
Parametric L-Systems and borderline
fractals

A preprint version of a “Mathematical graphics” column from
Mathematica in Education and Research.

Mark McClure

Department of Mathematics
University of North Carolina at Asheville
Asheville, NC 28804

mcmcclure@unca.edu

Abstract

L-systems have been widely used to describe fractal curves and generate realistic images of plants. In this column, we discuss L-systems that depend upon a
parameter and their application to borderline fractals.

Note: To reduce the size of the file, the graphics in this file have all been converted to bitmap form. Of course, they may be regenerated within Mathematica.

ü Initialization

1. Introduction

An L-system is a type of tool that can be used to generate artificial plants, fractal curves, and other complicated objects on a
computer. The basic components of an L-system are an initial string or axiom, a list of replacement rules that act recursively
on the axiom to construct more complicated strings, and a technique to generate an image from these strings. While the
axiom and replacement rules might be very simple, recursive application of the replacement rules can generate very compli-
cated strings which, in turn, can lead to interesting graphics.

Translation of the string into a graphic is sometimes called turtle graphics due to the following interpretation. Imagine you
hand a string to a turtle who interprets the individual characters as instructions. Typically, "F" is interpreted to mean step
forward one unit and draw a line, "+" is interpreted to mean rotate counter-clockwise through some pre-specified angle (say
60°), and "-" is interpreted to mean rotate clockwise through the same angle. Given this interpretation, the string
"F -- F -- F" would generate an equilateral triangle.

Now suppose that each "F" in the axiom is replaced by a more complicated string, say "F + F -- F + F", and this process is
repeated several times. As we can see using Nest and StringReplace, this generates a much more complicated string.

1

axiom = "F--F--F";
replacementRule = "F" Ø "F+F--F+F";
Nest@StringReplace@#, replacementRuleD &,
axiom, 2D
F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F--F+F--F+F+F+
F--F+F--F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F--F+F--F+F+F+F--F+F

The recursive nature of this process has led to a very complicated string and turtle interpretation of such strings can lead to
stunning images.

The notion of an L-system originated in the work of Aristid Lindenmayer and was further developed by Lindenmayer,
Prusinkiewicz, and others. Their main objective was to obtain an efficient means to model plant growth on a computer, but
L-systems are also a natural way to describe many fractal curves. The definitive description of the L-system concept is
contained in [1] and an L-system generator based on this work is available online [2]. There are a number of L-system
implementations in Mathematica as well (for example, [3,4,5]). The code described in this column is based in large part on
the work of Wagon [5], although a number of extensions have been made. In particular, we focus on L-systems where more
complicated substitutions involving a parameter are involved and investigate how these can lead to borderline fractals.

2. Implemention of parametric L-systems

The basic idea behind a parametric L-system is to include a parameter and allow the substitution rule to affect the parameter
as well. We'll illustrate the technique by generating a famous fractal set called the Koch snowflake. The typical L-system
technique to generate this set is to iteratively apply the simple rule "F" Ø "F + F -- F + F" starting from the axiom
"F -- F -- F". Using a parametric approach, we could represent the rule as "FHxL" Ø
"FHx ê 3L rHp ê3L FHx ê3L rH-2 p ê 3L FHx ê 3L rHp ê3L FHx ê3L" and the axiom as "FH1L rH-2 p ê3L FH1L rH-2 p ê 3L FH1L". The turtle
could then interpret the parameters as step size, rotation angle, or some other appropriate geometric quantity. While this is a
bit more complicated, it is also more flexible, allowing more general step sizes and rotations angles to be used.

To implement this in Mathematica, it makes more sense to work with a list of expressions rather than with a string, even
though L-systems were initially defined in terms of strings. That is, it's easier to work in Mathematica with F[x_] than it is
to work with "F(x)". Thus our fundamental objects will be lists of Mathematica expressions corresponding to turtle direc-
tives. The two simplest turtle directives are F[x], meaning move forward x units and draw a line, and r[q], meaning rotate
through the angle q. Thus the axiom and rule for the Koch snowflake can be represented as follows.

axiom = 8F@1D, r@-2 p ê 3D, F@1D, r@-2 p ê 3D, F@1D<;
KochRule = F@x_D ß 8F@xê 3D, r@p ê3D, F@xê 3D,

r@-2 p ê 3D, F@x ê3D, r@p ê 3D, F@xê 3D<;

We now iteratively apply the rule to the axiom and store the result as instructions.

instructions = Flatten@Nest@# ê. KochRule &, axiom, 5DD;

The variable instructions now contains a fairly complicated list. In [5], Wagon devised an elegant way to interpret this
as a graphic. We first define a few variables to contain the image, specify the location and direction of the turtle, and define a
rotation matrix.

lines = 8<;
lastpt = 80, 0<;
dir = 81, 0<;

2

rotate@q_D := N@8
8Cos@qD, -Sin@qD<,
8Sin@qD, Cos@qD<<D;

We now define a list of substitutions that will be performed on the instructions. Note that these substitutions will be
performed in order on each element in the list instructions and each substitution results in a modification of lines,
lastpt, or dir.

turtleInterpretation = 8
F@x_D ß Hlines = 8Line@8lastpt, lastpt += x dir<D, lines<L,
r@t_D ß Hdir = rotate@tD.dir;L<;

Finally, we perform the substitutions and display the resulting image contained in lines.

instructions ê. turtleInterpretation;
Show@Graphics@linesD,
AspectRatio Ø AutomaticD;

3. Examples

The algorithm described in the previous section has been encapsulated in the ShowPLSystem command defined in the
PLSystem package. We now load this package, after removing a couple of symbols we've used to avoid shadowing.

Remove@r, FD;
Needs@"PLSystem`"D;

The package recognizes the standard string notation used by many L-system implementations, provided no parameters are
used. Thus, here is a look at the Koch curve, which is part of the Koch snowflake.

3

ShowPLSystem@"F" Ø "F+F--F+F", "F", 6,
Angle Ø p ê 3D;

While the main objective in this column is to explore borderline fractals, care has been taken to make the package capabilities
and notation consistent with [1] where possible. We refer the interested reader to [1] and give a few more examples here.
For example, open and closed brackets ("[" and "]") may be used to construct branching structures, "!" may be used to
decrement the width segments by a pre-specified factor, and miscellaneous symbols may be used in the expansion rules,
which are then subsequently ignored by the turtle.

4

ShowPLSystem@8"F" Ø "FF",
"X" Ø "F!@+!XD@--!XDFX"<, "X", 7,
Angle Ø 12 Degree,
InitialDirection Ø 80, 1<,
InitialWidth Ø .03,
WidthRatio Ø .8D;

When parameters do appear, we must represent the rules and axiom usings lists of Mathematica expressions. Again, this
allows much greater flexibility and, therefore, variety. In the following example, A[l,w] might represent one type of branch
with a specified length and width, while B[l,w] represents another type. The types are very similar, but differ slightly in
how they decompose into smaller branches. Note that "+"/"-", "!", "[", and "]" have been replaced by r, setWidth, push,
and pop respectively.

5

ShowPLSystem@8
A@l_, w_D ß 8setWidth@wD, F@lD,
push, r@24 DegreeD, B@0.75 l, 0.7 wD, pop,
push, r@-22 DegreeD, A@0.85 l, 0.8 wD, pop<,

B@l_, w_D ß 8setWidth@wD, F@lD,
push, r@19 DegreeD, A@0.8 l, 0.8 wD, pop,
push, r@-39 DegreeD, B@0.7 l, 0.6 wD, pop<<,

B@1, .035D, 9,
InitialDirection Ø 80, 1<,
PlotRange Ø AllD;

All the turtle directives for two-dimensional graphics described on page 209 of [1] are supported. The
TurtleDirectiveButtons[] command returns a list of the turtle directives with pointers to their usage statements.

4. Borderline fractals

To introduce the concept of a borderline fractal, we begin by looking at several approximations to Koch's curve using the
parametric formulation.

KochRule = F@t_D ß
8F@t ê3D, r@p ê 3D, F@tê 3D, r@-2 p ê 3D,
F@t ê3D, r@p ê 3D, F@tê 3D<;

KochAxiom = F@1D;
ShowPLSystem@KochRule, KochAxiom, #,

FrameTicks Ø 881ê 3, 2 ê 3, 1<, 8<, 8<, 8<<,
Frame Ø TrueD & êü Range@4D;

6

Clearly, these curves are converging to a limit curve, which we call the Koch curve. By all accounts, this is an example of a
fractal curve, but what exactly is a fractal curve? The definition suggested by Mandelbrot essentially boils down to this: a
fractal curve is one whose fractal dimension is larger than one. As we will see, however, there are curves naturally described
using parametric L-systems whose fractal dimension is one, but that are qualitatively similar to the Koch curve. A related
way to classify a curve is in terms of local rectifiability.

ü Rectifiability

A curve is said to be rectifiable, if it is of finite length. Furthermore, there is a natural way to describe the length of the
curves generated by L-systems. Suppose that the nth level approximation of a curve described by a parametric L-system
consists of Nk segments of length k . Then the length of the nth level approximation is simply Nk k . The limit of this
expression as k Ø ¶ (possibly infinite) is defined to be the length of the curve. For the Koch curve, we have Nk = 4k and
k = 3-k . Thus the length of the Koch curve is limkØ¶ H4 ê3Lk = ¶. Furthermore, the length of any connected piece of the
Koch curve containing more than a single point is also infinite. A curve having this property is said to be non-locally rectifi-
able and we might consider such a curve to be fractal.

ü Dimension

For a curve of infinite length, the quantities Nk and k can be used to define a notion of fractal dimension which distinguishes
the relative sizes of infinitely long curves. In fact the divider dimension d (see [6]) is simply

d = - lim
kØ¶

log NkÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
log k

.

Although we won't go into an explanation of why this is a reasonable definition here, we can show that if the curve is rectifi-
able, d = 1 as we would expect. If the curve is rectifiable, then there is some positive finite number L (the length) so that
Nk k Ø L as k Ø ¶. If we simply take the logarithm of both sides and solve for -logHNk L ê logHk L, we get

-
log NkÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
log k

~ 1 -
L

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
log k

Ø 1,

7

as expected.

Now applying this formula to the Koch curve we find that the dimension is

d = - lim
kØ¶

log 4k
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
log 3-k = -

k
ÅÅÅÅÅÅÅÅÅÅ
-k

 lim
kØ¶

log 4
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
log 3

=
log 4
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
log 3

º 1.262 .

Thus, we'd certainly call this a fractal curve.

ü More examples

We now generalize the Koch curve construction to obtain curves of other dimensions and fractal-like curves which have
dimension one. (Thus the term borderline fractal.) Suppose that 8k <k=0

¶ is a sequence so that 0 = 1 and k ê4 § k+1 < k ê2.
Note that such a sequence must decrease monotonically to zero. Given such a sequence, there is a natural generalization of
the Koch curve so that the nth level approximation consists of 4k pieces of length k . The zeroth level approximation is
simply the unit interval and the Hn + 1Lst level approximation is obtained from the nth level approximation by replacing each
segment of length k with four segments of length k+1 in the same manner as for the Koch curve. A precise description may
be given using a parametric L-system.

curveRule = F@x_, k_D ß
8F@a@kD x, k + 1D, r@ArcCos@1ê H2 a@kDL - 1DD,
F@a@kD x, k + 1D, r@-2 ArcCos@1ê H2 a@kDL - 1DD,
F@a@kD x, k + 1D, r@ArcCos@1ê H2 a@kDL - 1DD,
F@a@kD x, k + 1D<;

curveAxiom = F@1, 0D;

Note that the term a[k] indicates how the length scales from the level k to level k + 1. Thus to generate the Koch curve we
could take a[k]=1/3, so that k = 1 ê 3k . We can generate a curve of any dimension we like by choosing a[k] to be the
appropriate constant between 1 ê4 and 1 ê 2. For example, here is a curve of dimension -logH4L ê H logH.45LL º 1.736. Note
how thick this curve seems compared to the Koch curve.

a@k_D := .45;
ShowPLSystem@curveRule, curveAxiom, 7D;

If a[k]=1/4, then k = 1 ê4k and the dimension is one. In fact, the limit curve is simply the unit interval. Now suppose that
a[k] is the kth term in a sequence decreasing to 1 ê4. Then we might expect the dimension to be one, but the curve could
still be non-rectifiable. Here's an example of such a curve using a parametric L-system.

8

a@k_D := 1ê 4 + 1 ê Hk + 5L;
ShowPLSystem@curveRule, curveAxiom, 7D;

Note that the curve still appears very fractal in nature. It is non-rectifiable; in fact, the length of the nth level approximation
is the following expression.

@n_D := ‰
k=1

n

a@kD;

totalLength = 4n @nD
H6 + nL H7 + nL H8 + nL H9 + nL
ÅÅÅ3024

Note that as n Ø ¶, the total length diverges to infinity. However, the rate of divergence is only comparable to n4 . This rate
would have to be exponential to force the fractal dimension to be larger than 1. In fact, Mathematica can compute the
dimension.

Limit@-Log@4nD ê Log@@nDD, n Ø ¶D
1

If n Ø 0 a little faster, then the curve may even be rectifiable. Consider the following example.

a@k_D := 1ê 4 + 1 ê Hk2 + 5L;
ShowPLSystem@curveRule, curveAxiom, 7D;

We can compute the length of the nth level approximation in the same manner.

@n_D := ‰
k=1

n

a@kD;

totalLength = 4n @nD
Hè!!!5 Csch@è!!!5 pD Gamma@H1 - 3 ÂL + nD Gamma@H1 + 3 ÂL + nD Sinh@3 pDLë
H3 Gamma@1 - Âè!!!5 + nD Gamma@1 + Âè!!!5 + nDL

9

Although this is a more complicated expression, Mathematica can still compute the length of the limit curve.

Limit@4n @nD, n Ø ¶D
1
ÅÅÅÅ3

è!!!5 Csch@è!!!5 pD Sinh@3 pD

Of course, the dimension should still be one.

Limit@-Log@4nD ê Log@@nDD, n Ø ¶D
1

We invite the reader to construct a curve with dimension two and area zero.

References

1. Lindenmayer, A. and Prusinkiewicz, P., The Algorithmic Beauty of Plants. Spring-Verlag, New York, 1990.

2. Prusinkiewicz, P., The Virtual Laboratory. http://algorithmicbotany.org/virtual_laboratory/.

3. Jacob, C. Modeling growth with L-systems & Mathematica. Mathematica in Education and Research, 4 #3 (1995) 12-19.

4. Maeder, R., The Mathematica programmer (Chapter 8). AP Professional, Boston, 1994.

5. Wagon, S., Mathematica in action, 2nd ed. (Chapter 7). Spring-Verlag, New York, 1999.

6. Falconer, K., Fractal Geometry: Mathematical Foundations and Applications (Section 3.5). John Wiley & Sons, New
York, 1990.

10

