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Abstract

L-systems  have  been widely  used  to describe  fractal  curves  and generate  realistic  images  of plants.   In this column,  we discuss  L-systems  that depend  upon  a
parameter  and their application  to borderline  fractals.

Note:  To reduce the size of the file, the graphics  in this file have all been converted to bitmap form.  Of course,  they may be regenerated  within Mathematica.

ü Initialization

1. Introduction

An L-system is a type of tool that can be used to generate artificial plants, fractal curves, and other complicated objects on a
computer.  The basic components of an L-system are an initial string or axiom, a list of replacement rules that act recursively
on the axiom to construct  more complicated  strings, and a technique to generate an image from these strings.  While the
axiom and replacement rules might be very simple, recursive application of the replacement rules can generate very compli-
cated strings which, in turn, can lead to interesting graphics.

Translation of the string into a graphic is sometimes called turtle graphics due to the following interpretation.  Imagine you
hand a string to a turtle who interprets the individual characters as instructions.  Typically, "F" is interpreted to mean step
forward one unit and draw a line, "+" is interpreted to mean rotate counter-clockwise through some pre-specified angle (say
60° ),  and  "-"  is  interpreted  to  mean  rotate  clockwise  through  the  same  angle.   Given  this  interpretation,  the  string
"F -- F -- F" would generate an equilateral triangle.

Now suppose that each "F" in the axiom is replaced by a more complicated string, say "F + F -- F + F", and this process is
repeated several times.  As we can see using Nest and StringReplace, this generates a much more complicated string.
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axiom = "F--F--F";
replacementRule = "F" Ø "F+F--F+F";
Nest@StringReplace@#, replacementRuleD &,
axiom, 2D
F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F--F+F--F+F+F+
F--F+F--F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F

The recursive nature of this process has led to a very complicated string and turtle interpretation of such strings can lead to
stunning images.

The notion of  an  L-system originated  in the  work  of Aristid  Lindenmayer  and was  further  developed by  Lindenmayer,
Prusinkiewicz, and others.  Their main objective was to obtain an efficient means to model plant growth on a computer, but
L-systems are also a natural  way to describe many fractal curves.  The definitive  description of the L-system concept  is
contained in [1]  and an L-system generator  based on this work is available online [2].   There  are a number of L-system
implementations in Mathematica as well (for example, [3,4,5]).  The code described in this column is based in large part on
the work of Wagon [5], although a number of extensions have been made.  In particular, we focus on L-systems where more
complicated substitutions involving a parameter are involved and investigate how these can lead to borderline fractals.

2. Implemention of parametric L-systems

The basic idea behind a parametric L-system is to include a parameter and allow the substitution rule to affect the parameter
as well.  We'll illustrate the technique by generating a famous fractal set called the Koch snowflake.  The typical L-system
technique  to  generate  this  set  is  to  iteratively  apply  the  simple  rule  "F"  Ø  "F + F -- F + F"  starting  from  the  axiom
"F -- F -- F".   Using  a  parametric  approach,  we  could  represent  the  rule  as  "FHxL"  Ø
"FHx ê 3L rHp ê3L FHx ê3L rH-2 p ê 3L FHx ê 3L rHp ê3L FHx ê3L" and the axiom as "FH1L rH-2 p ê3L FH1L rH-2 p ê 3L FH1L".  The turtle
could then interpret the parameters as step size, rotation angle, or some other appropriate geometric quantity.  While this is a
bit more complicated, it is also more flexible, allowing more general step sizes and rotations angles to be used.

To implement this in Mathematica,  it makes more sense to work with a list of expressions rather than with a string, even
though L-systems were initially defined in terms of strings.  That is, it's easier to work in Mathematica with F[x_] than it is
to work with "F(x)".  Thus our fundamental  objects will be lists of Mathematica expressions corresponding to turtle direc-
tives.  The two simplest turtle directives are F[x], meaning move forward x units and draw a line, and r[q], meaning rotate
through the angle q.  Thus the axiom and rule for the Koch snowflake can be represented as follows.

axiom = 8F@1D, r@-2 p ê 3D, F@1D, r@-2 p ê 3D, F@1D<;
KochRule = F@x_D ß 8F@xê 3D, r@p ê3D, F@xê 3D,

r@-2 p ê 3D, F@x ê3D, r@p ê 3D, F@xê 3D<;

We now iteratively apply the rule to the axiom and store the result as instructions.

instructions = Flatten@Nest@# ê. KochRule &, axiom, 5DD;

The variable instructions now contains a fairly complicated list.  In [5], Wagon devised an elegant way to interpret this
as a graphic. We first define a few variables to contain the image, specify the location and direction of the turtle, and define a
rotation matrix.

lines = 8<;
lastpt = 80, 0<;
dir = 81, 0<;

2



rotate@q_D := N@8
8Cos@qD, -Sin@qD<,
8Sin@qD, Cos@qD<<D;

We now define a list of substitutions that will be performed on the instructions.  Note that these substitutions will be
performed in order on each element in the list instructions  and each substitution results in a modification of lines,
lastpt, or dir.

turtleInterpretation = 8
F@x_D ß Hlines = 8Line@8lastpt, lastpt += x dir<D, lines<L,
r@t_D ß Hdir = rotate@tD.dir;L<;

Finally, we perform the substitutions and display the resulting image contained in lines.

instructions ê. turtleInterpretation;
Show@Graphics@linesD,
AspectRatio Ø AutomaticD;

3. Examples

The algorithm  described  in  the previous  section  has  been  encapsulated  in the  ShowPLSystem  command  defined in  the
PLSystem package.  We now load this package, after removing a couple of symbols we've used to avoid shadowing.

Remove@r, FD;
Needs@"PLSystem`"D;

The package recognizes the standard string notation used by many L-system implementations,  provided no parameters are
used.  Thus, here is a look at the Koch curve, which is part of the Koch snowflake.
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ShowPLSystem@"F" Ø "F+F--F+F", "F", 6,
Angle Ø p ê 3D;

While the main objective in this column is to explore borderline fractals, care has been taken to make the package capabilities
and notation consistent with [1] where possible.  We refer the interested reader to [1] and give a few more examples here.
For  example, open and  closed brackets  ("["  and  "]")  may be used to construct branching  structures,  "!" may be used to
decrement  the width segments  by a pre-specified factor,  and miscellaneous  symbols  may be used in the expansion rules,
which are then subsequently ignored by the turtle.
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ShowPLSystem@8"F" Ø "FF",
"X" Ø "F!@+!XD@--!XDFX"<, "X", 7,
Angle Ø 12 Degree,
InitialDirection Ø 80, 1<,
InitialWidth Ø .03,
WidthRatio Ø .8D;

When parameters do appear, we must  represent the rules and axiom usings lists of Mathematica  expressions.  Again, this
allows much greater flexibility and, therefore, variety.  In the following example, A[l,w] might represent one type of branch
with a specified length and width, while B[l,w] represents another type.  The types are very similar, but differ slightly in
how they decompose into smaller branches.  Note that "+"/"-", "!", "[", and "]" have been replaced by r, setWidth, push,
and pop respectively.
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ShowPLSystem@8
A@l_, w_D ß 8setWidth@wD, F@lD,
push, r@24 DegreeD, B@0.75 l, 0.7 wD, pop,
push, r@-22 DegreeD, A@0.85 l, 0.8 wD, pop<,

B@l_, w_D ß 8setWidth@wD, F@lD,
push, r@19 DegreeD, A@0.8 l, 0.8 wD, pop,
push, r@-39 DegreeD, B@0.7 l, 0.6 wD, pop<<,

B@1, .035D, 9,
InitialDirection Ø 80, 1<,
PlotRange Ø AllD;

All  the  turtle  directives  for  two-dimensional  graphics  described  on  page  209  of  [1]  are  supported.   The
TurtleDirectiveButtons[] command returns a list of the turtle directives with pointers to their usage statements.

4. Borderline fractals

To introduce the concept of a borderline fractal, we begin by looking at several approximations  to Koch's curve using the
parametric formulation.

KochRule = F@t_D ß
8F@t ê3D, r@p ê 3D, F@tê 3D, r@-2 p ê 3D,
F@t ê3D, r@p ê 3D, F@tê 3D<;

KochAxiom = F@1D;
ShowPLSystem@KochRule, KochAxiom, #,

FrameTicks Ø 881ê 3, 2 ê 3, 1<, 8<, 8<, 8<<,
Frame Ø TrueD & êü Range@4D;
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Clearly, these curves are converging to a limit curve, which we call the Koch curve.  By all accounts, this is an example of a
fractal curve, but what exactly is a fractal curve?  The definition suggested by Mandelbrot essentially boils down to this: a
fractal curve is one whose fractal dimension is larger than one.  As we will see, however, there are curves naturally described
using parametric L-systems whose fractal dimension is one, but that are qualitatively similar to the Koch curve.  A related
way to classify a curve is in terms of local rectifiability.

ü Rectifiability

A curve is said to be rectifiable,  if it is of finite length.  Furthermore, there is a natural way to describe the length of the
curves generated by L-systems.   Suppose that the nth  level approximation  of a curve described by a parametric L-system
consists of Nk  segments  of length k .  Then the length of the nth  level approximation  is simply Nk k .  The limit of this
expression as k Ø ¶ (possibly infinite) is defined to be the length of the curve.  For the Koch curve, we have Nk = 4k  and
k = 3-k .  Thus the length of the Koch curve is limkØ¶ H4 ê3Lk = ¶.  Furthermore, the length of any connected piece of the
Koch curve containing more than a single point is also infinite.  A curve having this property is said to be non-locally rectifi-
able and we might consider such a curve to be fractal.

ü Dimension

For a curve of infinite length, the quantities Nk  and k  can be used to define a notion of fractal dimension which distinguishes
the relative sizes of infinitely long curves.  In fact the divider dimension d (see [6]) is simply

d = - lim
kØ¶

log NkÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
log k

.

Although we won't go into an explanation of why this is a reasonable definition here, we can show that if the curve is rectifi-
able,  d = 1 as we would expect.  If the curve is rectifiable, then there is some positive finite number L (the length) so that
Nk  k Ø L as k Ø ¶.  If we simply take the logarithm of both sides and solve for -logHNk L ê logHk L, we get

-
log NkÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
log k

~ 1 -
L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
log k

Ø 1,
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as expected.

Now applying this formula to the Koch curve we find that the dimension is

d = - lim
kØ¶

log 4k
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
log 3-k = -

k
ÅÅÅÅÅÅÅÅÅÅ
-k

 lim
kØ¶

log 4
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
log 3

=
log 4
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
log 3

º 1.262 .

Thus, we'd certainly call this a fractal curve.

ü More examples

We now generalize  the Koch curve construction to obtain curves of other dimensions and fractal-like curves which have
dimension one.  (Thus the term borderline fractal.)  Suppose that 8k <k=0

¶  is a sequence so that 0 = 1 and k ê4 § k+1 < k ê2.
Note that such a sequence must decrease monotonically to zero.  Given such a sequence, there is a natural generalization of
the Koch curve so that the nth  level approximation  consists  of 4k  pieces of length k .  The zeroth level approximation  is
simply the unit interval and the Hn + 1Lst  level approximation is obtained from the nth  level approximation by replacing each
segment of length k  with four segments of length k+1  in the same manner as for the Koch curve.  A precise description may
be given using a parametric L-system.

curveRule = F@x_, k_D ß
8F@a@kD x, k + 1D, r@ArcCos@1ê H2 a@kDL - 1DD,
F@a@kD x, k + 1D, r@-2 ArcCos@1ê H2 a@kDL - 1DD,
F@a@kD x, k + 1D, r@ArcCos@1ê H2 a@kDL - 1DD,
F@a@kD x, k + 1D<;

curveAxiom = F@1, 0D;

Note that the term a[k] indicates how the length scales from the level k to level k + 1.  Thus to generate the Koch curve we
could take a[k]=1/3, so that k = 1 ê 3k .  We can generate a curve of any dimension we like by choosing a[k] to be the
appropriate constant between 1 ê4 and 1 ê 2.  For example, here is a curve of dimension -logH4L ê H logH.45LL º 1.736.  Note
how thick this curve seems compared to the Koch curve.

a@k_D := .45;
ShowPLSystem@curveRule, curveAxiom, 7D;

If a[k]=1/4, then k = 1 ê4k  and the dimension is one.  In fact, the limit curve is simply the unit interval.  Now suppose that
a[k] is the kth  term in a sequence decreasing to 1 ê4.  Then we might expect the dimension to be one, but the curve could
still be non-rectifiable.  Here's an example of such a curve using a parametric L-system.
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a@k_D := 1ê 4 + 1 ê Hk + 5L;
ShowPLSystem@curveRule, curveAxiom, 7D;

Note that the curve still appears very fractal in nature.  It is non-rectifiable; in fact, the length of the nth  level approximation
is the following expression.

@n_D := ‰
k=1

n

a@kD;

totalLength = 4n  @nD
H6 + nL H7 + nL H8 + nL H9 + nL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ3024

Note that as n Ø ¶, the total length diverges to infinity.  However, the rate of divergence is only comparable to n4 .  This rate
would have  to be exponential  to force the fractal  dimension to be larger  than 1.  In fact, Mathematica  can compute  the
dimension.

Limit@-Log@4nD ê Log@@nDD, n Ø ¶D
1

If n Ø 0 a little faster, then  the curve may even be rectifiable.  Consider the following example.

a@k_D := 1ê 4 + 1 ê Hk2 + 5L;
ShowPLSystem@curveRule, curveAxiom, 7D;

We can compute the length of the nth  level approximation in the same manner.

@n_D := ‰
k=1

n

a@kD;

totalLength = 4n  @nD
Hè!!!5 Csch@è!!!5 pD Gamma@H1 - 3 ÂL + nD Gamma@H1 + 3 ÂL + nD Sinh@3 pDLë
H3 Gamma@1 - Âè!!!5 + nD Gamma@1 + Âè!!!5 + nDL
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Although this is a more complicated expression, Mathematica can still compute the length of the limit curve.

Limit@4n  @nD, n Ø ¶D
1
ÅÅÅÅ3

è!!!5 Csch@è!!!5 pD Sinh@3 pD

Of course, the dimension should still be one.

Limit@-Log@4nD ê Log@@nDD, n Ø ¶D
1

We invite the reader to construct a curve with dimension two and area zero.

References

1. Lindenmayer, A. and Prusinkiewicz, P., The Algorithmic Beauty of Plants.  Spring-Verlag, New York, 1990.

2. Prusinkiewicz, P., The Virtual Laboratory.  http://algorithmicbotany.org/virtual_laboratory/.

3. Jacob, C. Modeling growth with L-systems & Mathematica.  Mathematica in Education and Research, 4 #3 (1995) 12-19.

4. Maeder, R., The Mathematica programmer (Chapter 8). AP Professional, Boston, 1994.

5. Wagon, S., Mathematica in action, 2nd  ed. (Chapter 7). Spring-Verlag, New York, 1999.

6. Falconer,  K.,  Fractal  Geometry:  Mathematical  Foundations  and Applications  (Section 3.5).  John Wiley & Sons,  New
York, 1990.

10


