the rectangular  region in the
complex plane to draw. The integer bail determines a maximum number of iterations and the integer res determines the
resolution of the image.
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ShowMandelbrotSet@-.6 + .5 Â, -.45 + .7 Â, 500, 600,
FrameTicks Ø 88-.6, -.5<, 8.5, .6, .7<<D;

4. Cubic iteration

We now turn to the question of cubic iteration.  It turns out that the general cubic is affinely conjugate to one of the form
fa,b HzL = z3 - 3 a2  z + b. The coefficients are chosen so that the critical points of fa,b  are ± a. We can see that there are two
main difficulties in this situation: (1) The set of all cubics is naturally described using two complex parameters, so we may
think of it as four dimensional. (2) A cubic may have two distinct critical points versus a single critical point for quadratics.

The first problem is dealt with simply enough; we will only generate two dimensional  slices of the parameter space. For
example, we might hold a  constant and allow b  to vary within a picture. A collection of such pictures will give us some
understanding of the overall structure.

To deal with the second point it is natural to decompose the overall four dimensional parameter space 2  into the following
four parts.

C : The set of all a and b values so that both critical orbits of fa,b  are bounded. 
This is called the cubic connected locus. 

C+ : The set of all a and b values so that the orbit of a is bounded while the 
orbit of - a is unbounded.

C- : The set of all a and b values so that the orbit of - a is bounded while the 
orbit of a is unbounded.

D : The set of all a and b values so that both critical orbits of fa,b  diverge to ¶.
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C : The set of all a and b values so that both critical orbits of fa,b  are bounded. 
This is called the cubic connected locus. 

C+ : The set of all a and b values so that the orbit of a is bounded while the 
orbit of - a is unbounded.

C- : The set of all a and b values so that the orbit of - a is bounded while the 
orbit of a is unbounded.

D : The set of all a and b values so that both critical orbits of fa,b  diverge to ¶.

There is one other more subtle complication; determination of the appropriate escape radius. It turns out that if for some n,
… fa,b

n Hz0 L … > maxI » b », è!!!!!!!!!!!!!!!!!!!!9 » a »2 +2 M,  then  the  orbit  of  z0  will  diverge  to  ¶.  (See  [4],  page  266.)  This  number
maxI » b », è!!!!!!!!!!!!!!!!!!!!9 » a »2 +2 M is the escape radius for fa,b .

We now have a strategy to generate a two dimensional slice of the cubic parameter space.

Fix some value of a and suppose that b is allowed to vary inside a rectangular 
region in . This defines a two dimensional family of cubic polynomials 
given by fa,b = z3 - 3 a2  z + b.

Iterate fa,b  starting from both critical points ± a.

If after some pre-specified number of iterations neither critical orbit has 
escaped, color b black.

If a escapes but -a does not escape, color b according to the escape time of a. 

If -a escapes but a does not escape, color b according to the escape time of -a.  

If both critical points escape then color the point using some combination of 
the escape times.

To implement this, we first write a function CubicEscapeTimes which computes the escape times of ± a  under iteration of
fa,b .

bail = 100;
CubicEscapeTimes = Compile@88a, _Complex<, 8b, _Complex<<,

n1 = Length@NestWhileList@#3 - 3 a2  # + b &, a,
Abs@#D § Max@Abs@bD, Sqrt@Abs@9 a2D + 2DD &, 1, bailDD;

n2 = Length@NestWhileList@#3 - 3 a2  # + b &, -a,
Abs@#D § Max@Abs@bD, Sqrt@Abs@9 a2D + 2DD &, 1, bailDD;

8n1, n2<D;

For example, the following computation shows that for the function f HzL = z3 - 3 H.5L2  z + .8, the critical point -.5 escapes
after just 5 iterations while the critical point .5 does not escape after 100 iterations.

CubicEscapeTimes@.5, .8D
8101., 5.<

Note that the structure of the Julia set of this function is not possible for a quadratic Julia set; it consists of infinitely many
distinct connected components.
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Julia@z^3 - 3 ê4 z + .8 , zD;

The following function now turns a pair of escape times into an RGBColor directive.

CubicColor@8l1_, l2_<D := Which@
H* Both orbits bounded, paint black *L
l1 ¥ bail && l2 ¥ bail, RGBColor@0, 0, 0D,

H* a escapes, shade red *L
l1 < bail && l2 ¥ bail, RGBColor@H1 - l1ê bailL .7, 0, 0D,

H* -a escapes, shade blue *L
l1 ¥ bail && l2 < bail, RGBColor@0, 0, H1 - l2ê bailL ê 2.D,

H* both escape, use a combination of colors *L
l1 < bail && l2 < bail, RGBColor@H1 - l1ê bailL^3,
H1. - l1ê H2. bailL - l2ê H2 bailLL^3, H1. - l2ê bailL^3D

D;

We now compute a Table of escape time pairs, convert them to colors, and display the result using RasterArray.
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a = .5;
escapeTimes = Table@CubicEscapeTimes@a, x + Â yD,

8y, -1.2, 1.2, .01<, 8x, -1.2, 1.2, .01<D;
colors = Map@CubicColor, escapeTimes, 82<D;
Show@Graphics@RasterArray@colorsDD,
AspectRatio Ø AutomaticD;

As in the quadratic case,  this has all  been implemented  in Java allowing us to generate images much more quickly. The
essential command is

ShowCubicLocus@a, bMin, bMax, bail, resD;

We now use ShowCubicLocus to generate an array of images which captures the overall four dimensional structure of the
set. Inside each individual  image, a  is fixed and b varies.  The variable a  changes as we move from picture to picture as
indicated by the axes marks. Symmetry allows us to focus on the first quadrant.
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slices = Reverse@Table@ShowCubicLocus@x + Â y,
-1.5 - 1.5 Â, 1.5 + 1.5 Â,
50, 50, DisplayFunction Ø IdentityD,

8y, 0., 1., .1<, 8x, 0., .8, .1<DD;
Show@GraphicsArray@slicesD,
Axes Ø True, AxesLabel Ø 8"Re@aD", "Im@aD"<,
RotateLabel Ø False,
Ticks Ø 8Table@8i + .5, iê 10.<, 8i, 0, 8<D,
Table@8i + .5, i ê 10.<, 8i, 0, 10<D<D;

We can take a closer at these images.

12



ShowCubicLocus@.6 + .1 Â, -1.5 - 1.5 Â, 1.5 + 1.5 Â,
100, 400D;

We can zoom in on them as well.

ShowCubicLocus@.6 + .1 Â, -.1 + .1 Â, .4 + .6 Â,
100, 400D;

References

1. M. McClure, Inverse Iteration algorithms for Julia sets, Mathematica in Education and Research, 7 #2 (1998) 22-28. 

13



2. Carleson, L. and Gamelin, T.W. Complex Dynamics. Springer-Verlag, New York, 1993.

3.  Dickau,  R.  M. Compilation  of  iterative  and  list  operations  in  "Tricks  of  the  trade."  The Mathematica  Journal,  7  #1
(1997)14-15.

4. Devaney, R.L. A First Course in Chaotic Dynamical Systems. Addison-Wesley, Reading, Mass. 1992.

14


