
Directed-Graph Iterated Function 
Systems

by Mark McClure

Directed-graph iterated function systems are an important generalization of iterated function 
systems.  In this article, we discuss their basic theory and implementation.

Introduction
Consider the curve in the plane K  shown in Figure 1.  K  is called the Koch curve and is an example of a

self-similar  set.   Figure 1 shows how K  is  composed of  4 copies  of  itself,  each scaled by a factor  of  1
3

.   More
generally, a self-affine set is one composed of affine images of the whole set.  The terminology iterated function
system,  or IFS,  was introduced by Barnsley to describe a process for rendering images of such sets.   There are
many good references for IFSs including [Barnsley 1993], [Edgar 1990], and [Gutierrez, Iglesias, Rodriguez, and
Rodriguez 1997] which describes an implementation in Mathematica.
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Figure 1
In  this  article,  we consider  a  generalization of  self-similar  sets  and its  implementation in  Mathematica.

All  of  our  functions  are  encapsulated  in  the  package  DigraphFractals.   Consider  the  two  curves  A  and  B
shown in figure 2.  A is composed of 1 copy of itself, scaled by a factor 1

2
, and 2 copies of B, rotated and scaled

by a factor 1
2

.  B is composed of 1 copy of itself, scaled by a factor 1
2

, and 1 copy of A, reflected and scaled by a

factor  1
2

.   The sets  A  and B  exhibit  directed-graph self-similarity  and may be  described using a  directed-graph
iterated  function  system,  or  digraph  IFS.   Our  formulation  of  a  digraph  IFS  first  appeared  in  [Mauldin  and
Williams, 1988] and is also described in [Edgar 1990] and [Falconer 1997].
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Basic Theory
The  first  indgredient  for  a  digraph  IFS  is  a  directed  multi-graph  which  describes  the  combinatorics  of

how the pieces fit together.  A directed multi-graph G  consists of a finite set V  of vertices and a finite set E  of
directed edges between vertices.  G  is called a multi-graph because we allow more than one edge between any
two vertices.  Given two vertices, u and v, we denote the set of all edges from u to v by Euv.  More generally, a
path  through G  is  a  finite  sequence of  edges so that  the terminal  vertex of  any edge is  the initial  vertex of  the
subsequent edge.  G is called strongly connected if for every u and v in V, there is a path from u to v.  We denote
the set of all paths of length n with initial vertex u by Eu

n.  
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Figure 3 shows the directed multi-graph for the curves A and B.  There are two edges from node A to node B and
one edge from node A  to itself since A  consists of two copies of B  together with one copy of itself.   Similarly,
there is one edge from node B to node A and one edge from B to itself since B consists of one copy of A together
with one copy of itself.  

Note that the edges in figure 3 are labeled.  In general,  we obtain a digraph IFS  from a directed multi-
graph by associating an affine function fe with each edge e of the digraph.  There are two main types of functions
we will consider.  A function f : ℝn →ℝn  is called a similarity transformation, or simply a similarity, if there is
an r > 0,  called the similarity ratio of  f ,  such that  f (x) - f (y) = r x - y  for  all  x  in  ℝn.   More generally,  an
affine  transformation  is  a  linear  transformation  plus  a  translation.   The  labels  in  figure  3  correspond  to  the
following affine functions, which are in fact similarities.
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An affine transformation need not scale a set by the same amount in all directions.  However, we may character-
ize  its  largest  scaling  factor  by  the  spectral  radius  of  the  linear  part,  which  is  the  maximum  of  the  absolute
values of all its complex eigenvalues.  A digraph IFS is called contractive if the product of the scaling factors in
any closed loop is less than 1.  Theorem 4.3.5 of [Edgar 1990] states that for any contracting digraph IFS, there
is a unique set of closed, bounded sets Kv, one for every v in V, such that for every u in V,

Ku = 
vϵV,eϵEuv

fe (Kv). (1)

Such  a  collection  of  sets  is  called  the  invariant  list  of  the  digraph  IFS  and  we  will  refer  to  its  members  as
digraph  fractals.   Note  that  an  IFS  is  the  special  case  of  a  digraph  IFS  with  one  node  and  theorem  4.3.5  of
[Edgar 1990] is a generalization of the statement that a unique invariant set exists for a contractive IFS.

Implementation of a Deterministic Algorithm
In this section, we implement a deterministic algorithm to generate the sets A and B.  The first step is to

determine an  appropriate  data  structure  to  describe  a  digraph IFS.   For  this  purpose,  we will  use  an  adjacency
matrix of lists  of affine functions.   The element in row u  and column v  will  be a list  of affine functions which
map Ev  into  Eu.   Each affine function will  be  described by a  pair  {A, b},  where A  is  a  two dimensional  matrix
indicating the linear part and b is a two dimensional vector indicating the shift.  Here is the code describing the
digraph IFS for the curves A and B.
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rotate[θ_] := {{Cos[θ], -Sin[θ]},
{Sin[θ], Cos[θ]}};

a1 = {{1 / 2, 0}, {0, 1 / 2}}, 1 / 4, 3  4;

a2 = {1 / 2 rotate[π / 3], {0, 0}};

a3 = 1 / 2 rotate[-π / 3], 3 / 4, 3  4;

b1 = {{{1 / 2, 0}, {0, -1 / 2}}, {1 / 2, 0}};
b2 = {{{1 / 2, 0}, {0, 1 / 2}}, {0, 0}};
curvesDigraph = {{{a1}, {a2, a3}}, {{b1}, {b2}}};

We also need an initial approximation to each digraph fractal for the digraph IFS to act upon.  In general, these
could be any Graphics primitives, but some objects lead to more natural approximations than others.  Note that
each  initiator  is  a  list  of  Graphics  primitives.  This  way  each  initiator  may  be  a  fairly  complicated  graphic.
Here is our choice of initiators.

lineSegment = Line[{{0, 0}, {1, 0}}];
initiators = {{lineSegment}, {lineSegment}};

Each affine list  needs to be transformed into a function which acts  on the initiators.   The version of toFuncs
used by the package takes Graphics primitives other than Line into account.

toFuncs[{A_, b_}] := Module[{fOut},
fOut[{x_, y_}] := N[A.{x, y} + b];
fOut[Line[x__]] := Line[fOut /@ x];
fOut

];
digraphFuncs = Map[toFuncs, curvesDigraph, {3}];

We now need  to  describe  the  action  of  the  digraph  IFS on  the  initiators  to  get  to  the  next  stage  in  the
approximation.   Suppose  that  Ku

0  is  the  initiator  for  Ku.   Then  by  equation  (1),  we  need  to  replace  Ku
0with  the

union over all v ϵ V and e ϵ Euvof feKv
0 .   Now the element in row u and column v of our digraph IFS contains a

list of all fe  for e ϵ Euv.  Thus we need to apply all of the functions in this list to Kv
0  (using Outer) and take the

union over all v ϵ V.  Note that this is practically matrix multiplication, or more correctly an inner product.  There
is a complication.  The function Inner  gives a generalized inner product which goes deeply into nested struc-
tures.  We will need to change the heads at the appropriate level to prevent this.  Taking all of this into account,
we obtain the following code for the first step.

digraphFuncs = Apply[placeHolder, digraphFuncs, {2}];
initiators = Apply[placeHolder, initiators, {1}];
step =

Inner[Outer[#1[#2] &, #1, #2] &, digraphFuncs, initiators, List];

This process is now repeated with step as the new input to get to the next stage.

step = Inner[Outer[#1[#2] &, #1, #2] &, digraphFuncs, step, List];

Note that step now holds a list of lists of graphics primitives held in placeholders.  To see the approxima-
tion we simply get rid of the placeholders and map Show onto the list.
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graphicList = step //. placeHolder[x___] → {x};
Show[Graphics[#], AspectRatio → Automatic] & /@ graphicList

 , 

Here is the next step.

step = Inner[Outer[#1[#2] &, #1, #2] &, digraphFuncs, step, List];
graphicList = step //. placeHolder[x___] → {x};
Show[Graphics[#], AspectRatio → Automatic] & /@ graphicList

 , 

To see a higher order approximation, we simply Nest this procedure.
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depth = 10;
graphicList =

Nest[Inner[Outer[#1[#2] &, #1, #2] &, digraphFuncs, #, List] &,
initiators, depth] //. placeHolder[x___] → {x};

Show[Graphics[#], AspectRatio → Automatic] & /@ graphicList

Examples
The  algorithm  described  in  the  previous  section  is  encapsulated  in  our  package  function

ShowDigraphFractals,  which  generates  images  in  the  plane.   In  this  section,  we  illustrate  the  use  of  this
function with several more examples.  First, we load the DigraphFractals package.

Needs["FractalGeometry`DigraphFractals`"];

Here is the package description of the function ShowDigraphFractals.

? ShowDigraphFractals

ShowDigraphFractals[digraph_,depth_] generatestheapproximationto
thedigraphselfsimilarsetsdefinedbydigraphtoorderdepthusing
a deterministicalgorithm. The digraphis representedby a matrixof
listsof affinefunctionswrittenin the form{{{a1,a2},{b1,b2}},{x0,y0}}.

■ The Koch Snowflake
The Koch  curve  is  an  example  of  a  self-similar  set  and  may be  realized  as  a  special  case  of  a  digraph

fractal.  More than this, three copies of the Koch curve form the boundary of a set known as the Koch snowflake.
Thus both sets together may be realized as the invariant list of the following digraph IFS.
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c1 = {{{1 / 3, 0}, {0, 1 / 3}}, {0, 0}};
c2 = {rotate[π / 3] / 3, {1 / 3, 0}};

c3 = rotate[-π / 3] / 3, 1 / 2, 3  6;

c4 = {{{1 / 3, 0}, {0, 1 / 3}}, {2 / 3, 0}};
f1 = {{{1, 0}, {0, -1}}, {0, 0}};
f2 = {rotate[π / 3], {0, 0}};

f3 = rotate[-π / 3], 1 / 2, 3  2;

Koch = {{{c1, c2, c3, c4}, {}}, {{f1, f2, f3}, {}}};
ShowDigraphFractals[Koch, 7,

Prolog → {AbsolutePointSize[.4]}]

A few observations  are  in  order.   First,  the  digraph  above  is  not  strongly  connected.   There  is  no  path
from the curve C to the flake F.  Nonetheless, F is a simple union of copies of C and ShowDigraphFractals
works  as  expected.   Second,  note  that  no  initiators  were  specified.   The  option  Initiators  may  be  used  to
define  the  initiators.   The  default,  Initiators→Automatic,  uses  the  single  point  {0, 0}  as  the  initiator  for
each set.  Finally, note that ShowDigraphFractals accepts the usual Graphics options

■ Heighway's Dragon
Heighway's  dragon  is  a  self-similar  set  in  the  plane.   It's  boundary  consists  of  the  two digraph  fractals

defined here.  This time we use two vertical line segments as the initiators.

f1 = {{1, 0}, {0, 1}}.rotate[π / 4]  2 , {0, 0};

f2 = -rotate[-π / 4]  2 , {0, 1};

g1 = {{{1 / 2, 0}, {0, 1 / 2}}, {0, 0}};
g2 = {{{-1 / 2, 0}, {0, -1 / 2}}, {0, 1}};
heighwayDragon = {{{f1}, {f2}}, {{g1, g2}, {}}};
lineSegment = Line[{{0, 0}, {0, 1}}];
heighwayBoundary = ShowDigraphFractals[heighwayDragon, 14,

Initiators → {{lineSegment}, {lineSegment}},
DisplayFunction → Identity];

Show[GraphicsArray[heighwayBoundary]]

— GraphicsArray::obs: GraphicsArrayis obsolete. SwitchingtoGraphicsGrid.&

DigraphFractals.nb 7



Heighway's dragon boundary may be rendered by showing these two curves together.
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Show[heighwayBoundary,
DisplayFunction → $DisplayFunction]

Alternatively,  we  could  set  up  a  non–strongly  connected  digraph  IFS  with  this  third  set  corresponding  to  the
third node, just as we did for the Koch snowflake.

■ Hilbert's Curve
Hilbert's space filling curve is a continuous function that maps the unit interval onto the unit square.  It

turns out that the coordinate functions of this curve may be described using the following digraph IFS.
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A = {{1 / 4, 0}, {0, 1 / 2}}; B = {{1 / 4, 0}, {0, -1 / 2}};
f1 = {A, {0, 0}}; f2 = {A, {1 / 4, 0}};
f3 = {A, {1 / 2, 1 / 2}}; f4 = {B, {3 / 4, 1}};
g1 = {A, {0, 0}}; g2 = {A, {1 / 4, 1 / 2}};
g3 = {A, {1 / 2, 1 / 2}}; g4 = {B, {3 / 4, 1 / 2}};
hilbertCurves =

{ {{f2, f3}, {f1, f4}}, {{g1, g4}, {g2, g3}} };
initiators =

{{Line[{{0, 0}, {1, 1}}]}, {Line[{{0, 0}, {1, 0}}]}};
ShowDigraphFractals[hilbertCurves, 6,

Initiators → initiators, Axes → True]

Note that the two initiators above were different.  In general we may use much more complicated initiators.  This
may be used to illustrate the effect of the digraph IFS.  For example, consider the following initiators.
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initiators =
{{ {GrayLevel[.7],
Polygon[{{0, 0}, {1, 0}, {1, 1}, {0, 1}}]},
Line[{{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}],
{Thickness[.008],
Line[{{1 / 3, 1 / 4}, {2 / 3, 3 / 4}}],
Line[{{1 / 3, 3 / 4}, {2 / 3, 1 / 4}}],
Line[{{1 / 4, 1 / 4}, {3 / 4, 1 / 4}}]}},
{{ {GrayLevel[.7],
Polygon[{{0, 0}, {1, 0}, {1, 1}, {0, 1}}]},
{Thickness[.008],
Line[{{1 / 3, 3 / 4}, {1 / 2, 1 / 2}, {2 / 3, 3 / 4}}],
Line[{{1 / 2, 1 / 2}, {1 / 2, 1 / 4}}],
Line[{{1 / 4, 1 / 4}, {3 / 4, 1 / 4}}]},
Line[{{0, 0}, {1, 0}, {1, 1}, {0, 1}, {0, 0}}]}}};

Show[GraphicsArray[
Graphics[#, AspectRatio → Automatic] & /@ initiators]]

— GraphicsArray::obs: GraphicsArrayis obsolete. SwitchingtoGraphicsGrid.&

The action of the digraph IFS may now be easily discerned from the following image
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Show[GraphicsArray[
ShowDigraphFractals[hilbertCurves, 1,
Initiators → initiators,
DisplayFunction → Identity]]]

— GraphicsArray::obs: GraphicsArrayis obsolete. SwitchingtoGraphicsGrid.&

A  proof  that  these  curves  are  indeed  the  coordinate  functions  of  Hilbert's  curve  may  be  found  in
[McClure  1999].   For  those  familiar  with  Hilbert's  curve,  here  is  a  convincing  graphical  argument.   We  first
generate approximations to our curves using carefully chosen initiators.

twoPoints = {{Point[{1 / 2, 1 / 2}]},
{Point[{1 / 2, 1 / 2}]}};

approximations =
ShowDigraphFractals[hilbertCurves, 4,

Initiators → twoPoints,
DisplayFunction → Identity];

We can get the actual points as follows

(* Modified for multi-point format *)
graphPoints =

Join @@ Cases[#, Point[xs_] ⧴ xs, Infinity] & /@ approximations;

We  then  sort  these  points,  collect  a  list  of  x  versus  y,  and  draw  a  polygonal  line  through  the  resulting  list  of
points.  The result is a familiar approximation to Hilbert's curve.
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sortedGraphPoints =
Sort[#, First[#1] < First[#2] &] & /@
graphPoints;

curvePoints =
Transpose[sortedGraphPoints /.
{x_Real, y_Real} → y];

Show[Graphics[Line[curvePoints]],
AspectRatio → Automatic]

A Stochastic Algorithm
We now describe a stochastic algorithm similar to the random iteration algorithm for an IFS.  We begin

by assigning a positive probability pe to every e ϵ E such that for every v ϵ V,


e ϵ Euv, u ϵ V

pe = 1.

We then choose an arbitrary point x ϵ ℝ2, an arbitrary vertex v ϵ V, and some e ϵ Euv  according to our probability
list {pe : e ϵ Euv , u ϵ V} and apply fe  to x.  If e ϵ Euv, this gives us a point fe(x) in our approximation to Ku,
which  then  becomes  our  new  input  and  the  process  continues.   We  are  essentially  performing  a  random walk
along  the  digraph  and  picking  up  points  as  we  go  along.   The  edges  are  traversed  in  reverse  order  since
fe : Kv → Ku when e ϵ Euv.
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We then choose an arbitrary point x ϵ ℝ2, an arbitrary vertex v ϵ V, and some e ϵ Euv  according to our probability
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We implement this algorithm to generate the digraph fractal curves resulting from a mild variation of our
first example.  The main point of the variation is to illustrate the effect of differences in the similarity ratios.  We
first define the digraph and transform it into a  digraph containing pure functions.  We also define a probability
matrix pMatrix satisfying the conditions described above.  Note that we need the sum of all of the probabilities
of all  of the edges coming in to any particular node to be 1.  For our matrix representation of the digraph, this
means that the sum of all of the probabilities in any column should be 1.  For this reason, it will be convenient to
transpose the pMatrix since it is easier to access rows than to access columns.  In this first example, we choose
these probabilities to be somewhat arbitrary.

a1 = {{3 / 4, 0}, {0, 3 / 4}}, 1 / 8, 3  8;

a2 = {1 / 4 rotate[π / 3], {0, 0}};

a3 = 1 / 4 rotate[-π / 3], 7 / 8, 3  8;

b1 = {{{3 / 4, 0}, {0, -3 / 4}}, {1 / 4, 0}};
b2 = {{{1 / 4, 0}, {0, 1 / 4}}, {0, 0}};
newCurvesDigraph = {{{a1}, {a2, a3}}, {{b1}, {b2}}};
toFuncs[{A_, b_}] := N[A.# + b] &;
digraphFuncs = Map[toFuncs, newCurvesDigraph, {3}];
pMatrix = N[{{{1 / 2}, {1 / 4, 1 / 4}}, {{1 / 2}, {1 / 2}}}];

We  now  need  a  method  to  use  pMatrix  to  choose  edges  according  to  the  scheme  described  above.   This  is
based  in  part  on  the  following  technique  for  choosing  a  random  integer  according  to  a  list  of  probabilities
pList.  

pList = {.1, .2, .3, .4};
foldedPList = FoldList[Plus, 0, pList];
chooser = Random[];
Length[Select[foldedPList, (# < chooser) &]]

2

Suppose we are  at  some vertex v  at  a  point  along our  random walk.   We will  move to  the next  vertex by first
choosing  which  vertex  to  move  to  and  then  deciding  which  edge  to  travel  along.   The  matrix  pMatrix1  will
help us make the first of these decisions.  We now transpose pMatrix, add all of the elements in the list in any
row and column, and then use FoldList as above.

pMatrix1 = Apply[Plus, Transpose[pMatrix], {2}];
pMatrix1 = FoldList[Plus, 0, #] & /@ pMatrix1;

pMatrix2 will help us make the second of our decisions.  To get pMatrix2, we simply normalize the probabili-
ties in the list in any row and column.

pMatrixNormalizer[subPList_List] :=
FoldList[Plus, 0, subPList] / Plus @@ subPList;

pMatrix2 = Transpose[Map[pMatrixNormalizer, pMatrix, {2}]];

We now write  a  function  choose  which  will  accept  a  row from pMatrix1  and  the  corresponding  row from
pMatrix2  and  decide  which  edge  to  take.   choose  will  return  an  ordered  pair  of  integers  {i,j}  where  i
indicates which vertex to travel to and j indicates which edge to take.
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choose[v1_, v2_] := Module[
{i, j, chooser},
chooser = Random[];
i = Length[Select[v1, (# < chooser) &]];
chooser = Random[];
j = Length[Select[v2[[i]], (# < chooser) &]];
{i, j}];

We now set up an initial configuration and a place to store the points.

v = 1; v1 = pMatrix1[[v]]; v2 = pMatrix2[[v]];
currentPoint = {0, 0}; numPoints = 3000;
points = Table[{}, {Length[newCurvesDigraph]}];

The following Do loop implements the algorithm using the tools we have described.

Do[{
{i, j} = choose[v1, v2];
currentPoint = digraphFuncs[[i, v, j]][currentPoint];
points[[i]] = {points[[i]], currentPoint};
v = i; v1 = pMatrix1[[v]]; v2 = pMatrix2[[v]];
}, {numPoints}];

Finally, we pass these points to ListPlot.

points = Partition[Flatten[#], 2] & /@ points;
ListPlot[#,

PlotStyle → {AbsolutePointSize[0.5]},
AspectRatio → Automatic,
Axes → False] & /@ points;

■ Determining the probabilities
Our  technique  seems  to  have  worked,  but  clearly  the  images  may  be  improved.   This  is  because  the

points are not uniformly distributed throughout the set.  In general, the distribution of the points in the approxima-
tion  will  depend  upon  the  choice  of  probabilities  in  pMatrix.   The  question  arises  as  to  how  to  choose  the
probabilities to generate a uniform distribution, which renders the image more efficiently.

In the IFS theory, there is a notion of similarity dimension which coincides with the fractal (Hausdorff)
dimension given certain additional assumptions.  A self-similar set is generated by a digraph IFS with one node
where to each e ϵ E corresponds a similarity fe.  If re  is the similarity ratio of fe, then the similarity dimension of
the self-similar set is the unique s > 0 such that


e ϵ E

res = 1.

Perhaps not surprisingly, a choice of pe = re
s  is the correct way to choose the probabilities to generate this self-

similar set efficiently.  It's not unreasonable to suppose that the correct choice of a pMatrix for a digraph IFS
will be connected the appropriate notion of dimension.

Suppose we have a digraph IFS such that to each e ϵ E corresponds a similarity fe  with similarity ratio re.
For s > 0, define a numerical matrix A(s), with rows and columns indexed by V, such that the entry in row u and
column v is 
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Auv (s) = 
e ϵ Euv

res.

The similarity dimension of the digraph IFS is defined to be the unique value of s such that the matrix A(s) has
spectral  radius  1.   The  main  result  in  [Mauldin  and  Williams  1988]  states  that  this  dimension  is  equal  to  the
Hausdorff  dimension  of  each  of  the  generated  digraph  fractals  under  certain  additional  assumptions.   This
theorem is also proved as theorems 6.4.8 and 6.6.6 in [Edgar 1990] and as corollary 3.5 in [Falconer 1997].  An
understanding  of  this  proof  would  help  the  interested  reader  understand  why  our  technique  for  choosing  the
probabilities  works.   The important  property  of  the  similarity  dimension is  that  s-dimensional  Perron numbers
for the digraph IFS exist only for this particular value of s.  These are numbers qv, indexed by V, such that

qus = 
e ϵ Euv, v ϵ V

res qvs. (2)

The numbers qu
s  simply form an eigenvector for the matrix A(s) corresponding to the eigenvalue 1.  Note that if

we take the transpose of the matrix A(s), find the Perron numbers for this matrix, and then normalize the result-
ing  equations  by  dividing  through  by  qu

s ,  we  obtain  what  appears  to  be  a  legitimate  pMatrix1.   Taking  the
transpose simply makes A(s) fit into our algorithm and should pose no difficulty since the transpose preserves the
spectral radius.  This is exactly the strategy we will adopt to compute the probabilities

We  now  implement  this  plan  to  compute  the  matrices  pMatrix1  and  pMatrix2  directly.   Given  an
affine function, we will use the spectral radius of the linear part to evaluate the contractivity.  This gives exactly
the  similarity  ratio  of  a  similarity  transformation  and  is  roughly  the  largest  scaling  factor  for  a  general  affine
transformation.  Here is the computation of the similarity dimension for the sets A and B.  Note that they should
both have the same dimension, since each one contains a self-similar copy of the other.

matrices = Map[First,
Transpose[newCurvesDigraph], {3}] // N;

eigenMatrix = matrices /.
{{a_Real, b_Real}, {c_Real, d_Real}} →
Max[Abs /@ Eigenvalues[{{a, b}, {c, d}}]];

sMatrix = Apply[Plus, eigenMatrix^s, {2}];
eigenvalues = Eigenvalues[sMatrix];
spectralRadius0 = Max[Chop[N[eigenvalues /. s → 0]]];
spectralRadius = Select[eigenvalues,

((# /. s → 0) ⩵ spectralRadius0) &][[1]];
approximateDim = Chop[s /.

FindRoot[spectralRadius ⩵ 1, {s, 1}]]

1.24711

Note  that  the  DigraphFractals  package  contains  the  function  ComputeDimension  which  performs  this
task.

ComputeDimension[newCurvesDigraph]

1.24711

We now compute the Perron numbers for the matrix corresponding to this dimension, recalling that these form
an eigenvector corresponding to the eigenvalue 1.
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dimMatrix = sMatrix /. s → approximateDim;
Eigensystem[dimMatrix]

{{1., -0.12398}, {{0.918145, 0.396244}, {-0.647324, 0.762215}}}

perronNumbers = %[[2]][[1]]

{0.918145, 0.396244}

Recall that pMatrix1 determines which node to move to from the current node.  This is exactly where we want
to use equation 2, which looks like the matrix A(s) times the eigenvector consisting of the Perron numbers.  Thus
we use Inner to form the equation, but we replace Plus with List so that we may use FoldList to get the
result into the form which works with our algorithm.

pMatrix1 = Inner[Times, dimMatrix,
perronNumbers, List] / perronNumbers;

pMatrix1 = FoldList[Plus, 0, #] & /@ pMatrix1;

To obtain pMatrix2, we simply normalize the correct eigenMatrix. 

pMatrix2 = eigenMatrix /. s → approximateDim;
pMatrix2 = Map[pMatrixNormalizer, pMatrix2, {2}];

With pMatrix1 and pMatrix2 in hand, the algorithm may now proceed as before.

v = 1; v1 = pMatrix1[[v]]; v2 = pMatrix2[[v]];
currentPoint = {0, 0}; numPoints = 3000;
points = Table[{}, {Length[newCurvesDigraph]}];
Do[{

{i, j} = choose[v1, v2];
currentPoint = digraphFuncs[[i, v, j]][currentPoint];
points[[i]] = {points[[i]], currentPoint};
v = i; v1 = pMatrix1[[v]]; v2 = pMatrix2[[v]];
}, {numPoints}];

points = Partition[Flatten[#], 2] & /@ points;
ListPlot[#,

PlotStyle → {AbsolutePointSize[0.5]},
AspectRatio → Automatic,
Axes → False] & /@ points

This is a major improvement.  A close look at these images, however, indicates that the first set is being
traced out more heavily than the second.  This is exactly the case, as may be deduced by investigating the Perron
numbers.
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This is a major improvement.  A close look at these images, however, indicates that the first set is being
traced out more heavily than the second.  This is exactly the case, as may be deduced by investigating the Perron
numbers.

perronNumbers

{0.918145, 0.396244}

These numbers indicate the relative "weights" of the sets, so we can see why the first is heavier.  In fact, if we
normalize these numbers taking the dimension into account, we should get the exact weights.

perronNumbers^approximateDim /
Plus @@ (perronNumbers^approximateDim)

{0.740387, 0.259613}

The following computation indicates that this has worked very well.

(Length /@ points) / numPoints // N

{0.745, 0.255}

This  technique  for  choosing  the  probabilities  is  encoded  in  the  package  function  ComputePMatrix,
which goes further and combines the pMatrix1 and pMatrix2 obtained above into one pMatrix.  Here is the
pMatrix for our sets.

ComputePMatrix[newCurvesDigraph]

{{{0.698534}, {0.411257, 0.411257}}, {{0.301466}, {0.177486}}}

More Examples
Our  stochastic  algorithm  is  encapsulated  in  the  package  function  ShowDigraphFractalsStochastic.   In
this section, we illustrate the use of this function.  The option PMatrix may be used to specify the probabilities
for the algorithm and PMatrix → Automatic generates the probabilities automatically.  Here is the package
description of the function ShowDigraphFractalsStochastic.

? ShowDigraphFractalsStochastic

ShowDigraphFractalsStochastic[digraph_,numPoints_]
generatesnumPointspointsapproximatingthedigraph
Self Similar setsdefinedbydigraphusinga stochastic
algorithm. The digraphis representedby a matrixof listsof
affinefunctionswrittenin the form{{{a1,a2},{b1,b2}},{x0,y0}}.
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■ The Mauldin–Williams curves
Our  first  example  is  the  digraph  IFS  for  curves  called  the  Mauldin–Williams  curves  in  [Edgar  1990].

This example shows that our algorithm works on a digraph with more than two nodes.

a1 = {{{1 / 2, 0}, {0, -1 / 2}}, {0, 0}};
a2 = {{{1 / 2, 0}, {0, -1 / 2}}, {1 / 2, 0}};
α = ArcCos[17 / 18]; β = ArcCos[1 / 6];
b1 = {(1 / 3) rotate[-β], {Cos[α], Sin[α]}};
b2 = {rotate[α], {0, 0}};
c1 = {{{1 / 4, 0}, {0, -1 / 4}}, {0, 0}};
c2 = {{{3 / 4, 0}, {0, -3 / 4}}, {1 / 4, 0}};
MWCurves = { {{a1}, {a2}, {}},

{{b1}, {}, {b2}},
{{}, {c1}, {c2}} };

ShowDigraphFractalsStochastic[MWCurves, 6000]

■ A self-similar spiral
For our  next  example,  we generate  a  self-similar  spiral.   This  example shows that  our  technique works

for  a  one-node  digraph.   The  rotation  in  the  transformation  a1  involves  the  golden  ratio  so  that  the  resulting
image  has  a  double  spiral  appearance:  13  spirals  in  the  clockwise  direction  and  21  in  the  counterclockwise
direction.   For  a  discussion  on  how  the  double  spiral  arises  and  the  connection  with  the  golden  ratio  and
Fibonacci numbers, see chapter 9 of [Stewart 1995].

goldenAngle = 2 π (2 - GoldenRatio);
a1 = {.985 rotate[goldenAngle], {0., 0.}};
a2 = {{{.1, 0}, {0, .1}}, {1, 0.}};
spiral = {{{a1, a2}}};

ShowDigraphFractalsStochastic[spiral, 20 000]

DigraphFractals.nb 19



■ Enhancing the self-similar spiral
There are  a  few variations  on the double  spiral  theme.   Here is  an example of  two digraph self-similar

spirals  related  to  our  last  spiral.   Note  that  for  the  second  spiral  below  we  change  the  angle  of  rotation  just
slightly.   The  resulting  effect  on  the  spiral  is  dramatic  in  the  sense  that  the  double  spiral  appearance  is  com-
pletely gone.

a1 = {.985 rotate[goldenAngle], {0., 0.}};
b1 = {.95 rotate[goldenAngle - 0.05], {0., 0.}};
a2 = b2 = {{{.1, 0}, {0, .1}}, {1, 0.}};
spirals = {{{a1}, {a2}}, {{b2}, {b1}}};

ShowDigraphFractalsStochastic[spirals, 30 000]

For our final example, we highlight every third spiral of the 21 spirals in the counterclockwise direction.

s1 = {.985^3 rotate[3 goldenAngle], {0, 0}};
s2 = {{{.1, 0}, {0, .1}}, {1, 0}};
d1 = {{{.1, 0}, {0, .1}}, .985 rotate[goldenAngle].{1, 0}};
d2 = {{{.1, 0}, {0, .1}}, .985^2 rotate[2 goldenAngle].{1, 0}};
d3 = s1;
intertwinedSpirals = {{{s1}, {s2}}, {{d1, d2}, {d3}}};
ShowDigraphFractalsStochastic[

intertwinedSpirals, 30 000]
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We can see why the name intertwinedSpiral was used as follows.

Show[%]

An image very similar to this appears on the cover of [Falconer 1997].
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