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Our goals

This is a textbook for a first-year course in linear algebra. Of course, there are already many
fine linear algebra textbooks available. Even if you are reading this one online for free, you
should know that there are other free linear algebra textbooks available online. You have
choices! So why would you choose this one?

This book arises from my belief that linear algebra, as presented in a traditional undergrad-
uate curriculum, has for too long lived in the shadow of calculus. Many mathematics pro-
grams currently require their students to complete at least three semesters of calculus, but
only one semester of linear algebra, which often has two semesters of calculus as a prereq-
uisite.

In addition, what linear algebra students encounter is frequently presented in an overly for-
mal way that does not fully represent the range of linear algebraic thinking. Indeed, many
programs use a first course in linear algebra as an “introduction to proofs” course. While
linear algebra provides an excellent introduction to mathematical reasoning, to only empha-
size this aspect of the subject neglects some important student needs.

Of course, linear algebra is based on a set of abstract principles. However, these principles
underlie an astonishingly wide range of technology that shapes our society in profound
ways. The interplay between these principles and their applications provides a unique op-
portunity for working with students. First, the consideration of significant real-world prob-
lems grounds abstract mathematical thinking in a way that deepens students’ understand-
ing. At the same time, the variety of ways in which these abstract principles may be applied
clearly demonstrates for students the power of mathematical abstraction. Linear algebra em-
powers students to experience what the physicist Eugene Wigner called “the unreasonable
effectiveness of mathematics in the natural sciences,” an aspect of mathematics that is both
fundamental and mysterious.

Neglecting this experience does not serve our students well. For instance, only about 15% of
currentmathematicsmajors will go on to attend graduate school. The remainder are headed
for careers that will ask them to use their mathematical training in business, industry, and
government. What do these careers look like? Right now, data analytics and data mining,
computer graphics, software development, finance, and operations research. These careers
depend much more on linear algebra than calculus. In addition to helping students appre-
ciate the profound changes that mathematics has brought to our society, more training in
linear algebra will help our students participate in the inevitable developments yet to come.

These thoughts are not uniquely mine nor are they particularly new. The Linear Algebra
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Curriculum Study Group, a broadly-based group of mathematicians and mathematics edu-
cators funded by the National Science Foundation, formed to improve the teaching of linear
algebra. In their final report, they wrote

There is a growing concern that the linear algebra curriculum at many schools
does not adequately address the needs of the students it attempts to serve. In
recent years, demand for linear algebra training has risen in client disciplines
such as engineering, computer science, operations research, economics, and sta-
tistics. At the same time, hardware and software improvements in computer
science have raised the power of linear algebra to solve problems that are orders
of magnitude greater than dreamed possible a few decades ago. Yet in many
courses, the importance of linear algebra in applied fields is not communicated
to students, and the influence of the computer is not felt in the classroom, in
the selection of topics covered or in the mode of presentation. Furthermore, an
overemphasis on abstraction may overwhelm beginning students to the point
where they leave the course with little understanding or mastery of the basic
concepts they may need in later courses and their careers.

Furthermore, among their recommendations is this:

We believe that a first course in linear algebra should be taught in a way that
reflects its new role as a scientific tool. This implies less emphasis on abstraction
and more emphasis on problem solving and motivating applications.

What may be surprising is that this was written in 1993; that is, before the introduction of
Google’s PageRank algorithm, before Pixar’s Toy Story, and before the ascendence of what
is often called data science or machine learning made these statements only more relevant.

With these thoughts in mind, the aim of this book is to facilitate a fuller, richer experience
of linear algebra for all students, which informs the following decisions.

• This book is written without the assumption that students have taken a calculus course. In
making this decision, I hope that students will gain a more authentic experience of
mathematics through linear algebra at an earlier stage of their academic careers.
Indeed, a common barrier to student success in calculus is its relatively high prereq-
uisite tower culminating in a course often called “Precalculus”. By contrast, linear
algebra begins with much simpler assumptions about our students’ preparation: the
expressions studied are linear so that may be manipulated using only the four basic
arithmetic operations.
The most common explanation I hear for requiring calculus as a prerequisite for lin-
ear algebra is that calculus develops in students a beneficial “mathematical maturity.”
Given persistent student struggles with calculus, however, it seems just as reasonable
to develop students’ abilities to reason mathematically through linear algebra.

• The text includes a number of significant applications of important linear algebraic concepts,
such as computer animation, the JPEG compression algorithm, and Google’s PageR-
ank algorithm. In my experience, students find these applications more authentic and
compelling than typical applications presented in a calculus class. These applications
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also provide a strong justification formathematical abstraction, which can seemunnec-
essary to beginning students, and demonstrate how mathematics is currently shaping
our world.

• Each section begins with a preview activity and includes a number of activities that can be used
to facilitate active learning in a classroom. By now, active learning’s effectiveness in help-
ing students develop a deep understanding of important mathematical concepts is be-
yond dispute. The activities here are designed to reinforce ideas already encountered,
motivate the need for upcoming ideas, and help students recognize various manifesta-
tions of simple underlying themes. Asmuch as possible, students are asked to develop
new ideas and take ownership of them.

• The activities emphasize a broad range of mathematical thinking. Rather than providing the
traditional cycle of Definition-Theorem-Proof,Understanding Linear Algebra aims to de-
velop an appreciation of ideas as arising in response to a need that students perceive.
Working much as research mathematicians do, students are asked to consider exam-
ples that illustrate the importance of key concepts so that definitions arise as natural la-
bels used to identify these concepts. Again using examples as motivation, students are
asked to reason mathematically and explain general phenomena they observe, which
are then recorded as theorems and propositions. It is not, however, the intention of
this book to develop students’ formal proof-writing abilities.

• There are frequent embedded Sage cells that help develop students’ computational proficiency.
The impact that linear algebra is having on our society is inextricably tied to the phe-
nomenal increase in computing power witnessed in the last half-century. Indeed, Carl
Cowen, former president of the Mathematical Association of America, has said, “No
serious application of linear algebra happens without a computer.” This means that
an understanding of linear algebra is not complete without an understanding of how
linear algebraic ideas are deployed in a computational environment.

• The text aims to leverage geometric intuition to enhance algebraic thinking. In spite of the
fact that it may be difficult to visualize phenomena in thousands of dimensions, many
linear algebraic concepts may be effectively illustrated in two or three dimensions
and the resulting intuition applied more generally. Indeed, this useful interplay be-
tween geometry and algebra illustrates another mysterious mathematical connection
between seemingly disparate areas.

I hope thatUnderstanding Linear Algebra is useful for you, whether you are a student taking a
linear algebra class, someone just interested in self-study, or an instructor seeking out some
ideas to use with your students. I would be more than happy to hear your feedback.
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A note on the print version

This book aims to develop readers’ ability to reason about linear algebraic concepts and to
apply that reasoning in a computational environment. In particular, Sage is introduced as a
platform for performing many linear algebraic computations since it is freely available and
its syntax mirrors common mathematical notation.

Print readers may access Sage online using either the Sage cell server⁴ or a provided page of
Sage cells.⁵

Throughout the book, Sage cells appear in various places to encourage readers to use Sage
to complete some relevant computation. In the print version, these may appear with some
pre-populated code, such as the one below, that you will want to copy into an online Sage
cell.

A = matrix ([[1,2], [2 ,1]])

Empty cells appear as shownbelowand are included to indicate part of an exercise or activity
that is meant to be completed in Sage.

⁴sagecell.sagemath.org/
⁵https:gvsu.edu/s/0Ng

https://sagecell.sagemath.org/
https:gvsu.edu/s/0Ng
https:gvsu.edu/s/0Ng
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CHAPTER 1
Systems of equations

1.1 What can we expect

At its heart, the subject of linear algebra is about linear equations and, more specifically, sets
of two or more linear equations. Google routinely deals with a set of trillions of equations
each of which has trillions of unknowns. We will eventually understand how to deal with
that kind of complexity. To begin, however, wewill look at amore familiar situation inwhich
there are a small number of equations and a small number of unknowns. In spite of its
relative simplicity, this situation is rich enough to demonstrate some fundamental concepts
that will motivate much of our exploration.

1.1.1 Some simple examples

Activity 1.1.1. In this activity, we consider sets of linear equations having just two
unknowns. In this case, we can graph the solutions sets for the equations, which
allows us to visualize different types of behavior.

a. On the grid below, graph the lines

y � x + 1
y � 2x − 1.

At what point or points (x , y), do the lines intersect? How many points (x , y)
satisfy both equations?
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b. On the grid below, graph the lines

y � x + 1
y � x − 1.

At what point or points (x , y), do the lines intersect? How many points (x , y)
satisfy both equations?
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c. On the grid below, graph the line

y � x + 1.

How many points (x , y) satisfy this equation?
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d. On the grid below, graph the lines

y � x + 1
y � 2x − 1
y � −x.

At what point or points (x , y), do the lines intersect? How many points (x , y)
satisfy all three equations?
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The examples in this introductory activity demonstrate several possible outcomes for the
solutions to a set of linear equations. Notice that we are interested in points that satisfy each
equation in the set and that these are seen as intersection points of the lines. Similar to the
examples considered in the activity, three types of outcomes are seen in Figure 1.1.1.
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Figure 1.1.1 Three possible graphs for sets of linear equations in two unknowns.

In this figure, we see that

• With a single equation, there are infinitely many points (x , y) satisfying that equation.

• Adding a second equation adds another condition we place on the points (x , y) result-
ing in a single point that satisfies both equations.

• Adding a third equation adds a third condition on the points (x , y), and there is no
point that satisfies all three equations.

Generally speaking, a single equation will have many solutions, in fact, infinitely many. As
we add equations, we add conditions which lead, in a sense we will make precise later, to a
smaller number of solutions. Eventually, we have too many equations and find there are no
points that satisfy all of them.

This example illustrates a general principle to which we will frequently return.

Solutions to sets of linear equations.

Given a set of linear equations, there are either:
• infinitely many points,

• exactly one point, or

• no points

that satisfy every equation in the set.

Notice that we can see a bit more. In Figure 1.1.1, we are looking at equations in two un-
knowns. Here we see that

• One equation has infinitely many solutions.

• Two equations have exactly one solution.

• Three equations have no solutions.



1.1. WHAT CANWE EXPECT 5

It seems reasonable to wonder if the number of solutions depends on whether the number
of equations is less than, equal to, or greater than the number of unknowns. Of course, one
of the examples in the activity shows that there are exceptions to this simple rule, as seen
in Figure 1.1.2. For instance, two equations in two unknowns may correspond to parallel
lines so that the set of equations has no solutions. It may also happen that a set of three
equations in two unknowns has a single solution. However, it seems safe to think that the
more equations we have, the smaller the set of solutions will be.

Figure 1.1.2 A set of two equations in two unknowns can have no solutions, and a set of three
equations can have one solution.

Let’s also consider some examples of equations having three unknowns, which we call x, y,
and z. Just as solutions to linear equations in two unknowns formed straight lines, solutions
to linear equations in three unknowns form planes.

When we consider an equation in three unknowns graphically, we need to add a third coor-
dinate axis, as shown in Figure 1.1.3.

x

y

y

z

x

Figure 1.1.3 Coordinate systems in two and three dimensions.

As shown in Figure 1.1.4, a linear equation in two unknowns, such as y � 0, is a line while
a linear equation in three unknowns, such as z � 0, is a plane.
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x

y

y

z

x

Figure 1.1.4 The solutions to the equation y � 0 in two dimensions and z � 0 in three.

In three unknowns, the set of solutions to one linear equation forms a plane. The set of
solutions to a pair of linear equations is seen graphically as the intersection of the two planes.
As in Figure 1.1.5, we typically expect this intersection to be a line.

Figure 1.1.5 A single plane and the intersection of two planes.

When we add a third equation, we are looking for the intersection of three planes, which we
expect to form a point, as in the left of Figure 1.1.6. However, in certain special cases, it may
happen that there are no solutions, as seen on the right.



1.1. WHAT CANWE EXPECT 7

Figure 1.1.6 Two examples showing the intersections of three planes.

Activity 1.1.2. This activity considers sets of equations having three unknowns. In
this case, we know that the solutions of a single equation form a plane. If it helps
with visualization, consider using 3 × 5-inch index cards to represent planes.

a. Is it possible that there are no solutions to two linear equations in three un-
knowns? Either sketch an example or state a reason why it can’t happen.

b. Is it possible that there is exactly one solution to two linear equations in three
unknowns? Either sketch an example or state a reason why it can’t happen.

c. Is it possible that the solutions to four equations in three unknowns form a line?
Either sketch an example or state a reason why it can’t happen.

d. Whatwould you usually expect for the set of solutions to four equations in three
unknowns?

e. Suppose we have a set of 500 linear equations in 10 unknowns. Which of the
three possibilities would you expect to hold?

f. Suppose we have a set of 10 linear equations in 500 unknowns. Which of the
three possibilities would you expect to hold?

1.1.2 Systems of linear equations

Now that we have seen some simple examples, let’s agree on some terminology to help us
think more precisely about sets of equations.

First, we considered a linear equation having the form

y � 2x − 1.

It will be convenient for us to rewrite this so that all the unknowns are on one side of the
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equation:
−2x + y � −1.

More generally, the equation of a line can always be expressed in the form

ax + b y � c ,

which gives us the flexibility to describe all lines. For instance, vertical lines, such as x � 3,
may be represented in this form.

Notice that each term on the left is the product of a constant and the first power of an un-
known. In the future, we will want to consider equations having many more unknowns,
which we will sometimes denote as x1 , x2 , . . . , xn . This leads to the following definition:

Definition 1.1.7 A linear equation in the unknowns x1 , x2 , . . . , xn may bewritten in the form

a1x1 + a2x2 + . . . + an xn � b,

where a1 , a2 , . . . , an are real numbers known as coefficients. We also say that x1 , x2 , . . . , xn
are the variables in the equation.

By a system of linear equations or a linear system, wemean a set of linear equationswritten
in a common set of unknowns.

For instance,
2x1+ 1.2x2 − 4x3 � 3.7

−0.1x1 + x3 � 2
x1 + x2 − x3 � 1.4

is an example of a linear system.

Definition 1.1.8 A solution to a linear system is simply a set of numbers x1 � s1 , x2 �

s2 , . . . , xn � sn that satisfy all the equations in the system.

For instance, we earlier considered the linear system

−x + y � 1
−2x + y � −1.

To check that (x , y) � (2, 3) is a solution, we verify that the following equations are true.

−2 + 3 � 1
−2(2) + 3 � −1.

Definition 1.1.9 We call the set of all solutions the solution space of the linear system.

Activity 1.1.3 Linear equations and their solutions..
a. Which of the following equations are linear? Please provide a justification for

your response.

1.
2x + x y − 3y2

� 2.
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2.
−2x1 + 3x2 + 4x3 − x5 � 0.

3.
x � 3z − 4y.

b. Consider the system of linear equations:

x + y � 3
y − z � 2

2x + y + z � 4.

1. Is (x , y , z) � (1, 2, 0) a solution?
2. Is (x , y , z) � (−2, 1, 0) a solution?
3. Is (x , y , z) � (0,−3, 1) a solution?
4. Can you find a solution in which y � 0?
5. Do you think there are other solutions? Please explain your response.

1.1.3 Summary

The point of this section is to build some intuition about the behavior of solutions to linear
systems through consideration of some simple examples. We will develop a deeper and
more precise understanding of these phenomena in our future explorations.

• A linear equation is one that may be written in the form

a1x1 + a2x2 + . . . + an xn � b.

• A linear system is a set of linear equations and a solution is a set of values assigned to
the unknowns that make each equation true.

• We came to expect that a linear system has either infinitelymany solutions, exactly one
solution, or no solutions.

• Whenwe addmore equations to a system, the solution space usually seems to become
smaller.
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1.2 Finding solutions to linear systems

In the previous section, we looked at systems of linear equations from a graphical perspec-
tive. Since the equations had only two or three variables, we could study the solution spaces
as the intersections of lines and planes.

Because we will eventually consider systems with many equations and many variables, this
graphical approach will not generally be a useful strategy. Instead, we will approach this
problem algebraically and develop a technique to describe the solution spaces of general
linear systems.

1.2.1 Gaussian elimination

We will develop an algorithm, which is usually called Gaussian elimination, that allows us to
describe the solution space of a linear system. This algorithm plays a central role in much
of what is to come.

Preview Activity 1.2.1. In this activity, we will consider some simple examples that
will guide us in finding a more general approach.

a. Give a description of the solution space to the linear system:

x � 2
y �−1.

b. Give a description of the solution space to the linear system:

−x + 2y − z � −3
3y + z � −1

2z � 4.

c. Give a description of the solution space to the linear system:

x + 3y � −1
2x + y � 3.

d. Describe the solution space to the linear equation 0x � 0.

e. Describe the solution space to the linear equation 0x � 5.

These examples lead to a few observations that motivate a general approach to finding solu-
tions of linear systems.

Observation 1.2.1 First, finding the solution space to some systems is simple. For example,
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because each equation in the following system

x � −4
y � 2.

has only one variable, it prescribes a specific value for that variable. We therefore see that
there is exactly one solution, which is (x , y) � (−4, 2). We call such a system decoupled.

Observation 1.2.2 Second, there is a process that can be used to find solutions to certain
types of linear systems. For instance, let’s consider the system

x + 2y − 2z � −4
−y + z � 3

3z � 3.

Multiplying both sides of the last equation by 1/3 gives us

x + 2y − 2z � −4
−y + z � 3

z � 1.

Any solution to this linear system must then have z � 1.

Once we know that, we can substitute z � 1 into the first and second equations and simplify
to obtain a new system of equations having the same solutions:

x + 2y � −2
−y � 2.

The second equation, after multiplying both sides by −1, tells us that y � −2. We can then
substitute this value into the first equation to determine that x � 2.

In this way, we arrive at a decoupled system, which shows that there is exactly one solution,
namely (x , y , z) � (2,−2, 1).
Our original system,

x + 2y − 2z � −4
−y + z � 3

3z � 3,

is called a triangular system due to the shape formed by the coefficients. As this example
demonstrates, triangular systems are easily solved by this process, which is called back sub-
stitution.
Observation 1.2.3 We can use substitution in amore general way to solve linear systems. For
example, a natural approach to the system

x + 2y � 1
2x + 3y � 3.
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is to use the first equation to express x in terms of y:

x � 1 − 2y

and then substitute this into the second equation and simplify:

2x + 3y � 3
2(1 − 2y) + 3y � 3

2 − 4y + 3y � 3
−y � 1

y � −1

From here, we can substitute y � −1 into the first equation to arrive at the solution (x , y) �
(3,−1).
However, the two-step process of solving for x in terms of y and substituting into the second
equation may be performedmore efficiently by adding a multiple of the first equation to the
second. In this case, we will multiply the first equation by -2 and add to the second equation

−2(equation 1)
+ equation 2

to obtain

−2(x + 2y � 1)
+ 2x + 3y � 3 which gives us

−2x − 4y � −2
+ 2x + 3y � 3

−y � 1.
In this way, the system

x + 2y � 1
2x + 3y � 3

is transformed into the new triangular system

x + 2y � 1
−y � 1.

Notice that this process can be reversed. Beginning with the triangular system, we can re-
cover the original system by multiplying the first equation by 2 and adding it to the second.
Because of this, the two systems have the same solution space. Wewill revisit this point later
and give what may be a more convincing explanation.

Of course, the choice tomultiply the first equation by -2wasmade so that the terms involving
x in the two equationswill cancel leading to a triangular system that can be solved using back
substitution.

Based on these observations, we take note of three operations that transform a system of
linear equations into a new system of equations having the same solution space. Our goal
is to create a new system whose solution space is the same as the original system’s and may
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be easily described.

Scaling We can multiply one equation by a nonzero number. For instance,

2x − 4y � 6

has the same set of solutions as

1
2 (2x − 4y � 6)

or
x − 2y � 3.

Interchange Interchanging equations will not change the set of solutions. For in-
stance,

2x + 4y � 1
x − 3y � 0

has the same set of solutions as

x − 3y � 0
2x + 4y � 1.

Replacement As we saw above, we may multiply one equation by a real number
and add it to another equation. We call this process replacement.

Example 1.2.4 Let’s illustrate the use of these operations to find the solution space to the
system of equations:

x + 2y � 4
2x + y − 3z � 11

−3x − 2y + z � −10

We will first transform the system into a triangular system so we start by eliminating x from
the second and third equations.

We begin with a replacement operation where
we multiply the first equation by -2 and add
the result to the second equation.

x + 2y � 4
−3y − 3z � 3

−3x − 2y + z � −10

Another replacement operation eliminates x
from the third equation. We multiply the first
equation by 3 and add to the third.

x + 2y � 4
−3y − 3z � 3

4y + z � 2

Scale the second equation bymultiplying it by
−1/3.

x + 2y � 4
y + z � −1

4y + z � 2
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Eliminate y from the third equation by multi-
plying the second equation by -4 and adding
it to the third. Notice that we now have a tri-
angular system that can be solved using back
substitution.

x + 2y � 4
y + z � −1

−3z � 6

After scaling the third equation by −1/3, we
have found the value for z.

x + 2y � 4
y + z � −1

z � −2

We eliminate z from the second equation
by multiplying the third equation by -1 and
adding to the second.

x + 2y � 4
y � 1

z � −2

Finally, multiply the second equation by -2
and add to the first to obtain:

x � 2
y � 1
z � −2.

Now that we have arrived at a decoupled system, we know that there is exactly one solution
to our original system of equations, which is (x , y , z) � (2, 1,−2).

One could find the same result by applying a different sequence of replacement and scaling
operations. However, we chose this particular sequence guided by our desire to first trans-
form the system into a triangular one. To do this, we eliminated the first variable x from all
but one equation and then proceeded to the next variables working left to right. Once we
had a triangular system, we used back substitution moving through the variables right to
left.

We call this process Gaussian elimination and note that it is our primary tool for solving sys-
tems of linear equations.

Activity 1.2.2 Gaussian Elimination.. For each of the following linear systems, use
Gaussian elimination to describe the solutions to the following systems of linear equa-
tions. In particular, determine whether each linear system has exactly one solution,
infinitely many solutions, or no solutions.

a.
x + y + 2z � 1

2x − y − 2z � 2
−x + y + z � 0

b.
−x − 2y + 2z � −1
2x + 4y − z � 5

x + 2y � 3

c.
−x − 2y + 2z � −1
2x + 4y − z � 5

x + 2y � 2
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1.2.2 Augmented matrices

After performing Gaussian elimination a few times, you probably noticed that you spent
most of the time concentrating on the coefficients and simply recorded the variables as place
holders. Based on this observation, we will introduce a shorthand description of linear sys-
tems.

When writing a linear system, we always write the variables in the same order in each equa-
tion. We then construct an augmented matrix by simply forgetting about the variables and
recording the numerical data in a rectangular array. For instance, the system of equations
below has the following augmented matrix

−x − 2y + 2z � −1
2x + 4y − z � 5

x + 2y � 3


−1 −2 2 −1

2 4 −1 5
1 2 0 3

 .
The vertical line reminds us where the equals signs appear in the equations. Entries in the
matrix to the left of the vertical line correspond to coefficients of the equations. We some-
times choose to focus only on the coefficients of the system in which case we write the coef-
ficient matrix as 

−1 −2 2
2 4 −1
1 2 0

 .
The three operations we perform on systems of equations translate naturally into operations
on matrices. For instance, the replacement operation that multiplies the first equation by 2
and adds it to the second may be performed by multiplying the first row of the augmented
matrix by 2 and adding it to the second row:

−1 −2 2 −1
2 4 −1 5
1 2 0 3

 ∼

−1 −2 2 −1

0 0 3 3
1 2 0 3

 .
The symbol ∼ between thematrices indicates that the twomatrices are related by a sequence
of scaling, interchange, and replacement operations. Since these operations act on the rows
of the matrices, we say that the matrices are row equivalent. Notice that the linear systems
corresponding to two row equivalent augmented matrices have the same solution space.

Activity 1.2.3 Augmented matrices and solution spaces..
a. Write the augmented matrix for the linear system

x + 2y − z � 1
3x + 2y + 2z � 7
−x + 4z � −3

and perform Gaussian elimination to describe the solution space in as much
detail as you can.

b. Suppose that you have a linear system in the variables x and y whose aug-
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mented matrix is row equivalent to
1 0 3
0 1 0
0 0 0

 .
Write the linear system corresponding to this augmented matrix and describe
its solution set in as much detail as you can.

c. Suppose that you have a linear system in the variables x and y whose aug-
mented matrix is row equivalent to

1 0 3
0 1 0
0 0 1

 .
Write the linear system corresponding to this augmented matrix and describe
its solution set in as much detail as you can.

d. Suppose that the augmented matrix of a linear system has the following shape
where ∗ could be any real number.

∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗

 .
1. How many equations are there in this system and how many variables?
2. Based on our earlier discussion in Section 1.1, do you think it’s possible

that this system has exactly one solution, infinitely many solutions, or no
solutions?

3. Suppose that this augmented matrix is row equivalent to
1 2 0 0 3 2
0 0 1 2 −1 −1
0 0 0 0 0 0

 .
Make a choice for the names of the variables and write the corresponding
linear system. Does the system have exactly one solution, infinitely many
solutions, or no solutions?

1.2.3 Reduced row echelon form

There is a special class of matrices whose form makes it especially easy to describe the solu-
tion space of the corresponding linear system. As we describe the properties of this class of
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matrices, it may be helpful to consider an example, such as the following matrix.
1 ∗ 0 ∗ 0 ∗
0 0 1 ∗ 0 ∗
0 0 0 0 1 ∗
0 0 0 0 0 0
0 0 0 0 0 0


.

Definition 1.2.5 We say that a matrix is in reduced row echelon form if the following properties
are satisfied.

• If the entries in a row are all zero, then the same is true of any row below it.

• If we move across a row from left to right, the first nonzero entry we encounter is 1.
We call this entry the leading entry in the row.

• The leading entry in any row is to the right of the leading entries in all the rows above
it.

• A leading entry is the only nonzero entry in its column.

We call a matrix in reduced row echelon form a reduced row echelon matrix.

We have been intentionally vague about whether the matrix we are considering is an aug-
mentedmatrix corresponding to a linear system or a coefficientmatrix sincewewill consider
both possibilities in the future.

Activity 1.2.4 Identifying reduced row echelon matrices.. Consider each of the fol-
lowing augmented matrices. Determine if the matrix is in reduced row echelon form.
If it is not, perform a sequence of scaling, interchange, and replacement operations
to obtain a row equivalent matrix that is in reduced row echelon form. Then use the
reduced row echelon matrix to describe the solution space.

a.
[

2 0 4 −8
0 1 3 2

]
.

b.


1 0 0 −1
0 1 0 3
0 0 1 1

 .
c.


1 0 4 2
0 1 3 2
0 0 0 1

 .
d.


0 1 3 2
0 0 0 0
1 0 4 2

 .
e.


1 2 −1 2
0 1 −2 0
0 0 1 1

 .
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The examples in the previous activity indicate that there is a sequence of row operations
that transforms any matrix into one in reduced row echelon form. Moreover, the conditions
that define reduced row echelon matrices guarantee that this matrix is unique.

Theorem 1.2.6 For any given matrix, there is exactly one reduced row echelon matrix to which it is
row equivalent.

Once we have this reduced row echelon matrix, we may describe the set of solutions to the
corresponding linear system with relative ease.

Example 1.2.7 Describing the solution space from a reduced row echelon matrix.
a. Consider the reduced row echelon matrix[

1 0 2 −1
0 1 1 2

]
and its corresponding linear system as

x + 2z � −1
y + z � 2.

Let’s rewrite the equations as
x � −1 − 2z
y � 2 − z.

From this description, it is clear that we obtain a solution for any value of the variable
z. For instance, if z � 2, then x � −5 and y � 0 so that (x , y , z) � (−5, 0, 2) is a solution.
Similarly, if z � 0, we see that (x , y , z) � (−1, 2, 0) is also a solution.
Because there is no restriction on the value of z, we call it a free variable, and note that
the linear system has infinitely many solutions. The variables x and y are called basic
variables as they are determined once we make a choice of the free variable.
We will call this description of the solution space, in which the basic variables are
written in terms of the free variables, a parametric description of the solution space.

b. Consider the matrix 
1 0 0 4
0 1 0 −3
0 0 1 1
0 0 0 0

 .
The last equation gives

0x + 0y + 0z � 0,

which is true for any (x , y , z). We may safely ignore this equation since it does not
impose a restriction on (x , y , z). We then see that there is a unique solution (x , y , z) �
(4,−3, 1).

c. Consider the matrix 
1 0 2 0
0 1 −1 0
0 0 0 1

 .
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Beginning with the last equation, we see that

0x + 0y + 0z � 0 � 1,

which is not true for any (x , y , z). There is no solution to this particular equation and
therefore no solution to the system of equations.

1.2.4 Summary

We saw several important concepts in this section.

• We can describe the solution space to a linear system by transforming it into a new lin-
ear system having the same solution space through a sequence of scaling, interchange,
and replacement operations.

• We can represent a linear system by an augmented matrix. Using scaling, interchange,
and replacement operations, the augmented matrix is row equivalent to exactly one
reduced row echelon matrix. The process of constructing this reduced row echelon
matrix is called Gaussian elimination.

• The reduced row echelon matrix allows us to easily describe the solution space of a
linear system.

1.2.5 Exercises

1. For each of the linear systems below, write the associated augmented matrix and find
the reduced row echelon matrix that is row equivalent to it. Identify the basic and
free variables and then describe the solution space of the original linear system using
a parametric description, if appropriate.

a.
2x + y � 0

x + 2y � 3
−2x + 2y � 6

b.
−x1 + 2x2 + x3 � 2
3x1 + 2x3 � −1
−x1 − x2 + x3 � 2

c.
x1 + 2x2 − 5x3 − x4 � −3

−2x1 − 2x2 + 6x3 − 2x4 � 4
x1 − x3 + 9x4 � −7

−x2 + 2x3 − x4 � 4
2. Consider each matrix below and determine if it is in reduced row echelon form. If not,

indicate the reason and apply a sequence of row operations to find its reduced row
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echelon matrix. For each matrix, indicate whether the corresponding linear system has
infinitely many solutions, exactly one solution, or no solutions.

a. 
1 1 0 3 3
0 1 0 −2 1
0 0 1 3 4


b. 

1 0 0 0 0
0 2 0 0 0
0 0 −3 0 0
0 0 0 1 0
0 0 0 0 1


c. 

1 0 0 3 3
0 1 0 −2 1
0 0 1 3 4
0 0 0 3 3


d. 

0 0 1 0 −1
0 1 0 0 3
1 1 1 1 2


3. Give an example of a reduced row echelonmatrix that describes a linear system having

the stated properties. If it is not possible to find such an example, explain why not.
a. Write a reduced row echelonmatrix for a linear system having five equations and

three variables and having exactly one solution.

b. Write a reduced row echelon matrix for a linear system having three equations
and three variables and having no solution.

c. Write a reduced row echelon matrix for a linear system having three equations
and five variables and having infinitely many solutions.

d. Write a reduced row echelon matrix for a linear system having three equations
and four variables and having exactly one solution.

e. Write a reduced row echelonmatrix for a linear system having four equations and
four variables and having exactly one solution.

4. For any given matrix, Theorem 1.2.6 tells us that there is a reduced row echelon matrix
that is row equivalent to it. This exercise demonstrates why this is the case. Each of
the following matrices satisfies three of the four conditions required of a reduced row
echelon matrix as prescribed by Definition 1.2.5. For each, indicate how a sequence of
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row operations can be applied to form a row equivalent reduced row echelon matrix.
a. 

1 0 2 3
0 0 0 0
0 1 −2 1


b. 

1 0 0 2
0 −2 0 −4
0 0 1 1


c. 

0 1 0 −2
0 0 1 4
1 0 0 3
0 0 0 0
0 0 0 0


d. 

1 0 2 3
0 1 3 0
0 0 1 −1
0 0 0 0


5. For each of the questions below, provide a justification for your response.

a. What does the presence of a row whose entries are all zero in an augmented ma-
trix tell us about the solution space of the linear system?

b. How can you determine if a linear system has no solutions directly from its re-
duced row echelon matrix?

c. How can you determine if a linear system has infinitely many solutions directly
from its reduced row echelon matrix?

d. What can you say about the solution space of a linear system if there are more
variables than equations and at least one solution exists?

6. Determine whether the following statements are true or false and explain your reason-
ing.

a. If every variable is basic, then the linear system has exactly one solution.

b. If two augmented matrices are row equivalent to one another, then they describe
two linear systems having the same solution spaces.

c. The presence of a free variable indicates that there are no solutions to the linear
system.

d. If a linear system has exactly one solution, then it must have the same number of
equations as variables.

e. If a linear system has the same number of equations as variables, then it has ex-
actly one solution.
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1.3 Computation with Sage

Linear algebra owes its prominence as a powerful scientific tool to the ever-growing power
of computers. Carl Cowen, a former president of the Mathematical Association of America,
has said, “No serious application of linear algebra happens without a computer.” Indeed,
Cowen notes that, in the 1950s, working with a system of 100 equations in 100 variables was
difficult. Today, scientists and mathematicians routinely work on problems that are vastly
larger. This is only possible because of today’s computing power.

It is therefore important for any student of linear algebra to become comfortable solving
linear algebraic problems on a computer. This sectionwill introduce you to a program called
Sage that can help. While you may be able to do much of this work on a graphing calculator,
you are encouraged to become comfortable with Sage as we will use increasingly powerful
features as we encounter their need.

1.3.1 Introduction to Sage

There are several ways to access Sage.

• If you are reading this book online, there will be embedded “Sage cells” at appropriate
places in the text. You have the opportunity to type Sage commands into these cells
and execute them, provided you are connected to the Internet. Please be aware that
your work will be lost if you reload the page.
Here is a Sage cell containing a command that asks Sage to multiply 5 and 3. You may
execute the command by pressing the Evaluate button.

5 * 3

• You may also go to cocalc.com, sign up for an account, open a new project, and create
a “Sage worksheet.” Once inside the worksheet, you may enter commands as shown
here, and evaluate them by pressing Enter on your keyboard while holding down the
Shift key.

• There is a page of Sage cells at gsvu.edu/s/0Ng. Any results obtained by evaluating
one cell are available in other cells. However, your work will be lost when the page is
reloaded.

Throughout the text, we will introduce new Sage commands that allow us to explore linear
algebraic concepts. These commands are collected and summarized in the reference found
in Appendix A.

Activity 1.3.1 Basic Sage commands..
a. Sage uses the standard operators +, -, ∗, /, and ^ for the usual arithmetic opera-

tions. By entering text in the cell below, ask Sage to evaluate

3 + 4(24 − 1)

https://cocalc.com
http://gvsu.edu/s/0Ng
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b. Notice that we can create new lines by pressing Enter and entering additional
commands on them. What happens when you evaluate this Sage cell?

5 * 3
10 - 4

Notice that we only see the result from the last command. With the print com-
mand, we may see earlier results, if we wish.

print (5 * 3)
print (10 - 4)

c. We may give a name to the result of one command and refer to it in a later
command.

income = 1500 * 12
taxes = income * 0.15
print(taxes)

Suppose you have three tests in your linear algebra class and your scores are 90,
100, and 98. In the Sage cell below, add your scores together and call the result
total. On the next line, find the average of your test scores and print it.

d. If you are not a programmer, youmay ignore this part. If you are an experienced
programmer, however, you should know that Sage is written in the Python pro-
gramming language and that you may enter Python code into a Sage cell.

for i in range (10):
print(i)

1.3.2 Sage and matrices

When we encounter a matrix, Theorem 1.2.6 tells us that there is exactly one reduced row
echelon matrix that is row equivalent to it.

In fact, the uniqueness of this reduced row echelon matrix is what motivates us to define
this particular form. When solving a system of linear equations using Gaussian elimination,
there are other row equivalent matrices that reveal the structure of the solution space. The
reduced row echelonmatrix is simply a convenience as it is an agreement wemake with one
another to seek the same matrix.

An added benefit is that we can ask a computer program, like Sage, to find reduced row
echelon matrices for us. We will learn how to do this now that we have a little familiarity
with Sage.
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First, notice that amatrix has a certain number of rows and columns. For instance, thematrix
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


has three rows and five columns. We consequently refer to this as a 3 × 5 matrix.

We may ask Sage to create the 2 × 4 matrix[
−1 0 2 7

2 1 −3 −1

]
by entering

matrix(2, 4, [-1, 0, 2, 7, 2, 1, -3, -1])

When evaluated, Sage will confirm the matrix by writing out the rows of the matrix, each
inside square brackets.

Notice that there are three separate things (we call them arguments) inside the parentheses:
the number of rows, the number of columns, and the entries of the matrix listed by row
inside square brackets. These three arguments are separated by commas. Notice that there
is no way of specifying whether this is an augmented or coefficient matrix so it will be up to
us to interpret our results appropriately.

Sage syntax.

Some common mistakes are
• to forget the square brackets around the list of entries,

• to omit an entry from the list or to add an extra one,

• to forget to separate the rows, columns, and entries by commas, and

• to omit the parentheses around the arguments after matrix.

If you see an error message, carefully proofread your input and try again.

Alternatively, you can create a matrix by simply listing its rows, like this

matrix([ [-1, 0, 2, 7],
[ 2, 1,-3,-1] ])
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Activity 1.3.2 Using Sage to find row reduced echelon matrices..
a. Enter the following matrix into Sage.

−1 −2 2 −1
2 4 −1 5
1 2 0 3


b. Give the matrix the name A by entering

A = matrix( ..., ..., [ ... ])

We may then find its reduced row echelon form by entering

A = matrix( ..., ..., [ ... ])
A.rref()

A common mistake is to forget the parentheses after rref.
Use Sage to find the reduced row echelon form of the matrix from Item a of this
activity.

c. Use Sage to describe the solution space of the system of linear equations

−x1 + 2x4 � 4
3x2 + x3 + 2x4 � 3

4x1 − 3x2 + x4 � 14
2x2 + 2x3 + x4 � 1

d. Consider the two matrices:

A �


1 −2 1 −3

−2 4 1 1
−4 8 −1 7


B �


1 −2 1 −3 0 3

−2 4 1 1 1 −1
−4 8 −1 7 3 2


We say that B is an augmentation of A because it is obtained from A by adding
some more columns.
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Using Sage, define the matrices and compare their reduced row echelon forms.
What do younotice about the relationship between the two reduced rowechelon
forms?

e. Using the system of equations in Item c, write the augmented matrix corre-
sponding to the system of equations. What did you find for the reduced row
echelon form of the augmented matrix?
Now write the coefficient matrix of this system of equations. What does Item d
of this activity tell you about its reduced row echelon form?

Sage practices.

Here are some practices that you may find helpful when working with matrices in
Sage.

• Break the matrix entries across lines, one for each row, for better readability by
pressing Enter between rows.

A = matrix(2, 4, [ 1, 2, -1, 0,
-3, 0, 4, 3 ])

• Print your original matrix to check that you have entered it correctly. You may
want to also print a dividing line to separate matrices.

A = matrix(2, 2, [ 1, 2,
2, 2])

print (A)
print (”---------”)
A.rref()

The last part of the previous activity, Item d, demonstrates something that will be helpful
for us in the future. In that activity, we started with a matrix A, which we augmented by
adding some columns to obtain a matrix B. We then noticed that the reduced row echelon
form of B is itself an augmentation of the reduced row echelon form of A.

To illustrate, we can consider the reduced row echelon form of the augmented matrix:
−2 3 0 2
−1 4 1 3
3 0 2 2
1 5 3 7

 ∼


1 0 0 −4
0 1 0 −2
0 0 1 7
0 0 0 0


We can then determine the reduced row echelon form of the coefficient matrix by looking
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inside the augmented matrix. 
−2 3 0
−1 4 1
3 0 2
1 5 3

 ∼


1 0 0
0 1 0
0 0 1
0 0 0


If we trace through the steps in the Gaussian elimination algorithm carefully, we see that
this is a general principle, which we now state.

Proposition 1.3.1 Augmentation Principle. If matrix B is an augmentation of matrix A, then
the reduced row echelon form of B is an augmentation of the reduced row echelon form of A.

1.3.3 Computational effort

At the beginning of this section, we indicated that linear algebra has become more promi-
nent as computers have grown more powerful. Computers, however, still have limits. Let’s
consider how much effort is expended when we ask to find the reduced row echelon form
of a matrix. We will measure, very roughly, the effort by the number of times the algorithm
requires us to multiply or add two numbers.

We will assume that our matrix has the same number of rows as columns, which we call n.
We are mainly interested in the case when n is very large, which is when we need to worry
about how much effort is required.

Let’s first consider the effort required for each of our row operations.

• Scaling a rowmultiplies each of the n entries in a row by some number, which requires
n operations.

• Interchanging two rows requires no multiplications or additions so we won’t worry
about the effort required by an interchange.

• A replacement requires us to multiply each entry in a row by some number, which
takes n operations, and then add the resulting entries to another row, which requires
another n operations. The total number of operations is 2n.

Our goal is to transform a matrix to its reduced row echelon form, which looks something
like this: 

1 0 . . . 0
0 1 . . . 0
...
...
. . . 0

0 0 . . . 1


.

We roughly perform one replacement operation for every 0 entry in the reduced row echelon
matrix. When n is very large, most of the n2 entries in the reduced row echelon form are 0 so
we need roughly n2 replacements. Since each replacement operation requires 2n operations,
the number of operations resulting from the needed replacements is roughly n2(2n) � 2n3.
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Each row is scaled roughly one time so there are roughly n scaling operations, each of which
requires n operations. The number of operations due to scaling is roughly n2.

Therefore, the total number of operations is roughly

2n3
+ n2.

When n is very large, the n2 term is much smaller than the n3 term. We therefore state that

Observation 1.3.2 The number of operations required to find the reduced row echelon form
of an n × n matrix is roughly proportional to n3.

This is a very rough measure of the effort required to find the reduced row echelon form; a
more careful accounting shows that the number of arithmetic operations is roughly 2

3 n3. As
we have seen, some matrices require more effort than others, but the upshot of this obser-
vation is that the effort is proportional to n3. We can think of this in the following way: If
the size of the matrix grows by a factor of 10, then the effort required grows by a factor of
103 � 1000.

While today’s computers are powerful, they cannot handle every problem we might ask of
them. Eventually, we would like to be able to consider matrices that have n � 1012 (a trillion)
rows and columns. In very broad terms, the effort required to find the reduced row echelon
matrix will require roughly (1012)3 � 1036 operations.

To put this into context, imagine we need to solve a linear system with a trillion equations
and a trillion variables and that we have a computer that can perform a trillion, 1012, oper-
ations every second. Finding the reduced row echelon form would take about 1016 years.
At this time, the universe is estimated to be approximately 1010 years old. If we started the
calculation when the universe was born, we’d be about one-millionth of the way through.

This may seem like an absurd situation, but we’ll see in Subsection 4.5.3 how we use the
results of such a computation every day. Clearly, we will need some better tools to deal with
really big problems like this one.

1.3.4 Summary

We learned somebasic features of Sagewith an emphasis onfinding the reduced rowechelon
form of a matrix.

• Sage can perform basic arithmetic using standard operators. Sage can also save results
from one command to be reused in a later command.

• Wemay definematrices in Sage and find the reduced row echelon form using the rref
command.

• We saw an example of the Augmentation Principle, which we then stated as a general
principle.

• We saw that the computational effort required to find the reduced row echelon form
of an n × n matrix is proportional to n3.

Appendix A contains a reference outlining the Sage commands that we have encountered.
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1.3.5 Exercises

1. Consider the linear system
x + 2y − z � 1

3x + 2y + 2z � 7
−x + 4z � −3

Write this system as an augmented matrix and use Sage to find a description of the
solution space.

2. Shown below are some traffic patterns in the downtown area of a large city. The figures
give the number of cars per hour traveling along each road. Any car that drives into an
intersection must also leave the intersection. This means that the number of cars enter-
ing an intersection in an hour is equal to the number of cars leaving the intersection.

a. Let’s begin with the following traffic pattern.

i. How many cars per hour enter the upper left intersection? How many cars
per hour leave this intersection? Use this to form a linear equation in the
variables x, y, z, and w.

x 100 260

y w

250 z 390

ii. Form three more linear equations from the other three intersections to form
a linear system having four equations in four variables. Then use Sage to
find the solution space to this system.

iii. Is there exactly one solution or infinitely many solutions? Explain why you
would expect this given the information provided.

b. Another traffic pattern is shown below.

650 y 580

x w

150 z 220
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i. Once again, write a linear system for the quantities x, y, z, and w and solve
the system using the Sage cell below.

ii. What can you say about the solution of this linear system? Is there exactly
one solution or infinitely many solutions? Explain why you would expect
this given the information provided.

iii. What is the smallest possible amount of traffic flowing through x?
3. A typical problem in thermodynamics is to find the steady-state temperature distribu-

tion inside a thin plate ifwe know the temperature around the boundary. LetT1 , T2 , . . . , T6
be the temperatures at the six nodes inside the plate as shown below.

10 20 30

10

10

40

30

15 20 25

T4 T5 T6

T1 T2 T3

The temperature at a node is approximately the average of the four nearest nodes: for
instance,

T1 � (10 + 15 + T2 + T4)/4,

which we may rewrite as
4T1 − T2 − T4 � 25.

Set up a linear system to find the temperature at these six points inside the plate. Then
use Sage to solve the linear system. If all the entries of the matrix are integers, Sage will
compute the reduced row echelon form using rational numbers. To view a decimal
approximation of the results, you may use

A.rref().numerical_approx(digits=4)

In the real world, the approximation becomes better as we add more and more points
into the grid. This is a situation where we may want to solve a linear system having
millions of equations and millions of variables.

4. The fuel inside model rocket motors is a black powder mixture that ideally consists of
60% charcoal, 30% potassium nitrate, and 10% sulfur by weight.



1.3. COMPUTATION WITH SAGE 31

Suppose you work at a company that makes model rocket motors. When you come
into work one morning, you learn that yesterday’s first shift made a perfect batch of
fuel. The second shift, however, misread the recipe and used 50% charcoal, 20% potas-
sium nitrate and 30% sulfur. Then the two batches were mixed together. A chemical
analysis shows that there are 100.3 pounds of charcoal in the mixture and 46.9 pounds
of potassium nitrate.

a. Assuming the first shift produced x pounds of fuel and the second y pounds, set
up a linear system in terms of x and y. How many pounds of fuel did the first
shift produce and how many did the second shift produce?

b. How much sulfur would you expect to find in the mixture?
5. This exercise is about balancing chemical reactions.

a. Chemists denote a molecule of water as H2O, which means it is composed of
two atoms of hydrogen (H) and one atom of oxygen (O). The process by which
hydrogen burns is described by the chemical reaction

x H2 + y O2 → z H2O

Thismeans that x molecules of hydrogenH2 combinewith y molecules of oxygen
O2 to produce z water molecules. The number of hydrogen atoms is the same
before and after the reaction; the same is true of the oxygen atoms.

1. In terms of x, y, and z, how many hydrogen atoms are there before the reac-
tion? How many hydrogen atoms are there after the reaction? Find a linear
equation in x, y, and z by equating these quantities.

2. Find a second linear equation in x, y, and z by equating the number of oxy-
gen atoms before and after the reaction.

3. Find the solutions of this linear system. Why are there infinitely many solu-
tions?

4. In this chemical setting, x, y, and z should be positive integers. Find the
solution where x, y, and z are the smallest possible positive integers.

b. Now consider the reaction where potassium permanganate and manganese sul-
fate combine with water to produce manganese dioxide, potassium sulfate, and
sulfuric acid:

x1 KMnO4 + x2 MnSO4 + x3 H2O → x4 MnO2 + x5 K2SO4 + x6 H2SO4.

As in the previous exercise, find the appropriate values for x1 , x2 , . . . , x6 to bal-
ance the chemical reaction.

6. We began this section by stating that increasing computational power has helped linear
algebra assume a prominent role as a scientific tool. Later, we looked at one computa-
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tional limitation: once a matrix gets to be too big, it is not reasonable to apply Gaussian
elimination to find its reduced row echelon form.

In this exercise, we will see another limitation: computer arithmetic with real numbers
is only an approximation because computers represent real numbers with only a finite
number of bits. For instance, the number pi

π � 3.141592653589793238462643383279502884197169399 . . .

would be approximated inside a computer by, say,

π ≈ 3.141592653589793

Most of the time, this is not a problem. However, when we perform millions or even
billions of arithmetic operations, the error in these approximations starts to accumulate
and can lead to results that arewildly inaccurate. Here are two examples demonstrating
this.

a. Let’s first see an example showing that computer arithmetic really is an approxi-
mation. First, consider the linear system

x +
1
2 y +

1
3 z � 1

1
2 x +

1
3 y +

1
4 z � 0

1
3 x +

1
4 y +

1
5 z � 0

If the coefficients are entered into Sage as fractions, Sage will find the exact re-
duced row echelon form. Find the exact solution to this linear system.

Now let’s ask Sage to compute with real numbers. We can do this by representing
one of the coefficients as a decimal. For instance, the same linear system can be
represented as

x + 0.5y +
1
3 z � 1

1
2 x +

1
3 y +

1
4 z � 0

1
3 x +

1
4 y +

1
5 z � 0

Most computers do arithmetic using either 32 or 64 bits. To magnify the problem
so that we can see it better, we will ask Sage to do arithmetic using only 10 bits as
follows.

R = RealNumber
RealNumber = RealField (10)

# enter the matrix below
A = matrix( ..., ..., [ ... ] )

print (A.rref())
RealNumber = R
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What does Sage give for the solution now? Compare this to the exact solution
that you found previously.

b. Some types of linear systems are particularly sensitive to errors resulting from
computers’ approximate arithmetic. For instance, suppose we are interested in
the linear system

x + y � 2
x + 1.001y � 2

Find the solution to this linear system.

Suppose now that the computer has accumulated some error in one of the entries
of this system so that it incorrectly stores the system as

x + y � 2
x + 1.001y � 2.001

Find the solution to this linear system.

Notice how a small error in one of the entries in the linear system leads to a solu-
tion that has a dramatically large error. Fortunately, this is an issue that has been
well studied, and there are techniques that mitigate this type of behavior.
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1.4 Pivots and their influence on solution spaces

By now, we have seen several examples illustrating how the reduced row echelon matrix
leads to a convenient description of the solution space to a linear system. In this section, we
will use this understanding to make some general observations about how certain features
of the reduced row echelon matrix reflect the nature of the solution space.

Remember that a leading entry in a reduced row echelon matrix is the leftmost nonzero
entry in a row of the matrix. As we’ll see, the positions of these leading entries encode a lot
of information about the solution space of the corresponding linear system. For this reason,
we make the following definition.

Definition 1.4.1 A pivot position in a matrix A is the position of a leading entry in the
reduced row echelon matrix of A.

For instance, in this reduced row echelon matrix, the pivot positions are indicated in bold:
1 0 ∗ 0
0 1 ∗ 0
0 0 0 1
0 0 0 0

 .
We can refer to pivot positions by their row and column number saying, for instance, that
there is a pivot position in the second row and fourth column.

Preview Activity 1.4.1 Some basic observations about pivots..
a. Shown below is a matrix and its reduced row echelon form. Indicate the pivot

positions. 
2 4 6 −1

−3 1 5 0
1 3 5 1

 ∼


1 0 −1 0
0 1 2 0
0 0 0 1

 .
b. Howmany pivot positions can there be in one row? In a 3×5 matrix, what is the

largest possible number of pivot positions? Give an example of a 3 × 5 matrix
that has the largest possible number of pivot positions.

c. How many pivots can there be in one column? In a 5 × 3 matrix, what is the
largest possible number of pivot positions? Give an example of a 5 × 3 matrix
that has the largest possible number of pivot positions.

d. Give an example of a matrix with a pivot position in every row and every col-
umn. What is special about such a matrix?

Whenwehave looked at solution spaces of linear systems, we have frequently askedwhether
there are infinitely many solutions, exactly one solution, or no solutions. We will now break
this question into two separate questions.

Question 1.4.2 Two Fundamental Questions. Whenwe encounter a linear system, we often
ask
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Existence Is there a solution to the linear system? If so, we say that the system
is consistent; if not, we say it is inconsistent.

Uniqueness If the linear system is consistent, is the solution unique or are there
infinitely many solutions?

These two questions represent two sides of a coin that appear inmany variations throughout
our explorations. In this section, we will study how the location of the pivots influence the
answers to these two questions. We begin by considering the first question concerning the
existence of solutions.

1.4.1 The existence of solutions

Activity 1.4.2.
a. Shown below are three augmented matrices in reduced row echelon form.


1 0 0 3
0 1 0 0
0 0 1 −2
0 0 0 0




1 0 2 3
0 1 −1 0
0 0 0 0
0 0 0 0




1 0 2 0
0 1 −1 0
0 0 0 1
0 0 0 0


For eachmatrix, identify the pivot positions and determine if the corresponding
linear system is consistent. Explain how the location of the pivots determines
whether the system is consistent or inconsistent.

b. Each of the augmented matrices above has a row in which each entry is zero.
What, if anything, does the presence of such a row tell us about the consistency
of the corresponding linear system?

c. Give an example of a 3× 5 augmented matrix in reduced row echelon form that
represents a consistent system. Indicate the pivot positions in your matrix and
explain why these pivot positions guarantee a consistent system.

d. Give an example of a 3× 5 augmented matrix in reduced row echelon form that
represents an inconsistent system. Indicate the pivot positions in your matrix
and explain why these pivot positions guarantee an inconsistent system.

e. Write the reduced row echelon form of the coefficient matrix of the correspond-
ing linear system in Item d? (Remember that the Augmentation Principle says
that the reduced row echelon form of the coefficient matrix simply consists of
the first four columns of the augmented matrix.) What do you notice about the
pivot positions in this coefficient matrix?

f. Suppose we have a linear system for which the coefficient matrix has the follow-
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ing reduced row echelon form.
1 0 0 0 −1
0 1 0 0 2
0 0 1 0 0
0 0 0 1 −3


What can you say about the consistency of the linear system?

Let’s summarize the results of this activity by considering the following reduced row eche-
lon matrix: 

1 ∗ 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 .
In terms of variables x, y, and z, the final equation says

0x + 0y + 0z � 0.

If we evaluate the left-hand side with any values of x, y, and z, we get 0, which means that
the equation always holds. Therefore, its presence has no effect on the solution space defined
by the other three equations.

The third equation, however, says that

0x + 0y + 0z � 1.

Again, if we evaluate the left-hand side with any values of x, y, and z, we get 0 so this
equation cannot be satisfied for any (x , y , z). This means that the entire linear system has
no solution and is therefore inconsistent.

An equation like this appears in the reduced row echelon matrix as
...
...
...
...
...

0 0 · · · 0 1
...
...
...
...
...

 .
The pivot positionsmake this condition clear: the system is inconsistent if there is a pivot position
in the rightmost column of the corresponding augmented matrix.

In fact, we will soon see that the system is consistent if there is not a pivot in the rightmost
column of the corresponding augmented matrix. This leaves us with the following

Proposition 1.4.3 A linear system is inconsistent if and only if there is a pivot position in the right-
most column of the corresponding augmented matrix.

This also says something about the pivot positions of the coefficient matrix. Consider an
example of an inconsistent system corresponding to the reduced row echelon form of the
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following augmented matrix 
1 0 ∗ 0
0 1 ∗ 0
0 0 0 1

 .
The Augmentation Principle says that that the reduced row echelon form of the coefficient
matrix is 

1 0 ∗
0 1 ∗
0 0 0

 ,
which shows that the coefficient matrix has a row without a pivot position. To turn this
around, we see that if every row of the coefficient matrix has a pivot position, then the system must
be consistent. For instance, if our linear system has a coefficient matrix whose reduced row
echelon form is 

1 0 0
0 1 0
0 0 1

 ,
then we can guarantee that the linear system is consistent because there is no way to obtain
a pivot in the rightmost column of the augmented matrix.

Proposition 1.4.4 If every row of the coefficient matrix has a pivot position, then the corresponding
system of linear equations is consistent.

1.4.2 The uniqueness of solutions

Now that we have studied the role that pivot positions play in the existence of solutions, let’s
turn to the question of uniqueness.

Activity 1.4.3.
a. Here are the three augmented matrices in reduced row echelon form that we

considered in the previous section.


1 0 0 3
0 1 0 0
0 0 1 −2
0 0 0 0




1 0 2 3
0 1 −1 0
0 0 0 0
0 0 0 0




1 0 2 0
0 1 −1 0
0 0 0 1
0 0 0 0


For each matrix, identify the pivot positions and state whether the correspond-
ing linear system is consistent. If the system is consistent, explain whether the
solution is unique or whether there are infinitely many solutions.

b. If possible, give an example of a 3 × 5 augmented matrix that corresponds to a
linear system having a unique solution. If it is not possible, explain why.

c. If possible, give an example of a 5 × 3 augmented matrix that corresponds to a
linear system having a unique solution. If it is not possible, explain why.
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d. What condition on the pivot positions guarantees that a linear system has a
unique solution?

e. If a linear system has a unique solution, what can we say about the relationship
between the number of equations and the number of variables?

Let’s consider what we’ve learned in this activity. Since we are interested in the question
of whether a consistent linear system has a unique solution or infinitely many, we will only
consider consistent systems. By the results of the previous section, this means that there
is not a pivot in the rightmost column of the augmented matrix. Here are two possible
examples: 

1 0 0 4
0 1 0 −1
0 0 1 2




1 0 2 −2
0 1 1 4
0 0 0 0


In the first example, we have the equations

x1 � 4
x2 � −1
x3 � 2

demonstrating the fact that there is a unique solution (x1 , x2 , x3) � (4,−1, 2).
In the second example, we have the equations

x1 + 2x3 � −2
x2 + x3 � 4

that we may rewrite in parametric form as

x1 � −2 − 2x3

x2 � 4 − x3
.

Here we see that x1 and x2 are basic variables that may be expressed in terms of the free
variable x3. In this case, the presence of the free variable leads to infinitely many solutions.

Remember that every column of the coefficientmatrix corresponds to a variable in our linear
system. In the first example, we see that every column of the coefficient contains a pivot
position, which means that every variable is uniquely determined. In the second example,
the column of the coefficient matrix corresponding to x3 does not contain a pivot position,
which results in x3 appearing as a free variable. This illustrates the following principle.

Principle 1.4.5 Suppose that we consider a consistent linear system.
• If every column of the coefficient matrix contains a pivot position, then the system has a unique
solution.

• If there is a column in the coefficient matrix that contains no pivot position, then the system has
infinitely many solutions.

• Columns that contain a pivot position correspond to basic variables while columns that do not
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correspond to free variables.

When a linear system has a unique solution, every column of the coefficient matrix has a
pivot position. Since every row contains at most one pivot position, there must be at least as
many rows as columns in the coefficient matrix. Therefore, the linear system has at least as
many equations as variables, which is something we intuitively suspected in Section 1.1.

It is reasonable to ask how we choose the free variables. For instance, if we have a single
equation

x + 2y � 4,

then we may write
x � 4 − 2y

or, equivalently,

y � 2 − 1
2 x.

Clearly, either variable may be considered as a free variable in this case.

As we’ll see in the future, we are more interested in the number of free variables rather than
in their choice. For convenience, wewill adopt the convention that free variables correspond
to columns without a pivot position, which allows us to quickly identify them. For example,
the variables x2 and x4 appear as free variables in the following linear system:[

1 0 0 2 3
0 0 1 −1 0

]
.

1.4.3 Summary

We have seen how the locations of pivot positions, in both the augmented and coefficient
matrices, give vital information about the existence and uniqueness of solutions to linear
systems. More specifically,

• A linear system is inconsistent exactly when a pivot position appears in the rightmost
column of the augmented matrix.

• If a linear system is consistent, the solution is unique when every column of the coeffi-
cient matrix contains a pivot position. There are infinitely many solutions when there
is a column of the coefficient matrix without a pivot position.

• If a linear system is consistent, the columns of the coefficient matrix containing pivot
positions correspond to basic variables and the columns without pivot positions cor-
respond to free variables.



40 CHAPTER 1. SYSTEMS OF EQUATIONS

1.4.4 Exercises

1. For each of the augmented matrices in reduced row echelon form given below, de-
termine whether the corresponding linear system is consistent and, if so, determine
whether the solution is unique. If the system is consistent, identify the free variables
and the basic variables and give a description of the solution space in parametric form.

a. 
0 1 0 0 2
0 0 1 0 3
0 0 0 1 −2

 .
b. 

1 0 0 0 0
0 1 0 0 0
0 0 1 1 0
0 0 0 0 0

 .
c. 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1


.

d. 
1 0 0 −3
0 1 0 −1
0 0 1 −2

 .
2. For each of the following linear systems, determine whether the system is consistent,

and, if so, determine whether there are infinitely many solutions.

a.
2x1 − x2 + 3x3 � 10
−x1 + x2 + 3x4 � 8

2x2 + 2x3 − x4 � −4
3x1 + 2x2 − x3 + x4 � 10

b.
2x1 − x2 + 3x3 + 3x4 � 8
−x1 + x2 + 2x4 � −1

2x2 + 2x3 + 6x4 � 4
3x1 + 2x2 − x3 − 3x4 � 1
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c.
2x1 − x2 + 3x3 + 3x4 � 8
−x1 + x2 + 2x4 � −1

2x2 + 2x3 + 6x4 � 4
3x1 + 2x2 − x3 − 3x4 � 0

3. Include an example of an appropriate matrix as you justify your responses to the fol-
lowing questions.

a. Suppose a linear system having six equations and three variables is consistent.
Can you guarantee that the solution is unique? Can you guarantee that there are
infinitely many solutions?

b. Suppose that a linear system having three equations and six variables is consis-
tent. Can you guarantee that the solution is unique? Can you guarantee that
there are infinitely many solutions?

c. Suppose that a linear system is consistent and has a unique solution. What can
you guarantee about the pivot positions in the augmented matrix?

4. Determinewhether the following statements are true or false and provide a justification
for your response.

a. If the coefficient matrix of a linear system has a pivot in the rightmost column,
then the system is inconsistent.

b. If a linear system has two equations and four variables, then it must be consistent.

c. If a linear system having four equations and three variables is consistent, then the
solution is unique.

d. Suppose that a linear system has four equations and four variables and that the
coefficient matrix has four pivots. Then the linear system is consistent and has a
unique solution.

e. Suppose that a linear system has five equations and three variables and that the
coefficient matrix has a pivot position in every column. Then the linear system is
consistent and has a unique solution.

5. We began our explorations in Section 1.1 by noticing that the solution spaces of linear
systems with more equations seem to be smaller. Let’s reexamine this idea using what
we know about pivot positions.

a. Remember that the solution space of a single linear equation in three variables is
a plane. Can two planes ever intersect in a single point? What are the possible
ways in which two planes can intersect? How can our understanding of pivot
positions help answer these questions?

b. Suppose that a consistent linear system has more variables than equations. By
considering the possible pivot positions, what can you say with certainty about
the solution space?

c. If a linear system has many more equations than variables, why is it reasonable
to expect the system to be inconsistent?
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6. The following linear systems contain either one or two parameters.
a. For what values of the parameter k is the following system consistent? For which

of those values is the solution unique?

−x1 + 2x2 � 3
2x1 − 4x2 � k

.

b. For what values of the parameters k and l is the following system consistent? For
which of those values is the solution unique?

2x1 + 4x2 � 3
−x1 + kx2 � l

.

7. Consider the linear system described by the following augmented matrix.
1 2 3 1
4 5 6 4
a b c 9

 .
a. Find a choice for the parameters a, b, and c that causes the linear system to be

inconsistent. Explain why your choice has this property.

b. Find a choice for the parameters a, b, and c that causes the linear system to have
a unique solution. Explain why your choice has this property.

c. Find a choice for the parameters a, b, and c that causes the linear system to have
infinitely many solutions. Explain why your choice has this property.

8. A linear system where the right hand side of every equation is 0 is called homogeneous.
The augmented matrix of a homogeneous system, for instance, has the following form:

∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ 0

 .
a. Using the concepts we’ve seen in this section, explain why a homogeneous linear

system must be consistent.

b. What values for the variables are guaranteed to give a solution? Use this to offer
another explanation for why a homogeneous linear system is consistent.

c. Suppose that a homogeneous linear system has a unique solution.

1. Give an example of such a system by writing its augmented matrix in re-
duced row echelon form.

2. Write just the coefficient matrix for the example you gave in the previous
part. What can you say about the pivot positions in the coefficient matrix?
Explain why your observation must hold for any homogeneous system hav-
ing a unique solution.

3. If a homogeneous system of equations has a unique solution, what can you
say about the number of equations compared to the number of variables?
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9. In a previousmath class, you have probably seen the fact that, if we are given two points
in the plane, then there is a unique line passing through both of them. In this problem,
we will begin with the four points on the left below and ask to find a polynomial that
passes through these four points as shown on the right.

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

A degree three polynomial can be written as

p(x) � a + bx + cx2
+ dx3

where a, b, c, and d are coefficients that we would like to determine. Since we want the
polynomial to pass through the point (3, 1), we should require that

p(3) � a + 3b + 9c + 27d � 1.

In this way, we obtain a linear equation for the coefficients a, b, c, and d.

(a) Write the four linear equations for the coefficients obtained by requiring that the
graph of the polynomial p(x) passes through the four points above.

(b) Write the augmented matrix corresponding to this system of equations and use
the Sage cell below to solve for the coefficients.

(c) Write the polynomial p(x) that you found and check your work by graphing it in
the Sage cell below and verifying that it passes through the four points. To plot a
function over a range, you may use a command like plot(1 + x- 2*x^2, xmin
= -1, xmax = 4).

(d) Rather than looking for a degree three polynomial, suppose we wanted to find a
polynomial that passes through the four points and that has degree two, such as

p(x) � a + bx + cx2.

Solve the linear system for the coefficients. What can you say about the existence
and uniqueness of a degree two polynomial passing through these four points?
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(e) Rather than looking for a degree three polynomial, suppose we wanted to find a
polynomial that passes through the four points and that has degree four, such as

p(x) � a + bx + cx2
+ dx3

+ ex4.

Solve the linear system for the coefficients. What can you say about the existence
and uniqueness of a degree four polynomial passing through these four points?

(f) Suppose you had 10 points and youwanted to find a polynomial passing through
each of them. What should the degree of the polynomial be to guarantee that
there is exactly one such polynomial? Explain your response.



CHAPTER 2
Vectors, matrices, and linear

combinations

We began our study of linear systems in Chapter 1 where we described linear systems in
terms of augmented matrices, such as

1 2 −1 3
−3 3 −1 2

2 3 2 −1


In this chapter, we will uncover geometric information in a matrix like this, which will lead
to an intuitive understanding of the insightswe previously gained into the solutions of linear
systems.

2.1 Vectors and linear combinations

It is a remarkable fact that algebra, which is about symbolic equations and their solutions,
and geometry are intimately connected. For instance, the solution set of a linear equation
in two unknowns, such as 2x + y � 1, can be represented graphically by a straight line. The
aim of this section is to further this connection by introducing vectors, which will help us to
apply geometric intuition to our thinking about linear systems.

2.1.1 Vectors

A vector is most simply thought of as a matrix with a single column. For instance, v �

[
2
1

]
and w �


−3

1
0
2

 are both vectors. The entries in a vector are called its components. Since the

vector v has two components, we say that it is a two-dimensional vector; in the same way,
the vector w is a four-dimensional vector.
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We denote the set of all m-dimensional vectors by�m . Consequently, if u is a 3-dimensional
vector, we say that u is in �3.

While it can be difficult to visualize a four-dimensional vector, we can draw a simple picture
describing the two-dimensional vector v, as shown in Figure 2.1.1.

-4 -2 2 4

-4

-2

2

4

v

x

y

Figure 2.1.1 A graphical representation of the vector v �

[
2
1

]
.

We can think of v as describing a walk in the plane where we move two units horizontally
and one unit vertically. Though we allow ourselves to begin walking from any point in the
plane, we will most frequently begin at the origin in which case we arrive at the the point
(2, 1), as shown in the figure.

There are two simple algebraic operations we often perform on vectors.

Scalar
Multiplication

We multiply a vector v by a real number c by multiplying each of the
components of v by c. For instance,

−3


2
−4

1

 �

−6
12
−3

 .
We will frequently refer to real numbers, such as -3 in this example,
as scalars to distinguish them from vectors.

Vector Addition We add two vectors of the same dimension by adding their compo-
nents. For instance, 

2
−4

3

 +

−5

6
−3

 �

−3

2
0

 .



2.1. VECTORS AND LINEAR COMBINATIONS 47

Preview Activity 2.1.1 Scalar Multiplication and Vector Addition.. Suppose that

v �

[
3
1

]
,w �

[
−1

2

]
.

a. Find expressions for the vectors

v, 2v, −v, −2v,
w, 2w, −w, −2w.

and sketch them using Figure 2.1.2.

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

x

y

Figure 2.1.2 Sketch the vectors on this grid.

b. What geometric effect does scalar multiplication have on a vector? Also, de-
scribe the effect that multiplying by a negative scalar has.

c. Sketch the vectors v,w, v + w using Figure 2.1.3.
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-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

x

y

Figure 2.1.3 Sketch the vectors on this grid.

d. Consider vectors that have the form v + cw where c is any scalar. Sketch a few
of these vectors when, say, c � −2,−1, 0, 1, and 2. Give a geometric description
of this set of vectors.

-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

x

y

Figure 2.1.4 Sketch the vectors on this grid.

e. If c and d are two scalars, then the vector

cv + dw

is called a linear combination of the vectors v and w. Find the vector that is the
linear combination when c � −2 and d � 1.

f. Can the vector
[
−31

37

]
be represented as a linear combination of v and w?

Asked differently, can we find scalars c and d such that cv + dw �

[
−31

37

]
.
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The preview activity demonstrates how we may interpret scalar multiplication and vector
addition geometrically.

First, we see that scalar multiplication has the effect of stretching or compressing a vector.
Multiplying by a negative scalar changes the direction of the vector. In either case, Fig-
ure 2.1.5 shows that a scalar multiple of a vector v lies on the same line defined by v.

−2v

2v

−v

v
x

y

Figure 2.1.5 Scalar multiples of the vector v �

[
2
1

]
.

To represent the sum v + w, we imagine walking from the origin with the appropriate hor-
izontal and vertical changes given by v. From there, we continue our walk using the hori-
zontal and vertical changes prescribed by w, after which we arrive at the sum v+w. This is
illustrated on the left of Figure 2.1.6 where the tail of w is placed on the tip of v.
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v

w

v +w

x

y

v

w

v

w

v +w

x

y

Figure 2.1.6 Vector addition as a simple walk in the plane is illustrated on the left. The vector
sum is represented as the diagonal of a parallelogram on the right.

Alternatively, we may construct the parallelogram with v and w as two sides. The sum is
then the diagonal of the parallelogram, as illustrated on the right of Figure 2.1.6.

We have now seen that the set of vectors having the form cv is a line. To form the set of
vectors cv + w, we can begin with the vector w and add multiples of v. Geometrically, this
means that we begin from the tip of w and move in a direction parallel to v. The effect is to
translate the line cv by the vector w, as shown in Figure 2.1.7.

−2v

2v

−v

v

v

w

x

y

Figure 2.1.7 The set of vectors cv + w form a line.

At times, it will be useful for us to think of vectors and points interchangeably. That is, we

may wish to think of the vector
[

2
1

]
as describing the point (2, 1) and vice-versa. When we

say that the vectors having the form cv + w form a line, we really mean that the tips of the
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vectors all lie on the line passing through w and parallel to v.

Observation 2.1.8Even though these vector operations are new, it is straightforward to check
that some familiar properties hold.

Commutativity v + w � w + v.

Distributivity a(v + w) � av + aw.

Sage can perform scalar multiplication and vector addition. We define a vector using the
vector command; then * and + denote scalar multiplication and vector addition.

v = vector ([3 ,1])
w = vector ([-1,2])
print (2*v)
print (v + w)

2.1.2 Linear combinations

Linear combinations, which we encountered in the preview activity, provide the link be-
tween vectors and linear systems. In particular, they will help us apply geometric intuition
to problems involving linear systems.

Definition 2.1.9 The linear combination of the vectors v1 , v2 , . . . , vn with scalars c1 , c2 , . . . , cn
is the vector

c1v1 + c2v2 + . . . + cnvn .

The scalars c1 , c2 , . . . , cn are called the weights of the linear combination.

Activity 2.1.2. In this activity, we will look at linear combinations of a pair of vectors,

v �

[
2
1

]
and w �

[
1
2

]
.
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There is an interactive diagram, available at gvsu.edu/s/0Je, that accompanies this ac-
tivity.

Figure 2.1.10 Linear combinations of vectors v and w.

a. The weight d is initially set to 0. Explain what happens as you vary c while
keeping d � 0. How is this related to scalar multiplication?

b. What is the linear combination of v and w when c � 1 and d � −2? You may
find this result using the diagram, but you should also verify it by computing
the linear combination.

c. Describe the vectors that arise when the weight d is set to 1 and c is varied. How
is this related to our investigations in the preview activity?

d. Can the vector
[

0
0

]
be expressed as a linear combination of v and w? If so,

what are the weights c and d?

e. Can the vector
[

3
0

]
be expressed as a linear combination of v and w? If so,

what are the weights c and d?

f. Verify the result from the previous part by algebraically finding the weights c

and d that form the linear combination
[

3
0

]
.

g. Can the vector
[

1.3
−1.7

]
be expressed as a linear combination of v and w? What

http://gvsu.edu/s/0Je


2.1. VECTORS AND LINEAR COMBINATIONS 53

about the vector
[

15.2
7.1

]
?

h. Are there any two-dimensional vectors that cannot be expressed as linear com-
binations of v and w?

This activity illustrates how linear combinations are constructed geometrically: the linear
combination cv + dw is found by walking along v a total of c times followed by walking
along w a total of d times. When one of the weights is held constant while the other varies,
the vector moves along a line.

Example 2.1.11 The previous activity also shows that questions about linear combinations

lead naturally to linear systems. Suppose we have vectors v �

[
3

−1

]
and w �

[
4
3

]
. Let’s

determine whether we can describe the vector b �

[
−11
−18

]
as a linear combination of v and

w. In other words, we would like to know whether there are weights c and d such that

cv + dw � b.

This leads to the equations

c
[

3
−1

]
+ d

[
4
3

]
�

[
−11
−18

]
[

3c
−c

]
+

[
4d
3d

]
�

[
−11
−18

]
[

3c + 4d
−c + 3d

]
�

[
−11
−18

]

Equating the components of the vectors on each side of the equation, we arrive at the linear
system

3a + 4b � −11
−a + 3b � −18

This means that b is a linear combination of v and w if this linear system is consistent.

To solve this linear system, we construct its corresponding augmented matrix and find its
reduced row echelon form, [

3 4 −11
−1 3 −18

]
∼
[

1 0 3
0 1 −5

]
,

giving us the weights c � 3 and d � −5; that is,

3v − 5w � b.



54 CHAPTER 2. VECTORS, MATRICES, AND LINEAR COMBINATIONS

In fact, we know more because the reduced row echelon matrix tells us that these are the
only possible weights. Therefore, b may be expressed as a linear combination of v and w in
exactly one way.

This example demonstrates the connection between linear combinations and linear systems.
Asking whether a vector b is a linear combination of vectors v1 , v2 , . . . , vn is equivalent to
asking whether an associated linear system is consistent.

In fact, we may easily describe the associated linear system in terms of the vectors v, w, and

b. Notice that the augmented matrix we found in our example was
[

3 4 −11
−1 3 −18

]
. The

first two columns of this matrix are v and w and the rightmost column is b. As shorthand,
we will write this augmentedmatrix replacing the columns with their vector representation:[

v w b
]
.

This fact is generally true so we record it in the following proposition.

Proposition 2.1.12 The vector b is a linear combination of the vectors v1 , v2 , . . . , vn if and only if
the linear system corresponding to the augmented matrix[

v1 v2 . . . vn b
]

is consistent. A solution to this linear system gives weights c1 , c2 , . . . , cn such that

c1v1 + c2v2 + . . . + cnvn � b.

The next activity puts this proposition to use.

Activity 2.1.3 Linear combinations and linear systems..
a. Given the vectors

v1 �


4
0
2
1

 , v2 �


1

−3
3
1

 , v3 �


−2

1
1
0

 , b �


0
1
2

−2

 ,
can b be expressed as a linear combination of v1, v2, and v3? Rephrase this
question by writing a linear system for the weights c1, c2, and c3 and use the
Sage cell below to answer this question.

b. Consider the following linear system.

3x1 + 2x2 − x3 � 4
x1 + 2x3 � 0

−x1 − x2 + 3x3 � 1

Identify vectors v1, v2, v3, and b such that the question ”Is this linear system
consistent?” is equivalent to the question ”Can b be expressed as a linear com-
bination of v1, v2, and v3?”
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c. Consider the vectors

v1 �


0

−2
1

 , v2 �


1
1

−1

 , v3 �


2
0

−1

 , b �


−1

3
−1

 .
Can b be expressed as a linear combination of v1, v2, and v3? If so, can b be
written as a linear combination of these vectors in more than one way?

d. Considering the vectors v1, v2, and v3 from the previous part, canwewrite every
three-dimensional vector b as a linear combination of these vectors? Explain
how the pivot positions of the matrix

[
v1 v2 v3

]
help answer this question.

e. Now consider the vectors

v1 �


0

−2
1

 , v2 �


1
1

−1

 , v3 �


1

−1
−2

 , b �


0
8

−4

 .
Can b be expressed as a linear combination of v1, v2, and v3? If so, can b be
written as a linear combination of these vectors in more than one way?

f. Considering the vectors v1, v2, and v3 from the previous part, canwewrite every
three-dimensional vector b as a linear combination of these vectors? Explain
how the pivot positions of the matrix

[
v1 v2 v3

]
help answer this question.

Example 2.1.13 Consider the vectors v �

[
−1

1

]
and w �

[
2

−2

]
, as shown in Figure 2.1.14.
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Figure 2.1.14 Vectors v and w.

These vectors appear to lie on the same line, a fact that becomes apparent once we notice
that w � −2v. Intuitively, we think of the linear combination

cv + dw

as the result of walking c times in the v direction and d times in the w direction. With
these vectors, we are always walking along the same line so it would seem that any linear
combination of these vectors should lie on the same line. In addition, a vector that is not on

the line, say b �

[
3
0

]
, should be not be expressible as a linear combination of v and w.

We can verify this by checking[
−1 2 3

1 −2 0

]
∼
[

1 −2 0
0 0 1

]
.

This shows that the associated linear system is inconsistent, which means that the vector

b �

[
3
0

]
cannot be written as a linear combination of v and w.

Notice that the reduced row echelon form of the coefficient matrix[
v w

]
�

[
−1 2
1 −2

]
∼
[
1 −2
0 0

]
tells us to expect this. Since there is not a pivot position in the second row of the coefficient
matrix

[
v w

]
, it is possible for a pivot position to appear in the rightmost column of the

augmented matrix [
v w b

]
for some choice of b.
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2.1.3 Summary

This section has introduced vectors, linear combinations, and their connection to linear sys-
tems.

• There are two operationswe can performwith vectors: scalarmultiplication and vector
addition. Both of these operations have geometric meaning.

• Given a set of vectors and a set of scalars we call weights, we can create a linear com-
bination using scalar multiplication and vector addition.

• A solution to the linear system whose augmented matrix is[
v1 v2 . . . vn b

]
is a set of weights that expresses b as a linear combination of v1 , v2 , . . . , vn .

2.1.4 Exercises

1. Consider the vectors
v �

[
1

−1

]
,w �

[
3
1

]
a. Sketch these vectors below.
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4
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x

y

b. Compute the vectors −3v, 2w, v + w, and v − w and add them into the sketch
above.

c. Sketch below the set of vectors having the form 2v + cw where c is any scalar.
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-6

-4

-2

2

4

6

x

y

d. Sketch below the line y � 3x − 2. Then identify two vectors v and w so that this
line is described by v + cw. Are there other choices for the vectors v and w?

-6 -4 -2 2 4 6
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x

y

2. Shown below are two vectors v and w
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v

w

p

q

r

s

t

u

v

a. Express the labeled points as linear combinations of v and w.

b. Sketch the line described parametrically as −2v + cw.
3. Consider the vectors

v1 �

[
2
1

]
, v2 �

[
−1

1

]
, v3 �

[
−2

0

]
a. Find the linear combination with weights c1 � 2, c2 � −3, and c3 � 1.

b. Can you write the vector 0 �

[
0
0

]
as a linear combination of v1, v2, and v3? If

so, describe all the ways in which you can do so.

c. Can youwrite the vector 0 �

[
0
0

]
as a linear combination using just the first two

vectors v1 v2? If so, describe all the ways in which you can do so.

d. Can you write v3 as a linear combination of v1 and v2? If so, in how many ways?

4. Nutritional information about a breakfast cereal is printed on the box. For instance, one
serving of Frosted Flakes has 111 calories, 140 milligrams of sodium, and 1.2 grams of
protein. We may represent this as a vector

111
140
1.2

 .
One serving of Cocoa Puffs has 120 calories, 105 milligrams of sodium, and 1.0 grams
of protein.
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a. Write the vector describing the nutritional content of Cocoa Puffs.

b. Suppose you eat c servings of Frosted Flakes and d servings of Cocoa Puffs. Use
the language of vectors and linear combinations to express the quantities of calo-
ries, sodium, and protein you have consumed.

c. Howmany servings of each cereal have you eaten if you have consumed 342 calo-
ries, 385 milligrams of sodium, and 3.4 grams of protein.

d. Suppose your sister consumed 250 calories, 200 milligrams of sodium, and 4
grams of protein. What can you conclude about her breakfast?

5. Consider the vectors

v1 �


2

−1
−2

 , v2 �


0
3
1

 , v3 �


4
4

−2

 .

a. Can you express the vector b �


10
1

−8

 as a linear combination of v1, v2, and v3?

If so, describe all the ways in which you can do so.

b. Can you express the vector b �


3
7
1

 as a linear combination of v1, v2, and v3? If

so, describe all the ways in which you can do so.

c. Show that v3 can be written as a linear combination of v1 and v2.

d. Explain why any linear combination of v1, v2, and v3,

av1 + bv2 + cv3 ,

can be rewritten as a linear combination of just v1 and v2.
6. Consider the vectors

v1 �


3

−1
1

 , v2 �


1
1
2

 .
For what value(s) of k, if any, can the vector


k

−2
5

 be written as a linear combination

of v1 and v2?
7. Determinewhether the following statements are true or false and provide a justification
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for your response.
a. Given two vectors v and w, the vector 2v is a linear combination of v and w.

b. Suppose v1 , v2 , . . . , vn is a collection of m-dimensional vectors and that thematrix[
v1 v2 . . . vn

]
has a pivot position in every row. If b is any m-dimensional

vector, then b can be written as a linear combination of v1 , v2 , . . . , vn .

c. Suppose v1 , v2 , . . . , vn is a collection of m-dimensional vectors and that thematrix[
v1 v2 . . . vn

]
has a pivot position in every row and every column. If b

is any m-dimensional vector, then b can be written as a linear combination of
v1 , v2 , . . . , vn in exactly one way.

d. It is possible to find two 3-dimensional vectorsv1 andv2 such that every 3-dimensional
vector can be written as a linear combination of v1 and v2.

8. A theme that will later unfold concerns the use of coordinate systems. We can identify

the point (x , y) with the tip of the vector
[

x
y

]
, drawn emanating from the origin. We

can then think of the usual Cartesian coordinate system in terms of linear combinations
of the vectors

e1 �

[
1
0

]
, e2 �

[
0
1

]
.

For instance, the point (2,−3) is identified with the vector[
2

−3

]
� 2e1 − 3e2 ,

as shown on the left in Figure 2.1.15.

e1

e2

(2,−3)

v1

v2

{2,−3}

Figure 2.1.15 The usual Cartesian coordinate system, defined by the vectors e1 and e2,
is shown on the left along with the representation of the point (2,−3). The right shows
a nonstandard coordinate system defined by vectors v1 and v2.

If instead we have vectors
v1 �

[
2
1

]
, v2 �

[
1
2

]
,
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we may define a new coordinate system in which a point {c , d} will correspond to the
vector

cv1 + dv2.

For instance, the point {2,−3} is shown on the right side of Figure 2.1.15.

a. Write the point {2,−3} in standard coordinates; that is, find x and y such that

(x , y) � {2,−3}.

b. Write the point (2,−3) in the new coordinate system; that is, find c and d such
that

{c , d} � (2,−3).

c. Convert a general point {c , d}, expressed in the new coordinate system, into stan-
dard Cartesian coordinates (x , y).

d. What is the general strategy for converting a point from standard Cartesian coor-
dinates (x , y) to the new coordinates {c , d}? Actually implementing this strategy
in general may take a bit of work so just describe the strategy. We will study this
in more detail later.
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2.2 Matrix multiplication and linear combinations

The previous section introduced vectors and linear combinations and demonstrated how
they provide a way to think about linear systems geometrically. In particular, we saw that
the vector b is a linear combination of the vectors v1 , v2 , . . . , vn precisely when the linear
system corresponding to the augmented matrix[

v1 v2 · · · vn b
]

is consistent.

Our goal in this section is to introduce matrix multiplication, another algebraic operation
that deepens the connection between linear systems and linear combinations.

2.2.1 Scalar multiplication and addition of matrices

We first thought of a matrix as a rectangular array of numbers. If we say that the shape of a
matrix is m × n, we mean that it has m rows and n columns. For instance, the shape of the
matrix below is 3 × 4: 

0 4 −3 1
3 −1 2 0
2 0 −1 1

 .
We may also think of the columns of a matrix as a set of vectors. For instance, the matrix
above may be represented as [

v1 v2 v3 v4
]

where

v1 �


0
3
2

 , v2 �


4

−1
0

 , v3 �


−3

2
−1

 , v4 �


1
0
1

 .
In this way, we see that the 3 × 4 matrix is equivalent to an ordered set of 4 vectors in �3.

This means that we may define scalar multiplication and matrix addition operations using
the corresponding column-wise vector operations. For instance,

c
[

v1 v2 · · · vn
]
�

[
cv1 cv2 · · · cvn

][
v1 v2 · · · vn

]
+

[
w1 w2 · · · wn

]
�

[
v1 + w1 v2 + w2 · · · vn + wn

]
.

Preview Activity 2.2.1 Matrix operations..
a. Compute the scalar multiple

−3
[

3 1 0
−4 3 −1

]
.
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b. Find the sum 
0 −3
1 −2
3 4

 +


4 −1
−2 2

1 1

 .
c. Suppose that A and B are two matrices. What do we need to know about their

shapes before we can form the sum A + B?

d. Thematrix In , whichwe call the identitymatrix, is the n×n matrix whose entries
are zero except for the diagonal entries, all of which are 1. For instance,

I3 �


1 0 0
0 1 0
0 0 1

 .
If we can form the sum A + In , what must be true about the matrix A?

e. Find the matrix A − 2I3 where

A �


1 2 −2
2 −3 3

−2 3 4

 .
As this preview activity shows, the operations of scalar multiplication and addition of ma-
trices are natural extensions of their vector counterparts. Some care, however, is required
when adding matrices. Since we need the same number of vectors to add and since those
vectors must be of the same dimension, two matrices must have the same shape if we wish
to form their sum.

2.2.2 Matrix-vector multiplication and linear combinations

A more important operation will be matrix multiplication as it allows us to compactly ex-
press linear systems. We now introduce the product of a matrix and a vector with an exam-
ple.

Example 2.2.1 Matrix-vector multiplication. Suppose we have the matrix A and vector x:

A �


−2 3

0 2
3 1

 , x �

[
2
3

]
.

Their product will be defined to be the linear combination of the columns of A using the
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components of x as weights. This means that

Ax �


−2 3

0 2
3 1


[

2
3

]
� 2


−2

0
3

 + 3


3
2
1


�


−4

0
6

 +


9
6
3


�


5
6
9

 .
Because A has two columns, we need two weights to form a linear combination of those
columns, which means that x must have two components. In other words, the number of
columns of A must equal the dimension of the vector x.

Similarly, the columns of A are 3-dimensional so any linear combination of them is 3-dimensional
as well. Therefore, Ax will be 3-dimensional.

We then see that if A is a 3 × 2 matrix, x must be a 2-dimensional vector and Ax will be
3-dimensional.

More generally, we have the following definition.

Definition 2.2.2 Matrix-vector multiplication. The product of a matrix A by a vector x will
be the linear combination of the columns of A using the components of x as weights. More
specifically, if

A �
[

v1 v2 . . . vn
]
, x �


c1
c2
...

cn


,

then
Ax � c1v1 + c2v2 + . . . + cnvn .

If A is an m × n matrix, then x must be an n-dimensional vector, and the product Ax will be
an m-dimensional vector.

The next activity explores some properties of matrix multiplication.
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Activity 2.2.2 Matrix-vector multiplication..
a. Find the matrix product


1 2 0 −1
2 4 −3 −2

−1 −2 6 1




3
1

−1
1

 .
b. Suppose that A is the matrix 

3 −1 0
0 −2 4
2 1 5
1 0 3

 .
If Ax is defined, what is the dimension of the vector x andwhat is the dimension
of Ax?

c. A vector whose entries are all zero is denoted by 0. If A is a matrix, what is the
product A0?

d. Suppose that I �


1 0 0
0 1 0
0 0 1

 is the identity matrix and x �


x1
x2
x3

 . Find the

product Ix and explain why I is called the identity matrix.

e. Suppose we write the matrix A in terms of its columns as

A �
[

v1 v2 · · · vn
]
.

If the vector e1 �


1
0
...
0


, what is the product Ae1?

f. Suppose that

A �

[
1 2

−1 1

]
, b �

[
6
0

]
.

Is there a vector x such that Ax � b?

Multiplication of a matrix A and a vector is defined as a linear combination of the columns
of A. However, there is a shortcut for computing such a product. Let’s look at our previous
example and focus on the first row of the product.

−2 3
0 2
3 1


[

2
3

]
� 2


−2
∗
∗

 + 3


3
∗
∗

 �


2(−2) + 3(3)
∗
∗

 �


5
∗
∗

 .
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To find the first component of the product, we consider the first row of the matrix. We then
multiply the first entry in that row by the first component of the vector, the second entry by
the second component of the vector, and so on, and add the results. In this way, we see that
the third component of the product would be obtained from the third row of the matrix by
computing 2(3) + 3(1) � 9.

You are encouraged to evaluate the product Itema of the previous activity using this shortcut
and compare the result to what you found while completing that activity.

Activity 2.2.3. Sage can find the product of a matrix and vector using the * operator.
For example,

A = matrix (2,2,[1,2,2,1])
v = vector ([3,-1])
A*v

a. Use Sage to evaluate the product


1 2 0 −1
2 4 −3 −2

−1 −2 6 1




3
1

−1
1


from Item a of the previous activity.

b. In Sage, define the matrix and vectors

A �


−2 0

3 1
4 2

 , 0 �

[
0
0

]
, v �

[
−2

3

]
,w �

[
1
2

]
.

c. What do you find when you evaluate A0?

d. What do you find when you evaluate A(3v) and 3(Av) and compare your re-
sults?

e. What do you find when you evaluate A(v+w) and Av+Aw and compare your
results?

This activity demonstrates several general properties satisfied by matrix multiplication that
we record here.
Proposition 2.2.3 Linearity of matrix multiplication. If A is a matrix, v and w vectors of the
appropriate dimensions, and c a scalar, then

• A0 � 0.
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• A(cv) � cAv.

• A(v + w) � Av + Aw.

2.2.3 Matrix-vector multiplication and linear systems

So far, we have begun with a matrix A and a vector x and formed their product Ax � b. We
would now like to turn this around: beginning with a matrix A and a vector b, we will ask
if we can find a vector x such that Ax � b. This will naturally lead back to linear systems.

To see the connection between the matrix equation Ax � b and linear systems, let’s write the
matrix A in terms of its columns vi and x in terms of its components.

A �
[

v1 v2 . . . vn
]
, x �


c1
c2
...

cn


.

We know that the matrix product Ax forms a linear combination of the columns of A. There-
fore, the equation Ax � b is merely a compact way of writing the equation for the weights
ci :

c1v1 + c2v2 + . . . + cnvn � b.

We have seen this equation before: Remember that Proposition 2.1.12 says that the solutions
of this equation are the same as the solutions to the linear system whose augmented matrix
is [

v1 v2 . . . vn b
]
.

This gives us three different ways of looking at the same solution space.

Proposition 2.2.4 If A �
[

v1 v2 . . . vn
]
and x �


x1
x2
...

xn


, then the following statements are

equivalent.
• The vector x satisfies the equation Ax � b.

• The vector b is a linear combination of the columns of A with weights x j :

x1v1 + x2v2 + . . . + xnvn � b.

• The components of x form a solution to the linear system corresponding to the augmentedmatrix[
v1 v2 · · · vn b

]
.

When the matrix A �
[

v1 v2 · · · vn
]
, we will frequently write[

v1 v2 · · · vn b
]
�
[

A b
]
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and say that the matrix A is augmented by the vector b.

The equation Ax � b gives a notationally compact way to write a linear system. Moreover,
this notation will allow us to focus on important features of the system that determine its
solution space.

Example 2.2.5 We will describe the solution space of the equation
2 0 2
4 −1 6
1 3 −5

 x �


0

−5
15

 .
By Proposition 2.2.4, this equation may be equivalently expressed as

x1


2
4
1

 + x2


0

−1
3

 + x3


2
6

−5

 �


0
−5
15

 ,
which is the linear system corresponding to the augmented matrix

2 0 2 0
4 −1 6 −5
1 3 −5 15

 .
The reduced row echelon form of the augmented matrix is

2 0 2 0
4 −1 6 −5
1 3 −5 15

 ∼


1 0 1 0
0 1 −2 5
0 0 0 0

 ,
which corresponds to the linear system

x1 + x3 � 0
x2 − 2x3 � 5.

The variable x3 is free so we may write the solution space parametrically as

x1 � − x3

x2 � 5 + 2x3.

Since we originally asked to describe the solutions to the equation Ax � b, we will express
the solution in terms of the vector x:

x �


x1
x2
x3

 �


−x3
5 + 2x3

x3

 �


0
5
0

 + x3


−1

2
1


As before, we call this a parametric description of the solution space.

This shows that the solutions x may be written in the form v + x3w, for appropriate vectors
v and w. Geometrically, the solution space is a line in �3 through v moving parallel to w.
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Activity 2.2.4 The equation Ax � b..
a. Consider the linear system

2x + y − 3z � 4
−x + 2y + z � 3
3x − y � −4.

Identify the matrix A and vector b to express this system in the form Ax � b.

b. If A and b are as below, write the linear system corresponding to the equation
Ax � b and describe its solution space, using a parametric description if appro-
priate:

A �

[
3 −1 0

−2 0 6

]
, b �

[
−6

2

]
.

c. Describe the solution space of the equation
1 2 0 −1
2 4 −3 −2

−1 −2 6 1

 x �


−1

1
5

 .
d. Suppose A is an m×n matrix. What can you guarantee about the solution space

of the equation Ax � 0?

2.2.4 Matrix-matrix products

In this section, we have developed some algebraic operations on matrices with the aim of
simplifying our description of linear systems. We now introduce a final operation, the prod-
uct of two matrices, that will become important when we study linear transformations in
Section 2.5.
Definition 2.2.6 Matrix-matrix multiplication. Givenmatrices A and B, we form their prod-
uct AB by first writing B in terms of its columns

B �
[

v1 v2 · · · vp
]

and then defining
AB �

[
Av1 Av2 · · · Avp

]
.
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Example 2.2.7 Given the matrices

A �


4 2
0 1

−3 4
2 0

 , B �

[
−2 3 0

1 2 −2

]
,

we have

AB �

[
A
[
−2

1

]
A
[

3
2

]
A
[

0
−2

] ]
�


−6 16 −4

1 2 −2
10 −1 −8
−4 6 0

 .
Observation 2.2.8 It is important to note that we can only multiply matrices if the shapes
of the matrices are compatible. More specifically, when constructing the product AB, the
matrix A multiplies the columns of B. Therefore, the number of columns of A must equal
the number of rows of B. When this condition is met, the number of rows of AB is the
number of rows of A, and the number of columns of AB is the number of columns of B.

Activity 2.2.5. Consider the matrices

A �

[
1 3 2

−3 4 −1

]
, B �


3 0
1 2

−2 −1

 .
a. Before computing, first explain why the shapes of A and B enable us to form the

product AB. Then describe the shape of AB.

b. Compute the product AB.

c. Sage can multiply matrices using the * operator. Define the matrices A and B in
the Sage cell below and check your work by computing AB.

d. Are we able to form thematrix product BA? If so, use the Sage cell above to find
BA. Is it generally true that AB � BA?

e. Suppose we form the three matrices.

A �

[
1 2
3 −2

]
, B �

[
0 4
2 −1

]
, C �

[
−1 3

4 3

]
.

Compare what happens when you compute A(B + C) and AB + AC. State your
finding as a general principle.

f. Compare the results of evaluating A(BC) and (AB)C and state your finding as
a general principle.
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g. When we are dealing with real numbers, we know if a , 0 and ab � ac, then
b � c. Define matrices

A �

[
1 2

−2 −4

]
, B �

[
3 0
1 3

]
, C �

[
1 2
2 2

]
and compute AB and AC.

If AB � AC, is it necessarily true that B � C?

h. Again, with real numbers, we know that if ab � 0, then either a � 0 or b � 0.
Define

A �

[
1 2

−2 −4

]
, B �

[
2 −4

−1 2

]
and compute AB.

If AB � 0, is it necessarily true that either A � 0 or B � 0?

This activity demonstrated some general properties about products of matrices, which mir-
ror some properties about operations with real numbers.

Properties of Matrix-matrix Multiplication.

If A, B, and C are matrices such that the following operations are defined, it follows
that

Associativity: A(BC) � (AB)C.
Distributivity: A(B + C) � AB + AC.

(A + B)C � AC + BC.

At the same time, there are a few properties that hold for real numbers that do not hold for
matrices.

Caution.
The following properties hold for real numbers but not for matrices.

Commutativity: It is not generally true that AB � BA.
Cancellation: It is not generally true that AB � AC implies that B � C.
Zero divisors: It is not generally true that AB � 0 implies that either A � 0 or

B � 0.
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2.2.5 Summary

In this section, we have found an especially simple way to express linear systems using ma-
trix multiplication.

• If A is an m × n matrix and x an n-dimensional vector, then Ax is the linear combi-
nation of the columns of A using the components of x as weights. The vector Ax is
m-dimensional.

• The solution space to the equation Ax � b is the same as the solution space to the
linear system corresponding to the augmented matrix

[
A b

]
.

• If A is an m × n matrix and B is an n × p matrix, we can form the product AB, which
is an m × p matrix whose columns are the products of A and the columns of B.

2.2.6 Exercises

1. Consider the system of linear equations

x + 2y − z � 1
3x + 2y + 2z � 7
−x + 4z � −3

.

a. Find the matrix A and vector b that expresses this linear system in the form Ax �

b.

b. Give a description of the solution space to the equation Ax � b.

2. Suppose that A is a 135 × 2201 matrix, and that x is a vector. If Ax is defined, what is
the dimension of x? What is the dimension of Ax?

3. Suppose that A is a 3 × 2 matrix whose columns are v1 and v2; that is,

A �
[

v1 v2
]
.

a. What is the dimension of the vectors v1 and v2?

b. What is the product A
[

1
0

]
in terms of v1 and v2? What is the product A

[
0
1

]
?

What is the product A
[

2
3

]
?

c. If we know that

A
[

1
0

]
�


3

−2
1

 , A
[

0
1

]
�


0
3
2

 ,
what is the matrix A?
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4. Suppose that the matrix A �
[

v1 v2
]
where v1 and v2 are shown in Figure 2.2.9.

v1

v2

b

Figure 2.2.9 Two vectors v1 and v2 that form the columns of the matrix A.

a. What is the shape of the matrix A?

b. On Figure 2.2.9, indicate the vectors

A
[

1
0

]
, A

[
2
3

]
, A

[
0

−3

]
.

c. Find all vectors x such that Ax � b.

d. Find all vectors x such that Ax � 0.
5. Suppose that

A �


1 0 2
2 2 2

−1 −3 1

 .
a. Describe the solution space to the equation Ax � 0.

b. Find a 3 × 2 matrix B with no zero entries such that AB � 0.
6. Consider the matrix

A �


1 2 −4 −4
2 3 0 1
1 0 4 6

 .
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a. Find the product Ax where

x �


1

−2
0
2

 .
b. Give a description of the vectors x such that

Ax �


−1
15
17

 .
c. Find the reduced row echelon form of A and identify the pivot positions.

d. Can you find a vector b such that Ax � b is inconsistent?

e. For a general 3-dimensional vector b, what can you say about the solution space
of the equation Ax � b?

7. The operations that we perform in Gaussian elimination can be accomplished using
matrix multiplication. This observation is the basis of an important technique that we
will investigate in a subsequent chapter.

Let’s consider the matrix

A �


1 2 −1
2 0 2

−3 2 3

 .
a. Suppose that

S �


1 0 0
0 7 0
0 0 1

 .
Verify that SA is the matrix that results when the second row of A is scaled by a
factor of 7. What matrix S would scale the third row by -3?

b. Suppose that

P �


0 1 0
1 0 0
0 0 1

 .
Verify that PA is the matrix that results from interchanging the first and second
rows. What matrix P would interchange the first and third rows?

c. Suppose that

L1 �


1 0 0

−2 1 0
0 0 1

 .
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Verify that L1A is the matrix that results from multiplying the first row of A by
−2 and adding it to the second row. What matrix L2 would multiply the first row
by 3 and add it to the third row?

d. When we performed Gaussian elimination, our first goal was to perform row op-
erations that brought the matrix into a triangular form. For our matrix A, find the
row operations needed to find a row equivalent matrix U in triangular form. By
expressing these row operations in terms of matrix multiplication, find a matrix
L such that LA � U.

8. In this exercise, you will construct the inverse of a matrix, a subject that we will investi-
gate more fully in the next chapter. Suppose that A is the 2 × 2 matrix:

A �

[
3 −2

−2 1

]
.

a. Find the vectors b1 and b2 such that the matrix B �
[

b1 b2
]
satisfies

AB � I �
[

1 0
0 1

]
.

b. In general, it is not true that AB � BA. Check that it is true, however, for the
specific A and B that appear in this problem.

c. Suppose that x �

[
x1
x2

]
. What do you find when you evaluate Ix?

d. Suppose that we want to solve the equation Ax � b. We know how to do this
using Gaussian elimination; let’s use our matrix B to find a different way:

Ax � b
B(Ax) � Bb
(BA)x � Bb

Ix � Bb
x � Bb

.

In other words, the solution to the equation Ax � b is x � Bb.

Consider the equation Ax �

[
5

−2

]
. Find the solution in two different ways, first

using Gaussian elimination and then as x � Bb, and verify that you have found
the same result.

9. Determinewhether the following statements are true or false and provide a justification
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for your response.
a. If Ax is defined, then the number of components of x equals the number of rows

of A.

b. The solution space to the equation Ax � b is equivalent to the solution space to
the linear system whose augmented matrix is

[
A b

]
.

c. If a linear system of equations has 8 equations and 5 unknowns, then the shape
of the matrix A in the corresponding equation Ax � b is 5 × 8.

d. If A has a pivot position in every row, then every equation Ax � b is consistent.

e. If A is a 9 × 5 matrix, then Ax � b is inconsistent for some vector b.
10. Suppose that A is a 4× 4 matrix and that the equation Ax � b has a unique solution for

some vector b.
a. What does this say about the pivot positions of the matrix A? Write the reduced

row echelon form of A.

b. Can you find another vector c such that Ax � c is inconsistent?

c. What can you say about the solution space to the equation Ax � 0?

d. Suppose A �
[

v1 v2 v3 v4
]
. Explain why every four-dimensional vector

can be written as a linear combination of the vectors v1, v2, v3, and v4 in exactly
one way.

11. Define the matrix

A �


1 2 4

−2 1 −3
3 1 7

 .
a. Describe the solution space to the homogeneous equation Ax � 0 using a para-

metric description, if appropriate. What does this solution space represent geo-
metrically?

b. Describe the solution space to the equation Ax � b where b �


−3
−4

1

 . What

does this solution space represent geometrically and how does it compare to the
previous solution space?

c. We will now explain the relationship between the previous two solution spaces.
Suppose that xh is a solution to the homogeneous equation; that is Axh � 0. Sup-
pose also that xp is a solution to the equation Ax � b; that is, Axp � b.
Use the Linearity Principle expressed in Proposition 2.2.3 to explain why xh + xp
is a solution to the equation Ax � b. You may do this by evaluating A(xh + xp).
That is, if we find one solution xp to an equation Ax � b, wemay add any solution
to the homogeneous equation to xp and still have a solution to the equation Ax � b.
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In other words, the solution space to the equation Ax � b is given by translating
the solution space to the homogeneous equation by the vector xp .

12. Suppose that a city is starting a bicycle sharing program with bicycles at locations B
and C. Bicycles that are rented at one location may be returned to either location at the
end of the day. Over time, the city finds that 80% of bicycles rented at location B are
returned to B with the other 20% returned to C. Similarly, 50% of bicycles rented at
location C are returned to B and 50% to C.

To keep track of the bicycles, we form a vector

xk �

[
Bk

Ck

]
where Bk is the number of bicycles at location B at the beginning of day k and Ck is the
number of bicycles at C. The information above tells us how to determine the distribu-
tion of bicycles the following day:

Bk+1 � 0.8Bk + 0.5Ck

Ck+1 � 0.2Bk + 0.5Ck .

Expressed in matrix-vector form, these expressions give

xk+1 � Axk

where
A �

[
0.8 0.5
0.2 0.5

]
.

a. Let’s check that this makes sense.

1. Suppose that there are 1000 bicycles at location B and none at C on day 1.

This means we have x1 �

[
1000

0

]
. Find the number of bicycles at both

locations on day 2 by evaluating x2 � Ax1.
2. Suppose that there are 1000 bicycles at location C and none at B on day 1.

Form the vector x1 and determine the number of bicycles at the two locations
the next day by finding x2 � Ax1.

b. Suppose that one day there are 1050 bicycles at location B and 450 at location C.
How many bicycles were there at each location the previous day?

c. Suppose that there are 500 bicycles at location B and 500 at location C onMonday.
How many bicycles are there at the two locations on Tuesday? on Wednesday?
on Thursday?
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13. This problem is a continuation of the previous problem.
a. Let us define vectors

v1 �

[
5
2

]
, v2 �

[
−1

1

]
.

Show that
Av1 � v1 , Av2 � 0.3v2.

b. Suppose that x1 � c1v1 + c2v2 where c1 and c2 are scalars. Use the Linearity
Principle expressed in Proposition 2.2.3 to explain why

x2 � Ax1 � c1v1 + 0.3c2v2.

c. Continuing in this way, explain why

x3 � Ax2 � c1v1 + 0.32c2v2

x4 � Ax3 � c1v1 + 0.33c2v2

x5 � Ax4 � c1v1 + 0.34c2v2

.

d. Suppose that there are initially 500 bicycles at location B and 500 at location C.
Write the vector x1 and find the scalars c1 and c2 such that x1 � c1v1 + c2v2.

e. Use the previous part of this problem to determine x2, x3 and x4.

f. After a very long time, how are all the bicycles distributed?
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2.3 The span of a set of vectors

Matrix multiplication allows us to rewrite a linear system in the form Ax � b. Besides being
a more compact way of expressing a linear system, this form allows us to think about linear
systems geometrically since matrix multiplication is defined in terms of linear combinations
of vectors.

We now return to our two fundamental questions, rephrased here in terms of matrix multi-
plication.

• Existence: Is there a solution to the equation Ax � b?

• Uniqueness: If there is a solution to the equation Ax � b, is it unique?

In this section, we focus on the existence question and see how it leads to the concept of the
span of a set of vectors.

Preview Activity 2.3.1 The existence of solutions..
a. If the equation Ax � b is inconsistent, what can we say about the pivot positions

of the augmented matrix
[

A b
]
?

b. Consider the matrix A

A �


1 0 −2

−2 2 2
1 1 −3

 .
If b �


2
2
5

 , is the equation Ax � b consistent? If so, find a solution.

c. If b �


2
2
6

 , is the equation Ax � b consistent? If so, find a solution.

d. Identify the pivot positions of A.

e. For our two choices of the vector b, one equation Ax � b has a solution and the
other does not. What feature of the pivot positions of the matrix A tells us to
expect this?

2.3.1 The span of a set of vectors

In the preview activity, we considered a 3 × 3 matrix A and found that the equation Ax � b
has a solution for some vectors b in �3 and has no solution for others. We will introduce a
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concept called span that describes the vectors b for which there is a solution.

We can write an m × n matrix A in terms of its columns

A �
[

v1 v2 · · · vn
]
.

Remember that Proposition 2.2.4 says that the equation Ax � b is consistent if and only if
we can express b as a linear combination of v1 , v2 , . . . , vn .

Definition 2.3.1 The span of a set of vectors v1 , v2 , . . . , vn is the set of all linear combinations
that can be formed from the vectors.

Alternatively, if A �
[
v1 v2 · · · vn

]
, then the span of the vectors consists of all vectors b

for which the equation Ax � b is consistent.

Example 2.3.2 Considering the set of vectors v �

[
−2

1

]
and w �

[
8

−4

]
, we see that the

vector
b � 3v + w �

[
2

−1

]
is one vector in the span of the vectors v and w because it is a linear combination of v and w.

To determine whether the vector b �

[
5
2

]
is in the span of v and w, we form the matrix

A �
[
v w

]
�

[
−2 8
1 −4

]
and consider the equation Ax � b. We have[

−2 8 5
1 −4 2

]
∼
[

1 −4 0
0 0 1

]
,

which shows that the equation Ax � b is inconsistent. Therefore, b �

[
5
2

]
is one vector

that is not in the span of v and w.

Activity 2.3.2. Let’s look at two examples to develop some intuition for the concept
of span.

a. First, we will consider the set of vectors

v �

[
1
2

]
, w �

[
−2
−4

]
.
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There is an interactive diagram, available at gvsu.edu/s/0Jg, that accompanies
this activity. The diagram at the top of that page accompanies part a of this
activity.

Figure 2.3.3 An interactive diagram for constructing linear combinations of the
vectors v and w.

1. What vector is the linear combination of v and w with weights:
• c � 2 and d � 0?
• c � 1 and d � 1?
• c � 0 and d � −1?

2. Can the vector
[

2
4

]
be expressed as a linear combination of v and w? Is

the vector
[

2
4

]
in the span of v and w?

3. Can the vector
[

3
0

]
be expressed as a linear combination of v and w? Is

the vector
[

3
0

]
in the span of v and w?

4. Describe the set of vectors in the span of v and w.
5. For what vectors b does the equation[

1 −2
2 −4

]
x � b

have a solution?

http://gvsu.edu/s/0Jg
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b. We will now look at an example where

v �

[
2
1

]
, w �

[
1
2

]
.

The diagram at the bottom of the page at gvsu.edu/s/0Jg accompanies part b of
this activity.

Figure 2.3.4 An interactive diagram for constructing linear combinations of the
vectors v and w.

1. What vector is the linear combination of v and w with weights:
• c � 2 and d � 0?
• c � 1 and d � 1?
• c � 0 and d � −1?

2. Can the vector
[
−2

2

]
be expressed as a linear combination of v and w? Is

the vector
[
−2

2

]
in the span of v and w?

3. Can the vector
[

3
0

]
be expressed as a linear combination of v and w? Is

the vector
[

3
0

]
in the span of v and w?

4. Describe the set of vectors in the span of v and w.
5. For what vectors b does the equation[

2 1
1 2

]
x � b

have a solution?

http://gvsu.edu/s/0Jg
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This activity aims to convey the geometric meaning of span. Remember that we can think
of a linear combination of the two vectors v and w as a recipe for walking in the plane �2.
We first move a prescribed amount in the direction of v and then a prescribed amount in the
direction of w. The span consists of all the places we can walk to.

Example 2.3.5 Let’s consider the vectors v �

[
2
0

]
and w �

[
−1

1

]
as shown in Figure 2.3.6.

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

v

w

Figure 2.3.6 The vectors v and w and some lin-
ear combinations they create.

The figure shows us that b � v+ 2w �

[
0
2

]
is a linear combination of v and w. Indeed, we

can verify this algebraically by constructing the linear system[
v w

]
x �

[
0
2

]
,

whose corresponding augmented matrix has the reduced row echelon form[
2 −1 0
0 1 2

]
∼
[

1 0 1
0 1 2

]
.

Because this system is consistent, we know that b �

[
0
2

]
is in the span of v and w.

In fact, we can say more. Notice that the coefficient matrix[
2 −1
0 1

]
∼
[
1 0
0 1

]
has a pivot position in every row. This means that for any other vector b, the augmentedma-
trix corresponding to the equation

[
v w

]
x � b cannot have a pivot position in its rightmost
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column: [
2 −1 ∗
0 1 ∗

]
∼
[

1 0 ∗
0 1 ∗

]
.

Therefore, the equation
[
v w

]
x � b is consistent for every two-dimensional vector b,

which tells us that every two-dimensional vector is in the span of v and w. In this case,
we say that the span of v and w is �2.

The intuitivemeaning is thatwe canwalk to any point in the plane bymoving an appropriate
distance in the v and w directions.

Example 2.3.7 Now let’s consider the vectors v �

[
−1

1

]
and w �

[
2

−2

]
as shown in

Figure 2.3.8.

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

v

w

Figure 2.3.8 The vectors v and w and some lin-
ear combinations they create.

From the figure, we expect that b �

[
0
2

]
is not a linear combination of v and w. Once again,

we can verify this algebraically by constructing the linear system[
v w

]
x �

[
0
2

]
.

The augmented matrix has the reduced row echelon form[
−1 2 0

1 −2 2

]
∼
[

1 −2 0
0 0 1

]
,

from which we see that the system is inconsistent. Therefore, b �

[
0
2

]
is not in the span of

v and w.
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We should expect this behavior from the coefficient matrix[
−1 2
1 −2

]
∼
[
1 −2
0 0

]
.

Because the second row of the coefficient matrix does not have a pivot position, it is possible
for a linear system

[
v w

]
x � b to have a pivot position in its rightmost column:[

−1 2 ∗
1 −2 ∗

]
∼
[

1 −2 0
0 0 1

]
.

If we notice that w � −2v, we see that any linear combination of v and w,

cv + dw � cv − 2dv � (c − 2d)v,

is actually a scalar multiple of v. Therefore, the span of v and w is the line defined by the
vector v. Intuitively, this means that we can only walk to points on this line using these two
vectors.
Notation 2.3.9Wewill denote the span of the set of vectorsv1 , v2 , . . . , vn by Span{v1 , v2 , . . . , vn}.

In Example 2.3.5, we saw that Span{v,w} � �2. However, for the vectors in Example 2.3.7,
we saw that Span{v,w} is simply a line.

2.3.2 Pivot positions and span

Aset of vectorsv1 , v2 , . . . , vn naturally defines amatrix A �
[
v1 v2 · · · vn

]
whose columns

are the given vectors. As we’ve seen, a vector b is in Span{v1 , v2 , . . . , vn} precisely when the
linear system Ax � b is consistent.

The previous examples point to the fact that the span is related to the pivot positions of A.
While Section 2.4 and Section 3.5 develop this idea more fully, we will now examine the
possibilities in �3.

Activity 2.3.3. In this activity, we will look at the span of sets of vectors in �3.

a. Suppose v �


1
2
1

 . Give a geometric description of Span{v} and a rough sketch

of v and its span in Figure 2.3.10.
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y

z

x

Figure 2.3.10 A three-dimensional coordinate system for sketching v and its
span.

b. Now consider the two vectors

e1 �


1
0
0

 , e2 �


0
1
0

 .
Sketch the vectors below. Then give a geometric description of Span{e1 , e2} and
a rough sketch of the span in Figure 2.3.11.

y

z

x

Figure 2.3.11 A coordinate system for sketching e1, e2, and Span{e1 , e2}.

c. Let’s now look at this situation algebraically by writing write b �


b1
b2
b3

 . Deter-

mine the conditions on b1, b2, and b3 so that b is in Span{e1 , e2} by considering
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the linear system [
e1 e2

]
x � b

or 
1 0
0 1
0 0

 x �


b1
b2
b3

 .
Explain how this relates to your sketch of Span{e1 , e2}.

d. Consider the vectors

v1 �


1
1

−1

 , v2 �


0
2
1

 .
1. Is the vector b �


1

−2
4

 in Span{v1 , v2}?

2. Is the vector b �


−2

0
3

 in Span{v1 , v2}?

3. Give a geometric description of Span{v1 , v2}.

e. Consider the vectors

v1 �


1
1

−1

 , v2 �


0
2
1

 , v3 �


1

−2
4

 .
Form the matrix

[
v1 v2 v3

]
and find its reduced row echelon form.

What does this tell you about Span{v1 , v2 , v3}?

f. If the span of a set of vectors v1 , v2 , . . . , vn is �3, what can you say about the
pivot positions of the matrix

[
v1 v2 . . . vn

]
?

g. What is the smallest number of vectors such that Span{v1 , v2 , . . . , vn} � �3?

The types of sets that appear as the span of a set of vectors in �3 are relatively simple.

• First, with a single nonzero vector, all linear combinations are simply scalar multiples
of that vector so that the span of this vector is a line, as shown in Figure 2.3.12.
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z

y

x

v

Figure 2.3.12 The span of a single nonzero vector is a line.

Notice that the matrix formed by this vector has one pivot position. For example,
−2

3
1

 ∼


1
0
0

 .
• The span of two vectors in �3 that do not lie on the same line will be a plane, as seen

in Figure 2.3.13.

v1

v2

Figure 2.3.13 The span of these two vectors in �3 is a plane.

For example, the vectors

v1 �


−2

3
1

 , v2 �


1

−1
3


lead to the matrix 

−2 1
3 −1
1 3

 ∼


1 0
0 1
0 0


with two pivot positions.
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• Finally, a set of three vectors, such as

v1 �


1
2

−1

 , v2 �


2
0
1

 , v3 �


−2

2
0


may form a matrix having three pivot positions

[
v1 v2 v3

]
�


1 2 −2
2 0 2

−1 1 0

 ∼


1 0 0
0 1 0
0 0 1

 ,
one in every row. When this happens, no matter how we augment this matrix, it is
impossible to obtain a pivot position in the rightmost column:

1 2 −2 ∗
2 0 2 ∗

−1 1 0 ∗

 ∼


1 0 0 ∗
0 1 0 ∗
0 0 1 ∗

 .
Therefore, any linear system

[
v1 v2 v3

]
x � b is consistent, which tells us that

Span{v1 , v2 , v3} � �3.

To summarize, we looked at the pivot positions in a matrix whose columns are the three-
dimensional vectors v1 , v2 , . . . , vn . We found that with

• one pivot position, the span was a line.

• two pivot positions, the span was a plane.

• three pivot positions, the span was �3.

Though we will return to these ideas later, for now take note of the fact that the span of a set
of vectors in �3 is a relatively simple, familiar geometric object.

The reasoning that led us to conclude that the span of a set of vectors is�3 when the associ-
ated matrix has a pivot position in every row applies more generally.

Proposition 2.3.14 Suppose we have vectors v1 , v2 , . . . , vn in �m . Then Span{v1 , v2 , . . . , vn} �

�m if and only if the matrix
[

v1 v2 · · · vn
]
has a pivot position in every row.

This tells us something important about the number of vectors needed to span�m . Suppose
we have n vectors v1 , v2 , . . . , vn that span �m . The proposition tells us that the matrix A �[

v1 v2 . . . vn
]
has a pivot position in every row, such as in this reduced row echelon

matrix. 
1 0 ∗ 0 ∗ 0
0 1 ∗ 0 ∗ 0
0 0 0 1 ∗ 0
0 0 0 0 0 1

 .
Since a matrix can have at most one pivot position in a column, there must be at least as
many columns as there are rows, which implies that n ≥ m. For instance, if we have a set of
vectors that span �632, there must be at least 632 vectors in the set.
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Proposition 2.3.15 A set of vectors whose span is �m contains at least m vectors.

We have thought about a linear combination of a set of vectors v1 , v2 , . . . , vn as the result of
walking a certain distance in the direction of v1, followed by walking a certain distance in
the direction of v2, and so on. If Span{v1 , v2 , . . . , vn} � �m , this means that we can walk to
every point in �m using the directions v1 , v2 , . . . , vn . Intuitively, this proposition is telling
us that we need at least m directions to have the flexibility needed to reach every point in
�m .

Terminology.

Because span is a concept that is connected to a set of vectors, we say, “The span of
the set of vectors v1 , v2 , . . . , vn is ....” While it may be tempting to say, “The span of
the matrix A is ...,” we should instead say “The span of the columns of the matrix A
is ....”

2.3.3 Summary

Wedefined the span of a set of vectors anddeveloped some intuition for this concept through
a series of examples.

• The span of a set of vectors v1 , v2 , . . . , vn is the set of linear combinations of the vectors.
We denote the span by Span{v1 , v2 , . . . , vn}.

• A vector b is in Span{v1 , v2 , . . . , vn} if and only if the linear system[
v1 v2 . . . vn

]
x � b

is consistent.

• If the m × n matrix [
v1 v2 . . . vn

]
has a pivot position in every row, then the span of these vectors is �m ; that is,

Span{v1 , v2 , . . . , vn} � �m .

• Any set of vectors that spans �m must have at least m vectors.

2.3.4 Exercises

1. In this exercise, we will consider the span of some sets of two- and three-dimensional
vectors.

a. Consider the vectors
v1 �

[
1

−2

]
, v2 �

[
4
3

]
.
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1. Is b �

[
2
1

]
in Span{v1 , v2}?

2. Give a geometric description of Span{v1 , v2}.

b. Consider the vectors

v1 �


2
1
3

 , v2 �


−2

0
2

 , v3 �


6
1

−1

 .
1. Is the vector b �


−10
−1

5

 in Span{v1 , v2 , v3}?

2. Is the vector v3 in Span{v1 , v2 , v3}?

3. Is the vector b �


3
3

−1

 in Span{v1 , v2 , v3}?

4. Give a geometric description of Span{v1 , v2 , v3}.
2. Provide a justification for your response to the following questions.

a. Suppose you have a set of vectors v1 , v2 , . . . , vn . Can you guarantee that 0 is in
Span{v1 v2 , . . . , vn}?

b. Suppose that A is an m × n matrix. Can you guarantee that the equation Ax � 0
is consistent?

c. What is Span{0, 0, . . . , 0}?
3. For both parts of this exercise, give a geometric description of sets of the vectors b and

include a sketch.
a. For which vectors b in �2 is the equation[

3 −6
−2 4

]
x � b

consistent?

b. For which vectors b in �2 is the equation[
3 −6

−2 2

]
x � b

consistent?
4. Consider the following matrices:

A �


3 0 −1 1
1 −1 3 7
3 −2 1 5

−1 2 2 3

 , B �


3 0 −1 4
1 −1 3 −1
3 −2 1 3

−1 2 2 1

 .
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Do the columns of A span �4? Do the columns of B span �4?

5. Determine whether the following statements are true or false and provide a justifica-
tion for your response. Throughout, we will assume that the matrix A has columns
v1 , v2 , . . . , vn ; that is,

A �
[

v1 v2 . . . vn
]
.

a. If the equation Ax � b is consistent, then b is in Span{v1 , v2 , . . . , vn}.

b. The equation Ax � v1 is consistent.

c. If v1, v2, v3, and v4 are vectors in �3, then their span is �3.

d. If b is a linear combination of v1 , v2 , . . . , vn , then b is in Span{v1 , v2 , . . . , vn}.

e. If A is an 8032 × 427 matrix, then the span of the columns of A is a set of vectors
in �427.

6. This exercise asks you to construct some matrices whose columns span a given set.
a. Construct a 3 × 3 matrix whose columns span �3.

b. Construct a 3 × 3 matrix whose columns span a plane in �3.

c. Construct a 3 × 3 matrix whose columns span a line in �3.
7. Provide a justification for your response to the following questions.

a. Suppose that we have vectors in �8, v1 , v2 , . . . , v10, whose span is �8. Can every
vector b in �8 be written as a linear combination of v1 , v2 , . . . , v10?

b. Suppose that we have vectors in �8, v1 , v2 , . . . , v10, whose span is �8. Can every
vector b in �8 be written uniquely as a linear combination of v1 , v2 , . . . , v10?

c. Do the vectors

e1 �


1
0
0

 , e2 �


0
1
0

 , e3 �


0
0
1


span �3?

d. Suppose that v1 , v2 , . . . , vn span �438. What can you guarantee about the value
of n?

e. Can 17 vectors in �20 span �20?
8. The following observation will be helpful in this exercise. If we want to find a solution

to the equation ABx � b, we could first find a solution to the equation Ay � b and then
find a solution to the equation Bx � y.

Suppose that A is a 3× 4 matrix whose columns span�3 and B is a 4× 5 matrix. In this
case, we can form the product AB.

a. What is the shape of the product AB?

b. Can you guarantee that the columns of AB span �3?
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c. If you know additionally that the span of the columns of B is�4, can you guaran-
tee that the columns of AB span �3?

9. Suppose that A is a 12× 12 matrix and that, for some vector b, the equation Ax � b has
a unique solution.

a. What can you say about the pivot positions of A?

b. What can you say about the span of the columns of A?

c. If c is some other vector in�12, what can you conclude about the equation Ax � c?

d. What can you about the solution space to the equation Ax � 0?
10. Suppose that

v1 �


3
1
3

−1

 , v2 �


0

−1
−2

2

 , v3 �


−3
−3
−7

5

 .
a. Is v3 a linear combination of v1 and v2? If so, findweights such that v3 � av1+bv2.

b. Show that a linear combination

av1 + bv2 + cv3

can be rewritten as a linear combination of v1 and v2.

c. Explain why Span{v1 , v2 , v3} � Span{v1 , v2}.
11. As defined in this section, the span of a set of vectors is generated by taking all possible

linear combinations of those vectors. This exercise will demonstrate the fact that the
span can also be realized as the solution space to a linear system.

We will consider the vectors

v1 �


1
0

−2

 , v2 �


2
1
0

 , v3 �


1
1
2


a. Is every vector in �3 in Span{v1 , v2 , v3}? If not, describe the span.

b. To describe Span{v1 , v2 , v3} as the solution space of a linear system, wewill write

b �


a
b
c

 .
If b is in Span{v1 , v2 , v3}, then the linear system corresponding to the augmented
matrix 

1 2 1 a
0 1 1 b

−2 0 2 c


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must be consistent. This means that a pivot cannot occur in the rightmost column.
Perform rowoperations to put this augmentedmatrix into a triangular form. Now
identify an equation in a, b, and c that tells us when there is no pivot in the right-
most column. The solution space to this equation describes Span{v1 , v2 , v3}.

c. In this example, the matrix formed by the vectors
[

v1 v2 v2
]
has two pivot

positions. Suppose we were to consider another example in which this matrix
had had only one pivot position. Howwould this have changed the linear system
describing Span{v1 , v2 , v3}?
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2.4 Linear independence

In the previous section, questions about the existence of solutions of a linear system led to the
concept of the span of a set of vectors. In particular, the span of a set of vectors v1 , v2 , . . . , vn
is the set of vectors b for which a solution to the linear system

[
v1 v2 . . . vn

]
x � b

exists.

In this section, we turn to the uniqueness of solutions of a linear system, the second of our
two fundamental questions. This will lead us to the concept of linear independence.

Preview Activity 2.4.1. Let’s begin by looking at some sets of vectors in �3. As we
saw in the previous section, the span of a set of vectors in �3 will be either a line, a
plane, or �3 itself.

a. Consider the following vectors in �3:

v1 �


0

−1
2

 , v2 �


3
1

−1

 , v3 �


2
0
1

 .
Describe the span of these vectors, Span{v1 , v2 , v3}, as a line, a plane, or �3.

b. Now consider the set of vectors:

w1 �


0

−1
2

 ,w2 �


3
1

−1

 ,w3 �


3
0
1

 .
Describe the span of these vectors, Span{w1 ,w2 ,w3}, as a line, a plane, or �3.

c. Show that the vector w3 is a linear combination of w1 and w2 by findingweights
such that

w3 � cw1 + dw2.

d. Explain why any linear combination of w1, w2, and w3,

c1w1 + c2w2 + c3w3

can be written as a linear combination of w1 and w2.

e. Explain why
Span{w1 ,w2 ,w3} � Span{w1 ,w2}.
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2.4.1 Linear dependence

We have seen examples where the span of a set of three vectors in �3 is �3 and other exam-
ples where the span of three vectors is a plane. We would like to understand the difference
between these two situations.

Example 2.4.1 Let’s consider the set of three vectors in �3:

v1 �


2
2
0

 , v2 �


1
1

−1

 , v3 �


−1

0
1

 .
Forming the associated matrix gives

[
v1 v2 v3

]
�


2 1 −1
2 1 0
0 −1 1

 ∼

1 0 0
0 1 0
0 0 1

 .
Because there is a pivot position in every row, Proposition 2.3.14 tells us that Span{v1 , v2 , v3} �
�3.
Example 2.4.2 Now let’s consider the set of three vectors:

w1 �


2
2
0

 , w2 �


1
1

−1

 , w3 �


−5
−5

1

 .
Forming the associated matrix gives

[
w1 w2 w3

]
�


2 1 −5
2 1 −5
0 −1 1

 ∼

1 0 −2
0 1 −1
0 0 0

 .
Since the last row does not have a pivot position, we know that the span of these vectors is
not �3 but is instead a plane.

In fact, we can say more if we shift our perspective slightly and view this as an augmented
matrix: [

w1 w2 w3
]
�


2 1 −5
2 1 −5
0 −1 1

 ∼


1 0 −2
0 1 −1
0 0 0

 .
In this way, we see that w3 � −2w1 −w2, which enables us to rewrite any linear combination
of these three vectors:

c1w1 + c2w2 + c3w3 � c1w1 + c2w2 + c3(−2w1 − w2)
� (c1 − 2c3)w1 + (c2 − c3)w2.

In other words, any linear combination of w1, w2, and w3 may be written as a linear combi-
nation using only the vectors w1 and w2. Since the span of a set of vectors is simply the set
of their linear combinations, this shows that

Span{w1 ,w2 ,w3} � Span{w1 ,w2}.
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As a result, adding the vector w3 to the set of vectors w1 and w2 does not change the span.

Before exploring this type of behavior more generally, let’s think about it from a geometric
point of view. Suppose that we begin with the two vectors v1 and v2 in Example 2.4.1. The
span of these two vectors is a plane in �3, as seen on the left of Figure 2.4.3.

v1

v2

v1

v2

v3

Figure 2.4.3 The span of the vectors v1, v2, and v3.

Because the vector v3 is not a linear combination of v1 and v2, it provides a direction tomove
that is independent of v1 and v2. Adding this third vector v3 therefore forms a set whose
span is �3, as seen on the right of Figure 2.4.3.

Similarly, the span of the vectors w1 and w2 in Example 2.4.2 is also a plane. However, the
third vector w3 is a linear combination of w1 and w2, which means that it already lies in
the plane formed by w1 and w2, as seen in Figure 2.4.4. Since we can already move in this
direction using just w1 and w2, adding w3 to the set does not change the span. As a result,
it remains a plane.

w1

w2

w1

w2

w3

Figure 2.4.4 The span of the vectors w1, w2, and w3.

What distinguishes these two examples is whether one of the vectors is a linear combination
of the others, an observation that leads to the following definition.

Definition 2.4.5 A set of vectors is called linearly dependent if one of the vectors is a linear
combination of the others. Otherwise, the set of vectors is called linearly independent.
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For the sake of completeness, we say that a set of vectors containing only one nonzero vector
is linearly independent.

2.4.2 How to recognize linear dependence

Activity 2.4.2. We would like to develop a means to detect when a set of vectors is
linearly dependent. This activity will point the way.

a. Suppose we have five vectors in �4 that form the columns of a matrix having
reduced row echelon form

[
v1 v2 v3 v4 v5

]
∼


1 0 −1 0 2
0 1 2 0 3
0 0 0 1 −1
0 0 0 0 0

 .
Is it possible to write one of the vectors v1 , v2 , . . . , v5 as a linear combination
of the others? If so, show explicitly how one vector appears as a linear combi-
nation of some of the other vectors. Is this set of vectors linearly dependent or
independent?

b. Suppose we have another set of three vectors in �4 that form the columns of a
matrix having reduced row echelon form

[
w1 w2 w3

]
∼


1 0 0
0 1 0
0 0 1
0 0 0

 .
Is it possible to write one of these vectors w1, w2, w3 as a linear combination
of the others? If so, show explicitly how one vector appears as a linear combi-
nation of some of the other vectors. Is this set of vectors linearly dependent or
independent?

c. By looking at the pivot positions, how can you determine whether the columns
of a matrix are linearly dependent or independent?

d. If one vector in a set is the zero vector 0, can the set of vectors be linearly inde-
pendent?

e. Suppose a set of vectors in�10 has twelve vectors. Is it possible for this set to be
linearly independent?

By now, we should expect that the pivot positions play an important role in determining
whether the columns of a matrix are linearly dependent. For instance, suppose we have four
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vectors and their associated matrix

[
v1 v2 v3 v4

]
∼


1 0 2 0
0 1 −3 0
0 0 0 1
0 0 0 0

 .
Since the third column does not contain a pivot position, let’s just focus on the first three
columns and view them as an augmented matrix:

[
v1 v2 v3

]
∼


1 0 2
0 1 −3
0 0 0
0 0 0

 .
This says that

v3 � 2v1 − 3v2 ,

which tells us that the set of vectors v1 , v2 , v3 , v4 is linearly dependent. Moreover, we see
that

Span{v1 , v2 , v3 , v4} � Span{v1 , v2 , v4}.

More generally, the same reasoning implies that a set of vectors is linearly dependent if the
associatedmatrix has a columnwithout a pivot position. Indeed, as illustrated here, a vector
corresponding to a columnwithout a pivot position can be expressed as a linear combination
of the vectors whose columns do contain pivot positions.

Suppose instead that the matrix associated to a set of vectors has a pivot position in every
column.

[
w1 w2 w3 w4

]
∼


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


.

Viewing this as an augmented matrix again, we see that the linear system is inconsistent
since there is a pivot in the rightmost column, which means that w4 cannot be expressed
as a linear combination of the other vectors. Similarly, w3 cannot be expressed as a linear
combination of w1 and w2. In fact, none of the vectors can bewritten as a linear combination
of the others so this set of vectors is linearly independent.

The following proposition summarizes these findings.

Proposition 2.4.6 The columns of a matrix are linearly independent if and only if every column
contains a pivot position.

This condition imposes a constraint on how many vectors we can have in a linearly indepen-
dent set. Here is an example of the reduced row echelon form of a matrix whose columns
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form a set of three linearly independent vectors in �5:
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0


.

Notice that there are at least as many rows as columns, which must be the case if every
column is to have a pivot position.

More generally, if v1 , v2 , . . . , vn is a linearly independent set of vectors in�m , the associated
matrix must have a pivot position in every column. Since every row contains at most one
pivot position, the number of columns can be no greater than the number of rows. This
means that the number of vectors in a linearly independent set can be no greater than the
number of dimensions.
Proposition 2.4.7 A linearly independent set of vectors in �m contains at most m vectors.

This says, for instance, that any linearly independent set of vectors in�3 can contain nomore
three vectors. We usually imagine three independent directions, such as up/down, front/
back, left/right, in our three-dimensional world. This proposition tells us that there can be
no more independent directions.

The proposition above says that a set of vectors in�m that is linear independent has at most
m vectors. By comparison, Proposition 2.3.15 says that a set of vectors whose span is�m has
at least m vectors.

2.4.3 Homogeneous equations

If A is a matrix, we call the equation Ax � 0 a homogeneous equation. As we’ll see, the
uniqueness of solutions to this equation reflects on the linear independence of the columns
of A.

Activity 2.4.3 Linear independence and homogeneous equations..
a. Explain why the homogeneous equation Ax � 0 is consistent no matter the ma-

trix A.

b. Consider the matrix

A �


3 2 0

−1 0 −2
2 1 1


whose columns we denote by v1, v2, and v3. Describe the solution space of the
homogeneous equation Ax � 0 using a parametric description, if appropriate.

c. Find a nonzero solution to the homogeneous equation and use it to findweights
c1, c2, and c3 such that

c1v1 + c2v2 + c3v3 � 0.
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d. Use the equation you found in the previous part to write one of the vectors as a
linear combination of the others.

e. Are the vectors v1, v2, and v3 linearly dependent or independent?

This activity shows how the solution space of the homogeneous equation Ax � 0 indicates
whether the columns of A are linearly dependent or independent. First, we know that the
equation Ax � 0 always has at least one solution, the vector x � 0. Any other solution is a
nonzero solution.
Example 2.4.8 Let’s consider the vectors

v1 �


2

−4
1
0

 , v2 �


1
1
3

−2

 , v3 �


3

−3
4

−2


and their associated matrix A �

[
v1 v2 v3

]
.

The homogeneous equation Ax � 0 has the associated augmented matrix
2 1 3 0

−4 1 −3 0
1 3 4 0
0 −2 −2 0

 ∼


1 0 1 0
0 1 1 0
0 0 0 0
0 0 0 0

 .
Therefore, A has a column without a pivot position, which tells us that the vectors v1, v2,
and v3 are linearly dependent. However, we can also see this fact in another way.

The reduced row echelon matrix tells us that the homogeneous equation has a free variable
so that there must be infinitely many solutions. In particular, we have

x1 � − x3

x2 � − x3

so the solutions have the form

x �


x1
x2
x3

 �

−x3
−x3

x3

 � x3


−1
−1

1

 .
If we choose x3 � 1, then we obtain the nonzero solution to the homogeneous equation

x �


−1
−1

1

 , which implies that

A

−1
−1

1

 �
[
v1 v2 v3

] 
−1
−1

1

 � −v1 − v2 + v3 � 0.
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In other words,
−v1 − v2 + v3 � 0

v3 � v1 + v2.

Because v3 is a linear combination of v1 and v2, we know that this set of vectors is linearly
dependent.

As this example demonstrates, there are many ways we can view the question of linear in-
dependence, some of which are recorded in the following proposition.

Proposition 2.4.9 For a matrix A �
[

v1 v2 . . . vn
]
, the following statements are equivalent:

• The columns of A are linearly dependent.

• One of the vectors in the set v1 , v2 , . . . , vn is a linear combination of the others.

• The matrix A has a column without a pivot position.

• The homogeneous equation Ax � 0 has infinitely many solutions and hence a nonzero solution.

• There are weights c1 , c2 , . . . , cn , not all of which are zero, such that

c1v1 + c2v2 + . . . + cnvn � 0.

2.4.4 Summary

This section developed the concept of linear dependence of a set of vectors. More specifically,
we saw that:

• A set of vectors is linearly dependent if one of the vectors is a linear combination of
the others.

• A set of vectors is linearly independent if and only if the vectors form amatrix that has
a pivot position in every column.

• A set of linearly independent vectors in �m contains no more than m vectors.

• The columns of thematrix A are linearly dependent if the homogeneous equation Ax �

0 has a nonzero solution.

• A set of vectors v1 , v2 , . . . , vn is linearly dependent if there are weights c1 , c2 , . . . , cn ,
not all of which are zero, such that

c1v1 + c2v2 + . . . + cnvn � 0.

At the beginning of the section, we said that this concept addressed the second of our two
fundamental questions concerning the uniqueness of solutions to a linear system. It is worth
comparing the results of this section with those of the previous one so that the parallels
between them become clear.

As usual, we will write a matrix as a collection of vectors,

A �
[

v1 v2 . . . vn
]
.
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Table 2.4.10 Span and Linear Independence

Span Linear independence
A vector b is in the span of a set of vectors if
it is a linear combination of those vectors.

A set of vectors is linearly dependent if one of
the vectors is a linear combination of the
others.

A vector b is in the span of v1 , v2 , . . . , vn if
there exists a solution to Ax � b.

The vectors v1 , v2 , . . . , vn are linearly
independent if x � 0 is the unique solution to
Ax � 0.

The columns of an m × n matrix span �m if
the matrix has a pivot position in every row.

The columns of a matrix are linearly
independent if the matrix has a pivot
position in every column.

A set of vectors that span �m has at least m
vectors.

A set of linearly independent vectors in �m

has at most m vectors.

2.4.5 Exercises

1. Consider the set of vectors

v1 �


1
2
1

 , v2 �


0
1
3

 , v3 �


2
3

−1

 , v4 �


−2

4
−1

 .
a. Explain why this set of vectors is linearly dependent.

b. Write one of the vectors as a linear combination of the others.

c. Find weights c1, c2, c3, and c4, not all of which are zero, such that

c1v1 + c2v2 + c3v3 + c4v4 � 0.

d. Suppose A �
[

v1 v2 v3 v4
]
. Find a nonzero solution to the homogenous

equation Ax � 0.
2. Consider the vectors

v1 �


2

−1
0

 , v2 �


1
2
1

 , v3 �


2

−2
3

 .
a. Are these vectors linearly independent or linearly dependent?

b. Describe the Span{v1 , v2 , v3}.

c. Suppose that b is a vector in �3. Explain why we can guarantee that b may be
written as a linear combination of v1, v2, and v3.
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d. Suppose that b is a vector in �3. In how many ways can b be written as a linear
combination of v1, v2, and v3?

3. Respond to the following questions and provide a justification for your responses.
a. If the vectors v1 and v2 form a linearly dependent set, must one vector be a scalar

multiple of the other?

b. Suppose that v1 , v2 , . . . , vn is a linearly independent set of vectors. What can you
say about the linear independence or dependence of a subset of these vectors?

c. Supposev1 , v2 , . . . , vn is a linearly independent set of vectors that form the columns
of a matrix A. If the equation Ax � b is inconsistent, what can you say about the
linear independence or dependence of the set of vectors v1 , v2 , . . . , vn , b?

4. Determinewhether the following statements are true or false and provide a justification
for your response.

a. If v1 , v2 , . . . , vn are linearly dependent, then one vector is a scalar multiple of one
of the others.

b. If v1 , v2 , . . . , v10 are vectors in �5, then the set of vectors is linearly dependent.

c. If v1 , v2 , . . . , v5 are vectors in �10, then the set of vectors is linearly independent.

d. Suppose we have a set of vectors v1 , v2 , . . . , vn and that v2 is a scalar multiple of
v1. Then the set is linearly dependent.

e. Suppose that v1 , v2 , . . . , vn are linearly independent and form the columns of a
matrix A. If Ax � b is consistent, then there is exactly one solution.

5. Suppose we have a set of vectors v1 , v2 , v3 , v4 in �5 that satisfy the relationship:

2v1 − v2 + 3v3 + v4 � 0

and suppose that A is the matrix A �
[

v1 v2 v3 v4
]
.

a. Find a nonzero solution to the equation Ax � 0.

b. Explain why the matrix A has a column without a pivot position.

c. Write one of the vectors as a linear combination of the others.

d. Explain why the set of vectors is linearly dependent.

6. Suppose that v1 , v2 , . . . , vn is a set of vectors in �27 that form the columns of a matrix
A.

a. Suppose that the vectors span�27. What can you say about the number of vectors
n in this set?

b. Suppose instead that the vectors are linearly independent. What can you say
about the number of vectors n in this set?

c. Suppose that the vectors are both linearly independent and span �27. What can
you say about the number of vectors in the set?

d. Assume that the vectors are both linearly independent and span �27. Given a
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vector b in�27, what can you say about the solution space to the equation Ax � b?
7. Given below are some descriptions of sets of vectors that form the columns of a matrix

A. For each description, give a possible reduced row echelon form for A or indicate
why there is no set of vectors satisfying the description by stating why the required
reduced row echelon matrix cannot exist.

a. A set of 4 linearly independent vectors in �5.

b. A set of 4 linearly independent vectors in �4.

c. A set of 3 vectors whose span is �4.

d. A set of 5 linearly independent vectors in �3.

e. A set of 5 vectors whose span is �4.
8. When we explored matrix multiplication in Section 2.2, we saw that some properties

that are true for real numbers are not true for matrices. This exercise will investigate
that in some more depth.

a. Suppose that A and B are two matrices and that AB � 0. If B , 0, what can you
say about the linear independence of the columns of A?

b. Suppose that we have matrices A, B and C such that AB � AC. We have seen that
we cannot generally conclude that B � C. If we assume additionally that A is a
matrix whose columns are linearly independent, explain why B � C. You may
wish to begin by rewriting the equation AB � AC as AB − AC � A(B − C) � 0.

9. Suppose that k is an unknown parameter and consider the set of vectors

v1 �


2
0
1

 , v2 �


4

−2
−1

 , v3 �


0
2
k

 .
a. For what values of k is the set of vectors linearly dependent?

b. For what values of k does the set of vectors span �3?
10. Given a set of linearly dependent vectors, we can eliminate some of the vectors to create

a smaller, linearly independent set of vectors.
a. Suppose that w is a linear combination of the vectors v1 and v2. Explain why

Span{v1 , v2 ,w} � Span{v1 , v2}.

b. Consider the vectors

v1 �


2

−1
0

 , v2 �


1
2
1

 , v3 �


−2

6
2

 , v4 �


7

−1
1

 .
Write one of the vectors as a linear combination of the others. Find a set of three
vectors whose span is the same as Span{v1 , v2 , v3 , v4}.

c. Are the three vectors you are left with linearly independent? If not, express one
of the vectors as a linear combination of the others and find a set of two vectors
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whose span is the same as Span{v1 , v2 , v3 , v4}.

d. Give a geometric description of Span{v1 , v2 , v3 , v4} in�3 as we did in Section 2.3.
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2.5 Matrix transformations

The past few sections introduced us to matrix-vector multiplication as a means of thinking
geometrically about the solutions to a linear system. In particular, we rewrote a linear system
as a matrix equation Ax � b and developed the concepts of span and linear independence
in response to our two fundamental questions.

In this section, we will explore how matrix-vector multiplication defines certain types of
functions, which we call matrix transformations, similar to those encountered in previous
algebra courses. In particular, wewill develop some algebraic tools for thinking aboutmatrix
transformations and look at somemotivating examples. In the next section, we will see how
matrix transformations describe important geometric operations and how they are used in
computer animation.

Preview Activity 2.5.1. Wewill begin by considering amore familiar situation; namely,
the function f (x) � x2, which takes a real number x as an input and produces its
square x2 as its output.

a. What is the value of f (3)?

b. Can we solve the equation f (x) � 4? If so, is the solution unique?

c. Can we solve the equation f (x) � −10? If so, is the solution unique?

d. Sketch a graph of the function f (x) � x2 in Figure 2.5.1

-4 -2 2 4

-4

-2

2

4

x

y

Figure 2.5.1 Graph the function f (x) � x2 above.

e. We will now consider functions having the form 1(x) � mx. Draw a graph of
the function 1(x) � 2x on the left in Figure 2.5.2.
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Figure 2.5.2 Graphs of the function 1(x) � 2x and h(x) � − 1
3 x.

f. Draw a graph of the function h(x) � − 1
3 x on the right of Figure 2.5.2.

g. Remember that composing two functions means we use the output from one
function as the input into the other; that is, (1 ◦ h)(x) � 1(h(x)). What function
results from composing (1 ◦ h)(x)?

2.5.1 Matrix transformations

In the preview activity, we considered familiar linear functions of a single variable, such as
1(x) � 2x. We construct a function like this by choosing a number m; when given an input
x, the output 1(x) � mx is formed by multiplying x by m.

In this section, we will consider functions whose inputs are vectors and whose outputs are
vectors defined through matrix-vector multiplication. That is, if A is a matrix and x is a
vector, the function T(x) � Ax forms the product Ax as its output. Such a function is called
a matrix transformation.
Definition 2.5.3 The matrix transformation associated to the matrix A is the function that
assigns to the vector x the vector Ax; that is, T(x) � Ax.

Example 2.5.4 The matrix A �


3 −2
1 2
0 3

 defines a matrix transformation T(x) � Ax in the

following way:

T
( [

x1
x2

] )
�


3 −2
1 2
0 3


[

x1
x2

]
�


3x1 − 2x2
x1 + 2x2

3x2

 .
Notice that the input to T is a two-dimensional vector

[
x1
x2

]
and the output is a three-
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dimensional vector


3x1 − 2x2
x1 + 2x2

3x2

 . As a shorthand, we will write

T : �2 → �3

to indicate that the inputs are two-dimensional vectors and the outputs are three-dimensional
vectors.
Example 2.5.5 Suppose we have a function T : �3 → �2 that has the form

T ©­«


x1
x2
x3

ª®¬ �
[
−4x1 − x2 + 2x3

x1 + 2x2 − x3

]
.

We may write

T ©­«


x1
x2
x3

ª®¬ �
[
−4x1 − x2 + 2x3

x1 + 2x2 − x3

]
�

[
−4x1

x1

]
+

[
−x2
2x2

]
+

[
2x3
−x3

]
� x1

[
−4

1

]
+ x2

[
−1

2

]
+ x3

[
2

−1

]
�

[
−4 −1 2
1 2 −1

] 
x1
x2
x3

 .
This shows thatT is amatrix transformationT(x) � Ax associated to thematrix A �

[
−4 −1 2
1 2 −1

]
.

Activity 2.5.2. In this activity, we will look at some examples of matrix transforma-
tions.

a. To begin, suppose that A is the matrix

A �

[
2 1
1 2

]
.

with associated matrix transformation T(x) � Ax.

1. What is T
( [

1
−2

] )
?

2. What is T
( [

1
0

] )
?

3. What is T
( [

0
1

] )
?
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4. Is there a vector x such that T(x) �
[

3
0

]
?

5. Write T
( [

x
y

] )
as a two-dimensional vector.

b. Suppose that T(x) � Ax where

A �


3 3 −2 1
0 2 1 −3

−2 1 4 −4

 .
1. What is the dimension of the vectors x that are inputs for T?
2. What is the dimension of the vectors T(x) � Ax that are outputs?
3. If we describe this transformation as T : �n → �m , what are the values of

n and m and how do they relate to the shape of A?
4. Describe the vectors x for which T(x) � 0.

c. If A is the matrix A �
[

v1 v2
]
, what is T

( [
1
0

] )
in terms of the vectors v1

and v2? What about T
( [

0
1

] )
?

d. Suppose that A is a 3 × 2 matrix and that T(x) � Ax. If

T
( [

1
0

] )
�


3

−1
1

 , T
( [

0
1

] )
�


2
2

−1

 ,
what is the matrix A?

Let’s discuss a few of the issues that appear in this activity. First, notice that the shape of
the matrix A and the dimension of the input vector x must be compatible if the product Ax
is to be defined. In particular, if A is an m × n matrix, x needs to be an n-dimensional vector,
and the resulting product Ax will be an m-dimensional vector. For the associated matrix
transformation, we therefore write T : �n → �m meaning T takes vectors in �n as inputs
and produces vectors in �m as outputs. For instance, if

A �

[
4 0 −3 2
0 1 3 1

]
,

then T : �4 → �2.

Second, we can often reconstruct the matrix A if we only know some output values from its
associated linear transformation T by remembering that matrix-vector multiplication con-
structs linear combinations. For instance, if A is an m × 2 matrix A �

[
v1 v2

]
, then

T
( [

1
0

] )
�
[

v1 v2
] [ 1

0

]
� 1v1 + 0v2 � v1.
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That is, we can find the first column of A by evaluating T
( [

1
0

] )
. Similarly, the second

column of A is found by evaluating T
( [

0
1

] )
.

More generally, we will write the columns of the n × n identity matrix as

e1 �


1
0
...
0


, e2 �


0
1
...
0


, . . . , en �


0
0
...
1


so that

T(e j) �
[

v1 v2 . . . vn
]

e j � v j .

This means that the jth column of A is found by evaluating T(e j). We record this fact in the
following proposition.

Proposition 2.5.6 If T : �n → �m is a matrix transformation given by T(x) � Ax, then the matrix
A has columns T(e j); that is,

A �
[

T(e1) T(e2) · · · T(en)
]
.

Activity 2.5.3. Let’s look at some examples and apply these observations.
a. To begin, suppose thatT is thematrix transformation that takes a two-dimensional

vector x as an input and outputs T(x), the two-dimensional vector obtained by
rotating x counterclockwise by 90◦, as shown in Figure 2.5.7.

-3 -2 -1 1 2 3

-3
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e1

e2

v
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-1

1

2

3

T (e1)

T (e2)

T (v)

Figure 2.5.7 The matrix transformation T takes two-dimensional vectors on the
left and rotates them by 90◦ counterclockwise into the vectors on the right.

We will see in the next section that many geometric operations like this one can
be performed by matrix transformations.

1. If we write T : �n → �m , what are the values of m and n, and what is the
shape of the associated matrix A?
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2. Determine the matrix A by applying Proposition 2.5.6.

3. If v �

[
−2
−1

]
as shown on the left in Figure 2.5.7, use your matrix to de-

termine T(v) and verify that it agrees with that shown on the right of Fig-
ure 2.5.7.

4. If x �

[
x
y

]
, determine the vector T(x) obtained by rotating x counterclock-

wise by 90◦.

b. Suppose that we work for a company that makes baked goods, including cakes,
doughnuts, and eclairs. The company operates two bakeries, Bakery 1 and Bak-
ery 2. In one hour of operation,

• Bakery 1 produces 10 cakes, 50 doughnuts, and 30 eclairs.
• Bakery 2 produces 20 cakes, 30 doughnuts, and 30 eclairs.

If Bakery 1 operates for x1 hours and Bakery 2 for x2 hours, we will use the

vector x �

[
x1
x2

]
to describe the operation of the two bakeries.

Wewould like to describe amatrix transformation T where x describes the num-
ber of hours the bakeries operate and T(x) describes the total number of cakes,

doughnuts, and eclairs produced. That is, T(x) �


y1
y2
y3

 where y1 is the num-

ber of cakes, y2 is the number of doughnuts, and y3 is the number of eclairs
produced.

1. If T : �n → �m , what are the values of m and n, and what is the shape of
the associated matrix A?

2. We candetermine thematrix A usingProposition 2.5.6. For instance, T
( [

1
0

] )
will describe the number of cakes, doughnuts, and eclairs produced when
Bakery 1 operates for one hour and Bakery 2 sits idle. What is this vector?

3. In the same way, determine T
( [

0
1

] )
. What is the matrix A?

4. If Bakery 1 operates for 120 hours and Bakery 2 for 180 hours, what is the
total number of cakes, doughnuts, and eclairs produced?

5. Suppose that in one period of time, the company produces 5060 cakes,
14310 doughnuts, and 10470 eclairs. How long did each bakery operate?

6. Suppose that the company receives an order for a certain number of cakes,
doughnuts, and eclairs. Can you guarantee that you can fill the order with-
out having leftovers?

In these examples, we glided over an important point: how do we know these functions
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T : �n → �m can be expressed as matrix transformations? We will take up this question in
detail in the next section and not worry about it for now.

2.5.2 Composing matrix transformations

It sometimes happens that we want to combine matrix transformations by performing one
and then another. In the last activity, for instance, we considered the matrix transformation
where T(x) is the result of rotating the two-dimensional vector x by 90◦. Now suppose we
are interested in rotating that vector twice; that is, we take a vector x, rotate it by 90◦ to obtain
T(x), and then rotate the result by 90◦ again to obtain T(T(x)).
This process is called function composition and likely appeared in an earlier algebra course.
For instance, if 1(x) � 2x + 1 and h(x) � x2, the composition of these functions obtained by
first performing 1 and then performing h is denoted by

(h ◦ 1)(x) � h(1(x)) � h(2x + 1) � (2x + 1)2.

Composing matrix transformations is similar. Suppose that we have twomatrix transforma-
tions, T : �n → �m and S : �m → �p . Their associated matrices will be denoted by A and
B so that T(x) � Ax and S(x) � Bx. If we apply T to a vector x to obtain T(x) and then apply
S to the result, we have

(S ◦ T)(x) � S(T(x)) � S(Ax) � BAx � (BA)x.

Notice that this implies that the composition (S◦T) is itself a matrix transformation and that
the associated matrix is the product BA.

Proposition 2.5.8 If T : �n → �m and S : �m → �p are matrix transformations with associated
matrices A and B respectively, then the composition (S ◦ T) is also a matrix transformation whose
associated matrix is the product BA.

Notice that the matrix transformations must be compatible if they are to be composed. In
particular, the vector T(x), an m-dimensional vector, must be a suitable input vector for S,
which means that the inputs to S must be m-dimensional. In fact, this is the same condition
we need to form the product BA of their associated matrices, namely, that the number of
columns of B is the same as the number of rows of A.

Activity 2.5.4. We will explore the composition of matrix transformations by revisit-
ing the matrix transformations from Activity 2.5.3.

a. Let’s begin with the matrix transformation T : �2 → �2 that rotates a two-
dimensional vector x by 90◦ to produce T(x). We saw in the earlier activity that

the associated matrix is A �

[
0 −1
1 0

]
. Suppose that we compose this matrix

transformation with itself to obtain (T ◦ T)(x) � T(T(x)), which is the result of
rotating x by 90◦ twice.

1. What is the matrix associated to the composition (T ◦ T)?
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2. What is the result of rotating v �

[
−2
−1

]
twice?

3. Suppose that R : �2 → �2 is the matrix transformation that rotates vectors
by 180◦, as shown in Figure 2.5.9.
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Figure 2.5.9 Thematrix transformation R takes two-dimensional vectors on
the left and rotates them by 180◦ into the vectors on the right.
Use Proposition 2.5.6 to find the matrix associated to R and explain why it
is the same matrix associated to (T ◦ T).

4. Write the two-dimensional vector (T◦T)
( [

x
y

] )
. Howmight this vector be

expressed in terms of scalar multiplication and why does this make sense
geometrically?

b. In the previous activity, we imagined a company that operates two bakeries. We

found the matrix transformation T : �2 → �3 where T
( [

x1
x2

] )
describes the

number of cakes, doughnuts, and eclairs when Bakery1 runs for x1 hours and

Bakery 2 runs for x2 hours. The associated matrix is A �


10 20
50 30
30 30

 .
Suppose now that

• Each cake requires 4 cups of flour and and 2 cups of sugar.
• Each doughnut requires 1 cup of flour and 1 cup of sugar.
• Each eclair requires 1 cup of flour and 2 cups of sugar.

Wewill describe amatrix transformation S : �3 → �2 where S ©­«


y1
y2
y3

ª®¬ is a two-

dimensional vector describing the number of cups of flour and sugar required
to make y1 cakes, y2 doughnuts, and y3 eclairs.



116 CHAPTER 2. VECTORS, MATRICES, AND LINEAR COMBINATIONS

1. Use Proposition 2.5.6 towrite thematrix B associated to the transformation
S.

2. If we make 1200 cakes, 2850 doughnuts, and 2250 eclairs, how many cups
of flour and sugar are required?

3. Suppose that Bakery 1 operates for 75 hours and Bakery 2 operates for 53
hours. Howmany cakes, doughnuts, and eclairs are produced? Howmany
cups of flour and sugar are required?

4. What is the meaning of the composition (S ◦ T) and what is its associated
matrix?

5. In a certain time interval, both bakeries use a total of 5800 cups of flour and
5980 cups of sugar. How long have the two bakeries been operating?

2.5.3 Discrete Dynamical Systems

In Chapter 4, we will give considerable attention to a specific type of matrix transformation,
which is illustrated in the next activity.

Activity 2.5.5. Suppose we run a company that has two warehouses, which we will
call P and Q, and a fleet of 1000 delivery trucks. Everymorning, a delivery truck goes
out from one of the warehouses and returns in the evening to one of the warehouses.
It is observed that

• 70% of the trucks that leave P return to P. The other 30% return to Q.

• 50% of the trucks that leave Q return to Q and 50% return to P.

The distribution of trucks is represented by the vector x �

[
x1
x2

]
when there are x1

trucks at location P and x2 trucks at Q. If x describes the distribution of trucks in
the morning, then the matrix transformation T(x)will describe the distribution in the
evening.

a. Suppose that all 1000 trucks begin the day at location P and none at Q. How
many trucks are at each location that evening? Using our vector representation,

what is T
( [

1000
0

] )
?

So that we can find the matrix A associated to T, what does this tell us about

T
( [

1
0

] )
?

b. In the same way, suppose that all 1000 trucks begin the day at location Q and
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none at P. How many trucks are at each location that evening? What is the

result T
( [

0
1000

] )
and what is T

( [
0
1

] )
?

c. Find the matrix A such that T(x) � Ax.

d. Suppose that there are 100 trucks at P and 900 at Q in the morning. How many
are there at the two locations in the evening?

e. Suppose that there are 550 trucks at P and 450 at Q in the evening. How many
trucks were there at the two locations that morning?

f. Suppose that all of the trucks are at location Q on Monday morning.

1. How many trucks are at each location Monday evening?
2. How many trucks are at each location Tuesday evening?
3. How many trucks are at each location Wednesday evening?

g. Suppose that S is the matrix transformation that transforms the distribution of
trucks x one morning into the distribution of trucks in the morning one week
(seven days) later. What is the matrix that defines the transformation S?

Aswewill see later, this type of situation occurs frequently. We have a vector x that describes
the state of some system; in this case, x describes the distribution of trucks between the two
locations at a particular time. Then there is a matrix transformation T(x) � Ax that describes
the state at some later time. We call x the state vector and T the transition function, as it
describes the transition of the state vector from one time to the next.

Beginning with an initial state x0, we would like to know how the state evolves over time.
For instance,

x1 � T(x0) � Ax0

x2 � T(x1) � (T ◦ T)(x0) � A2x0

x3 � T(x2) � A3x0

and so on.

We call this situation where the state of a system evolves from one time to the next according
to the rule xk+1 � Axk a discrete dynamical system. In Chapter 4, we will develop a theory that
enables us to make long-term predictions about the evolution of the state vector.

2.5.4 Summary

This section introduced matrix transformations, functions that are defined by matrix-vector
multiplication, such as T(x) � Ax for some matrix A.

• If A is an m × n matrix, then T : �n → �m .

• The columns of the matrix A are given by evaluating the transformation T on the vec-
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tors e j ; that is,
A �

[
T(e1) T(e2) · · · T(en)

]
.

• The composition of matrix transformations corresponds to matrix multiplication.

• Adiscrete dynamical system consists of a state vector x alongwith a transition function
T(x) � Ax that describes how the state vector evolves from one time to the next. Powers
of the matrix A determine the long-term behavior of the state vector.

2.5.5 Exercises

1. Suppose that T is thematrix transformation defined by thematrix A and S is thematrix
transformation defined by B where

A �


3 −1 0
1 2 2

−1 3 2

 , B �

[
1 −1 0
2 1 2

]
.

a. If T : �n → �m , what are the values of m and n? What values of m and n are
appropriate for the transformation S?

b. Evaluate T ©­«


1
−3

2

ª®¬.
c. Evaluate S ©­«


−2

2
1

ª®¬.
d. Evaluate S ◦ T ©­«


1

−3
2

ª®¬.
e. Find the matrix C that defines the matrix transformation S ◦ T.

2. This problem concerns the identification of matrix transformations, about which more
will be said in the next section.

a. Check that the following function T : �3 → �2 is a matrix transformation by
finding a matrix A such that T(x) � Ax.

T ©­«


x1
x2
x3

ª®¬ �
[

3x1 − x2 + 4x3
5x2 − x3

]
.

b. Explain why

T ©­«


x1
x2
x3

ª®¬ �
[

3x4
1 − x2 + 4x3
5x2 − x3

]
is not a matrix transformation.
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3. Suppose that the matrix

A �


1 3 1

−2 1 5
0 2 2


defines the matrix transformation T : �3 → �3.

a. Describe the vectors x that satisfy T(x) � 0.

b. Describe the vectors x that satisfy T(x) �

−8

9
2

 .
c. Describe the vectors x that satisfy T(x) �


−8

2
−4

 .
4. Suppose T : �3 → �2 is a matrix transformation with T(e j) � v j where v1, v2, and v3

are as shown in Figure 2.5.10.

-4 -2 2 4

-4

-2
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v1

v2

v3

x

y

Figure 2.5.10 The vectors T(e j) � v j .

a. Sketch the vector T ©­«


2
1
2

ª®¬.
b. What is the vector T ©­«


0
1
0

ª®¬?
c. Find all the vectors x such that T(x) � 0.

5. In Example 2.5.5 and Example 2.5.4, we wrote matrix transformations in terms of the
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components of T(x). This exercise makes use of that form.
a. Let’s return to the example inActivity 2.5.3 concerning the company that operates

two bakeries. We used a matrix transformation with input x, which recorded the
amount of time the two bakeries operated, and output T(x), the number of cakes,

doughnuts, and eclairs produced. The associated matrix is A �


10 20
50 30
30 30

 .
1. If x �

[
x1
x2

]
, write the output T(x) as a three-dimensional vector in terms

of x1 and x2.
2. If Bakery 1 operates for x1 hours and Bakery 2 for x2 hours, howmany cakes

are produced?
3. Explain how you may have discovered this expression by considering the

rates at which the two locations make cakes.

b. Suppose that a bicycle sharing program has two locations P and Q. Bicycles
are rented from some location in the morning and returned to a location in the
evening. Suppose that

• 60% of bicycles that begin at P in the morning are returned to P in the
evening while the other 40% are returned to Q.

• 30% of bicycles that begin at Q are returned to Q and the other 70% are
returned to P.

1. If x1 is the number of bicycles at location P and x2 the number at Q in the
morning, write an expression for the number of bicycles at P in the evening.

2. Write an expression for the number of bicycles at Q in the evening.

3. Write an expression for T
( [

x1
x2

] )
, the vector that describs the distribution

of bicycles in the evening.
4. Use this expression to identify the matrix A associated to the matrix trans-

formation T.
6. Determinewhether the following statements are true or false and provide a justification

for your response.
a. A matrix transformation T : �4 → �5 is defined by T(x) � Ax where A is a 4 × 5

matrix.

b. If T : �3 → �2 is a matrix transformation, then there are infinitely many vectors
x such that T(x) � 0.

c. If T : �2 → �3 is a matrix transformation, then it is possible that every equation
T(x) � b has a solution for every vector b.

d. If T : �n → �m is a matrix transformation, then the equation T(x) � 0 always has
a solution.
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7. Suppose that a company has three plants, called Plants 1, 2, and 3, that produce milk
M and yogurt Y. For every hour of operation,

• Plant 1 produces 20 units of milk and 15 units of yogurt.

• Plant 2 produces 30 units of milk and 5 units of yogurt.

• Plant 3 produces 0 units of milk and 40 units of yogurt.

a. Suppose that x1, x2, and x3 record the amounts of time that the three plants are
operated and that M and Y record the amount of milk and yogurt produced. If

we write x �


x1
x2
x3

 and y �

[
M
Y

]
, find the matrix A that defines the matrix

transformation T(x) � y.

b. Furthermore, suppose that producing each unit of

• milk requires 5 units of electricity and 8 units of labor.
• yogurt requires 6 units of electricity and 10 units of labor.

If we write the vector z �

[
E
L

]
to record the required amounts of electricity E

and labor L, find the matrix B that defines the matrix transformation S(y) � z.

c. If x �


30
20
10

 describes the amounts of time that the three plants are operated,

how much milk and yogurt is produced? How much electricity and labor are
required?

d. Find the matrix C that describes the matrix transformation R(x) � z that gives
the required amounts of electricity and labor when the each plants is operated an
amount of time given by the vector x.

8. Suppose that T : �2 → �2 is a matrix transformation and that

T
( [

1
1

] )
�

[
3

−2

]
, T

( [
−1

1

] )
�

[
1
2

]
.

a. Find the vector T
( [

1
0

] )
.

b. Find the matrix A that defines T.

c. Find the vector T
( [

4
−5

] )
.

9. Suppose that two species P and Q interact with one another and that we measure their

populations every month. We record their populations in a state vector x �

[
p
q

]
,
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where p and q are the populations of P and Q, respectively. We observe that there is a
matrix

A �

[
0.8 0.3
0.7 1.2

]
such that thematrix transformation T(x) � Ax is the transition function describing how
the state vector evolves from month to month. We also observe that, at the beginning

of July, the populations are described by the state vector x �

[
1
2

]
.

a. What will the populations be at the beginning of August?

b. What were the populations at the beginning of June?

c. What will the populations be at the beginning of December?

d. What will the populations be at the beginning of July in the following year?
10. Students in a school are sometimes absent due to an illness. Suppose that

• 95% of the students who attend school will attend school the next day.

• 50% of the students who are absent one day will be absent the next day.

We will record the number of present students p and the number of absent students a

in a state vector x �

[
p
a

]
and note that that state vector evolves from one day to the

next according to the transition function T : �2 → �2. On Tuesday, the state vector is

x �

[
1700
100

]
.

a. Suppose we initially have 1000 students who are present and none absent. Find

T
( [

1000
0

] )
.

b. Suppose we initially have 1000 students who are absent and none present. Find

T
( [

0
1000

] )
.

c. Use the results of parts a and b to find the matrix A that defines the matrix trans-
formation T.

d. If x �

[
1700
100

]
on Tuesday, how are the students distributed on Wednesday?

e. How many students were present on Monday?

f. How many students are present on the following Tuesday?

g. What happens to the number of students who are present after a very long time?
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2.6 The geometry of matrix transformations

Matrix transformations, which we explored in the last section, allow us to describe certain
functions T : �n → �m . In this section, we will demonstrate how matrix transformations
provide a convenient way to describe geometric operations, such as rotations, reflections,
and scalings. We will then explore how matrix transformations are used in computer ani-
mation.

Preview Activity 2.6.1. We will describe the matrix transformation T that reflects 2-
dimensional vectors across the horizontal axis. For instance, Figure 2.6.1 illustrates
how a vector x is reflected onto the vector T(x).

x

T (x)

Figure 2.6.1 A vector x and its reflection T(x) across the horizontal axis.

a. If x �

[
2
4

]
, what is the vector T(x)? Sketch the vectors x and T(x).

b. More generally, if x �

[
x
y

]
, what is T(x)?

c. Find the vectors T
( [

1
0

] )
and T

( [
0
1

] )
.

d. Use your results to write the matrix A so that T(x) � Ax. Then verify that

T
( [

x
y

] )
agrees with what you found in part b.

e. Describe the transformation that results from composing T with itself; that is,
what is the transformation T◦T? Explain howmatrixmultiplication can be used
to justify your response.
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2.6.1 The geometry of 2 × 2 matrix transformations

We have now seen how a few geometric operations, such as rotations and reflections, can be
described using matrix transformations. The following activity shows, more generally, that
matrix transformations can perform a variety of important geometric operations.

Activity 2.6.2 Using matrix transformations to describe geometric operations..

This activity uses an interactive diagram that is available at gvsu.edu/s/0Jf.

Figure 2.6.2 The matrix transformation T transforms features shown on the left into
features shown on the right.

For the following 2 × 2 matrices A, use the diagram to study the effect of the corre-
sponding matrix transformation T(x) � Ax. For each transformation, describe the
geometric effect the transformation has on the plane.

a. A �

[
2 0
0 1

]
.

b. A �

[
2 0
0 2

]
.

c. A �

[
0 1

−1 0

]
.

d. A �

[
1 1
0 1

]
.

e. A �

[
−1 0

0 1

]
.

http://gvsu.edu/s/0Jf
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f. A �

[
1 0
0 0

]
.

g. A �

[
1 0
0 1

]
.

h. A �

[
1 −1

−2 2

]
.

The previous activity presented some examples showing that matrix transformations can
perform interesting geometric operations, such as rotations, scalings, and reflections. Before
we go any further, we should explain why it is possible to represent these operations by
matrix transformations. In fact, we ask more generally: what types of functions T : �n →
�m are represented as matrix transformations?

The linearity of matrix-vector multiplication provides the key to answering this question.
Remember that if A is a matrix, v and w vectors, and c a scalar, then

A(cv) � cAv
A(v + w) � Av + Aw.

.

This means that a matrix transformation T(x) � Ax satisfies the corresponding linearity
property:

Linearity of Matrix Transformations.

T(cv) � cT(v)
T(v + w) � T(v) + T(w).

It turns out that, if T : �n → �m satisfies these two linearity properties, then we can find a
matrix A such that T(x) � Ax. In fact, Proposition 2.5.6 tells us how to form A; we simply
write

A �
[

T(e1) T(e2) . . . T(en)
]
.
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We will now check that T(x) � Ax using the linearity of T:

T(x) � T
©­­­­«


x1
x2
...

xn


ª®®®®¬
� T(x1e1 + x2e2 + . . . + xnen)

� x1T(e1) + x2T(e2) + . . . + xnT(en)

� x1Ae1 + x2Ae2 + . . . + xnAen

� A(x1e1 + x2e2 + . . . + xnen)

� A


x1
x2
...

xn


� Ax

.

The result is the following proposition.

Proposition 2.6.3 The function T : �n → �m is a matrix transformation where T(x) � Ax for
some m × n matrix A if and only if

T(cv) � cT(v)
T(v + w) � T(v) + T(w)..

In this case, A is the matrix whose columns are T(e j); that is,

A �
[

T(e1) T(e2) . . . T(en)
]
.

Said simply, this proposition means says that if have a function T : �n → �m and can
verify the two linearity properties stated in the proposition, then we know that T is a matrix
transformation. Let’s see how this works in practice.

Example 2.6.4 Wewill consider the function T : �2 → �2 that rotates a vector x by 45◦ in the
counterclockwise direction to obtain T(x) as seen in Figure 2.6.5.
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x

T (x)

Figure 2.6.5 The function T rotates a vector counterclockwise by 45◦.

We first need to know that T can be represented by a matrix transformation, which means,
by Proposition 2.6.3, that we need to verify the linearity properties:

T(cv) � cT(v)
T(v + w) � T(v) + T(w).

The next two figures illustrate why these properties hold. For instance, Figure 2.6.6 shows
the relationship between T(v) and T(cv)when c is a scalar. In particular, scaling a vector and
then rotating it is the same as rotating and then scaling it, which means that T(cv) � cT(v).

v

cv

T (v)

T (cv)

Figure 2.6.6 We see that the vector T(cv) is a scalar multiple to T(v) so that T(cv) � cT(v).

Similarly, Figure 2.6.7 shows the relationship between T(v + w), T(v), and T(w). Remember
that the sum of two vectors is represented by the diagonal of the parallelogram defined by
the two vectors. The rotation T has the effect of rotating the parallelogram defined by v and
w into the parallelogram defined by T(v) and T(w), explaining why T(v+w) � T(v)+T(w).
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v

w

v+w

T (v)
T (w)

T (v+w)

Figure 2.6.7 We see that the vector T(v + w) is the sum of T(v) and T(w) so that T(v + w) �
T(v) + T(w).

Having verified these two properties, we now know that the function T that rotates vectors
by 45◦ is a matrix transformation. We may therefore write it as T(x) � Ax where A is the
2 × 2 matrix A �

[
T(e1) T(e2)

]
. The columns of this matrix, T(e1) and T(e2), are shown

on the right of Figure 2.6.8.

-1 1

-1

1

e1

e2

-1 1

-1

1
T (e1)T (e2)

Figure 2.6.8 The matrix transformation T rotates e1 and e2 by 45◦.

Notice that T(e1) forms an isosceles right triangle, as shown in Figure 2.6.9. Since the length
of e1 is 1, the length of T(e1), the hypotenuse of the triangle, is also 1, and by Pythagoras’
theorem, the lengths of its legs are 1/

√
2.
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1

1

T (e1)

1
√

2

1
√

2

1

Figure 2.6.9 The vector T(e1) has length 1 and is the hypotenuse of a right isosceles triangle.

This leads to T(e1) �

[ 1√
2

1√
2

]
. In the same way, we find that T(e2) �

[
− 1√

2
1√
2

]
so that the

matrix A is

A �

[ 1√
2

− 1√
2

1√
2

1√
2

]
.

You may wish to check this using the interactive diagram in the previous activity using the
approximation 1/

√
2 ≈ 0.7.

In this example, we found that T, a function describing a rotation in the plane, was in fact a
matrix transformation by checking that

T(cv) � cT(v)
T(v + w) � T(v) + T(w)..

The same kind of thinking applies more generally to show that rotations, reflections, and
scalings arematrix transformations. Similarly, we could revisit the functions inActivity 2.5.3
and verify that they are matrix transformations.

Activity 2.6.3. In this activity, we seek to describe various matrix transformations by
finding the matrix that gives the desired transformation. All of the transformations
that we study here have the form T : �2 → �2.

a. Find thematrix of the transformation that has no effect on vectors; that is, T(x) �
x.

b. Find the matrix of the transformation that reflects vectors in �2 across the line
y � x.

c. What is the result of composing the reflection you found in the previous part
with itself; that is, what is the effect of reflecting across the line y � x and then
reflecting across this line again? Provide a geometric explanation for your result
as well as an algebraic one obtained by multiplying matrices.
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d. Find the matrix that rotates vectors counterclockwise in the plane by 90◦.

e. Compare the result of rotating by 90◦ and then reflecting in the line y � x to the
result of first reflecting in y � x and then rotating 90◦.

f. Find thematrix that results from composing a 90◦ rotationwith itself four times;
that is, if T is the matrix transformation that rotates vectors by 90◦, find the
matrix for T ◦ T ◦ T ◦ T. Explain why your result makes sense geometrically.

g. Explain why the matrix that rotates vectors counterclockwise by an angle θ is[
cos θ − sin θ
sin θ cos θ

]
.

2.6.2 Matrix transformations and computer animation

Linear algebra plays a significant role in computer animation. We will now illustrate how
matrix transformations and some of the ideas we have developed in this section are used by
computer animators to create the illusion of motion in their characters.

Figure 2.6.10 shows a test character used by Pixar animators. On the left is the original
definition of the character; on the right, we see that the character has been moved into a
different pose. To make it appear that the character is moving, animators create a sequence
of frames in which the character’s pose is modified slightly from one frame to the next often
using matrix transformations.

Figure 2.6.10 Computer animators define a character and create motion by drawing it in a
sequence of poses. © Disney/Pixar
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Of course, realistic characters will be
drawn in three-dimensions. To keep
things a little more simple, however, we
will look at this two-dimensional char-
acter and devise matrix transformations
that move them into different poses.

Of course, the first thing we may wish to do is simply move them to a different position in
the plane, such as that shown in Figure 2.6.11. Motions like this are called translations.

Figure 2.6.11 Translating our character to a new position in the plane.

This presents a problem because a matrix transformation T : �2 → �2 has the property
that T(0) � A0 � 0. This means that a matrix transformation cannot move the origin of the
coordinate plane. To address this restriction, animators use homogeneous coordinates, which
are formed by placing the two-dimensional coordinate plane inside �3 as the plane z � 1,
as shown in Figure 2.6.12.
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y

z

x

Figure 2.6.12 Include the two-dimensional coordinate plane in �3 as the plane z � 1 so that
we can translate the character.

As a result, rather than describing points in the plane as vectors
[

x
y

]
, we describe them as

three-dimensional vectors


x
y
1

 . As we see in the next activity, this allows us to translate

our character in the plane.

Activity 2.6.4. In this activity, wewill use homogeneous coordinates andmatrix trans-
formations to move our character into a variety of poses.

a. Since we regard our character as living in �3, we will consider matrix transfor-
mations defined by matrices 

a b c
d e f
0 0 1

 .
Verify that such a matrix transformation transforms points in the plane z � 1
into points in the same plane; that is, verify that

a b c
d e f
0 0 1




x
y
1

 �


x′

y′

1

 .
Express the coordinates of the resulting point x′ and y′ in terms of the coordi-
nates of the original point x and y.
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This activity uses an interactive diagram that is available at gvsu.edu/s/0Jb. Us-

ing the six sliders, you may choose the matrix

a b c
d e f
0 0 1

 that will move our

character in the plane.

Figure 2.6.13 An interactive diagram that allows us to move the character using
homogeneous coordinates.

b. Find the matrix transformation that translates our character to a new position
in the plane, as shown in Figure 2.6.14

Figure 2.6.14 Translating to a new position.

c. As originally drawn, our character is waving with one of their hands. In one of
themovie’s scenes, wewould like them towavewith their other hand, as shown
in Figure 2.6.15. Find the matrix transformation that moves them into this pose.

http://gvsu.edu/s/0Jb
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Figure 2.6.15 Waving with the other hand.

d. Later, our character performs a cartwheel by moving through the sequence of
poses shown in Figure 2.6.16. Find the matrix transformations that create these
poses.

Figure 2.6.16 Performing a cartwheel.

e. Next, we would like to find the transformations that zoom in on our character’s
face, as shown in Figure 2.6.17. To do this, you should think about composing
matrix transformations. This can be accomplished in the diagram by using the
Compose button, which makes the current pose, displayed on the right, the new
beginning pose, displayed on the left. What is the matrix transformation that
moves the character from the original pose, shown in the upper left, to the final
pose, shown in the lower right?
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Figure 2.6.17 Zooming in on our characters’ face.

f. We would also like to create our character’s shadow, shown in the sequence of
poses in Figure 2.6.18. Find the sequence ofmatrix transformations that achieves
this. In particular, find the matrix transformation that takes our character from
their original pose to their shadow in the lower right.
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Figure 2.6.18 Casting a shadow.

g. Write a final scene to the movie and describe how to construct a sequence of
matrix transformations that create your scene.

2.6.3 Summary

This section explored how geometric operations are performed by matrix transformations.

• A function T : �n → �m is a matrix transformation if and only if these properties are
satisfied:

T(cv) � cT(v)
T(v + w) � T(v) + T(w).

• Geometric operations, such as rotations, reflections, and scalings, can be represented
as matrix transformations.

• Composing geometric operations corresponds to matrix multiplication.

• Computer animators use homogeneous coordinates andmatrix transformations to cre-
ate the illusion of motion.
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2.6.4 Exercises

1. For each of the following geometric operations in the plane, find a 2 × 2 matrix that
defines the matrix transformation performing the operation.

a. Rotates vectors by 180◦.

b. Reflects vectors across the vertical axis.

c. Reflects vectors across the line y � −x.

d. Rotates vectors counterclockwise by 60◦.

e. First rotates vectors counterclockwise by 60◦ and then reflects in the line y � x.
2. This exercise investigates the composition of reflections in the plane.

a. Find the result of first reflecting across the line y � 0 and then y � x. What
familiar operation is the cumulative effect of this composition?

b. What happens if you compose the operations in the opposite order; that is, what
happens if you first reflect across y � x and then y � 0? What familiar operation
results?

c. What familiar geometric operation results if you first reflect across the line y � x
and then y � −x?

d. What familiar geometric operation results if you first rotate by 90◦ and then reflect
across the line y � x?

It is a general fact that the composition of two reflections results in a rotation through
twice the angle from the first line of reflection to the second. We will investigate this
more generally in Exercise 2.6.4.8

3. Shown below in Figure 2.6.19 are the vectors e1, e2, and e3 in �3.

e1

e2

e3

y

z

x

Figure 2.6.19 The vectors e1, e2, and e3 in �3.

a. Imagine that the thumb of your right hand points in the direction of e1. A positive
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rotation about the x axis corresponds to a rotation in the direction in which your
fingers point. Find the matrix definining the matrix transformation T that rotates
vectors by 90◦ around the x-axis.

b. In the same way, find the matrix that rotates vectors by 90◦ around the y-axis.

c. Find the matrix that rotates vectors by 90◦ around the z-axis.

d. What is the cumulative effect of rotating by 90◦ about the x-axis, followed by a
90◦ rotation about the y-axis, followed by a −90◦ rotation about the x-axis.

4. If a matrix transformation performs a geometric operation, we would like to find a
matrix transformation that undoes that operation.

a. Suppose that T : �2 → �2 is the matrix transformation that rotates vectors by
90◦. Find a matrix transformation S : �2 → �2 that undoes the rotation; that is, S
takes T(x) back into x so that (S ◦ T)(x) � x. Think geometrically about what the
transformation S should be and then verify it algebraically.
We say that S is the inverse of T and we will write it as T−1.

b. Verify algebraically that the reflection R : �2 → �2 across the line y � x is its
own inverse; that is, R−1 � R.

c. The matrix transformation T : �2 → �2 defined by the matrix

A �

[
1 1
0 1

]
is called a shear. Find the inverse of T.

d. Describe the geometric effect of the matrix transformation defined by

A �

[ 1
2 0
0 3

]
and then find its inverse.

5. We have seen that the matrix [
cos θ − sin θ
sin θ cos θ

]
performs a rotation through an angle θ about the origin. Suppose instead that we
would like to rotate by 90◦ about the point (1, 2). Using homogeneous coordinates, we
will develop a matrix that performs this operation.

Our strategy is to

• begin with a vector whose tail is at the point (1, 2),

• translate the vector so that its tail is at the origin,

• rotate by 90◦, and

• translate the vector so that its tail is back at (1, 2).
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This is shown in Figure 2.6.20.

Figure 2.6.20 A sequence of matrix transformations that, when read right to left and
top to bottom, rotate a vector about the point (1, 2).

Remember that, when working with homogeneous coordinates, we consider matrices
of the form 

a b c
d e f
0 0 1

 .
a. The first operation is a translation by (−1,−2). Find the matrix that performs this

translation.

b. The second operation is a 90◦ rotation about the origin. Find the matrix that per-
forms this rotation.

c. The third operation is a translation by (1, 2). Find the matrix that performs this
translation.

d. Use these matrices to find the matrix that performs a 90◦ rotation about (1, 2).

e. Use your matrix to determine where the point (−10, 5) ends up if rotated by 90◦
about the (1, 2).

6. Consider the matrix transformation T : �2 → �2 that assigns to a vector x the closest
vector on horizontal axis as illustrated in Figure 2.6.21. This transformation is called
the projection onto the horizontal axis. You may imagine T(x) as the shadow cast by x
from a flashlight far up on the positive y-axis.
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x

T (x)

Figure 2.6.21 Projection onto the x-axis.

a. Find the matrix that defines this matrix transformation T.

b. Find the matrix that defines projection on the vertical axis.

c. What is the result of composing the projection onto the horizontal axis with the
projection onto the vertical axis?

d. Find the matrix that defines projection onto the line y � x.
7. This exericse concerns the matrix transformations defined by matrices of the form

A �

[
a −b
b a

]
.

Let’s begin by looking at two special types of these matrices.
a. First, consider the matrix where a � 2 and b � 0 so that

A �

[
2 0
0 2

]
.

Describe the geometric effect of this matrix. More generally, suppose we have

A �

[
r 0
0 r

]
,

where r is a positive number. What is the geometric effect of A on vectors in the
plane?

b. Suppose now that a � 0 and b � 1 so that

A �

[
0 −1
1 0

]
.

What is the geometric effect of A on vectors in the plane? More generally, suppose
we have

A �

[
cos θ − sin θ
sin θ cos θ

]
.

What is the geometric effect of A on vectors in the plane?
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c. In general, the composition of matrix transformation depends on the order in
which we compose them. For these transformations, however, it is not the case.
Check this by verifying that[

r 0
0 r

] [
cos θ − sin θ
sin θ cos θ

]
�

[
cos θ − sin θ
sin θ cos θ

] [
r 0
0 r

]
.

d. Let’s now look at the general case where

A �

[
a −b
b a

]
.

We will draw the vector
[

a
b

]
in the plane and express it using polar coordinates

r and θ as shown in Figure 2.6.22.

θ

[

a

b

]

r

Figure 2.6.22 A vector may be expressed in polar coordinates.

We then have [
a
b

]
�

[
r cos θ
r sin θ

]
.

Show that the matrix[
a −b
b a

]
�

[
r 0
0 r

] [
cos θ − sin θ
sin θ cos θ

]
.

e. Using this description, describe the geometric effect on vectors in the plane of the
matrix transformation defined by

A �

[
a −b
b a

]
.

f. Suppose we have a matrix transformation T defined by a matrix A and another
transformation S defined by B where

A �

[
a −b
b a

]
, B �

[
c −d
d c

]
.

Describe the geometric effect of the composition S ◦ T in terms of the a, b, c, and
d.
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The matrices of this form give a model for the complex numbers and will play an im-
portant role in Section 4.4.

8. We saw earlier that the rotation in the plane through an angle θ is given by the matrix:[
cos θ − sin θ
sin θ cos θ

]
.

We would like to find a similar expression for the matrix that represents the reflection
across Lθ, the line passing through the origin and making an angle of θ with the posi-
tive x-axis, as shown in Figure 2.6.23.

θ

x

T (x)

Lθ

Figure 2.6.23 The reflection across the line Lθ.

a. To do this, notice that this reflection can be obtained by composing three separate
transformations as shown in Figure 2.6.24. Beginning with the vector x, we apply
the transformation R to rotate by −θ and obtain R(x). Next, we apply S, a reflec-
tion in the horizontal axis, followed by T, a rotation by θ. We see that T(S(R(x)))
is the same as the reflection of x in the original line Lθ.
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x

R(x)

S(R(x))

T (S(R(x)))

Figure 2.6.24 Reflection in the line Lθ as a composition of three transformations.

Using this decomposition, show that the reflection in the line Lθ is described by
the matrix [

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]
.

You will need to remember the trigonometric identities:

cos(2θ) � cos2 θ − sin2 θ

sin(2θ) � 2 sin θ cos θ
.

b. Now that we have a matrix that describes the reflection in the line Lθ, show that
the composition of the reflection in the horizontal axis followed by the reflection
in Lθ is a counterclockwise rotation by an angle 2θ. We saw some examples of
this earlier in Exercise 2.6.4.2.
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CHAPTER 3
Invertibility, bases, and coordinate

systems

In Chapter 2, we examined the two fundamental questions concerning the existence and
uniqueness of solutions to linear systems independently of one another. We found that every
equation of the form Ax � b has a solution when the span of the columns of A is �m . We
also found that the solution x � 0 of the homogeneous equation Ax � 0 is unique when the
columns of A are linearly independent. In this chapter, we explore the situation in which
these two conditions hold simultaneously.

3.1 Invertibility

Up to this point, we have used the Gaussian elimination algorithm to find solutions to linear
systems. We now investigate another way to find solutions to the equation Ax � b when
the matrix A has the same number of rows and columns. To get started, let’s look at some
familiar examples.

Preview Activity 3.1.1.
a. Explain how you would solve the equation 3x � 5 using multiplication rather

than division.

b. Find the 2 × 2 matrix A that rotates vectors counterclockwise by 90◦.

c. Find the 2 × 2 matrix B that rotates vectors clockwise by 90◦.

d. What do you expect the product AB to be? Explain the reasoning behind your
expectation and then compute AB to verify it.

e. Solve the equation Ax �

[
3

−2

]
using Gaussian elimination.

f. Explain why your solution may also be found by computing x � B
[

3
−2

]
.
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3.1.1 Invertible matrices

The preview activity began with a familiar type of equation, 3x � 5, and asked for a strategy
to solve it. One possible response is to divide both sides by 3. Instead, let’s rephrase this as
multiplying by 3−1 �

1
3 , the multiplicative inverse of 3.

Now that we are interested in solving equations of the form Ax � b, we might try to find a
similar approach. Is there a matrix A−1 that plays the role of the multiplicative inverse of A?
Of course, the real number 0 does not have amultiplicative inverse sowe probably shouldn’t
expect every matrix to have a multiplicative inverse. We will see, however, that many do.

Definition 3.1.1 An n × n matrix A is called invertible if there is a matrix B such that AB � In ,
where In is the n × n identity matrix. The matrix B is called the inverse of A and denoted A−1.

Notice that we only define invertibility for matrices that have the same number of rows and
columns in which case we say that the matrix is square.

Example 3.1.2 Suppose that A is the matrix that rotates two-dimensional vectors counter-
clockwise by 90◦ and that B rotates vectors by −90◦. We have

A �

[
0 −1
1 0

]
, B �

[
0 1

−1 0

]
.

We can check that
AB �

[
0 −1
1 0

] [
0 1
−1 0

]
�

[
1 0
0 1

]
� I

which shows that A is invertible and that A−1 � B.

Notice that if we multiply the matrices in the opposite order, we find that BA � I, which
says that B is also invertible and that B−1 � A. In other words, A and B are inverses of each
other.

Activity 3.1.2. This activity demonstrates a procedure for finding the inverse of a
matrix A.

a. Suppose that A �

[
3 −2
1 −1

]
. To find an inverse B, we write its columns as B �[

b1 b2
]
and require that

AB � I[
Ab1 Ab2

]
�

[
1 0
0 1

]
.

In other words, we can find the columns of B by solving the equations

Ab1 �

[
1
0

]
, Ab2 �

[
0
1

]
.

Solve these equations to find b1 and b2. Then write the matrix B and verify that
AB � I. This is enough for us to conclude that B is the inverse of A.
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b. Find the product BA and explain why we now know that B is invertible and
B−1 � A.

c. What happens when you try to find the inverse of C �

[
−2 1
4 −2

]
?

d. We now develop a condition that must be satisfied by an invertible matrix. Sup-
pose that A is an invertible n × n matrix with inverse B and suppose that b is
any n-dimensional vector. Since AB � I, we have

A(Bb) � (AB)b � Ib � b.

This says that the equation Ax � b is consistent and that x � Bb is a solution.
Since we know that Ax � b is consistent for any vector b, what does this say
about the span of the columns of A?

e. Since A is a square matrix, what does this say about the pivot positions of A?
What is the reduced row echelon form of A?

f. In this activity, we have studied the matrices

A �

[
3 −2
1 −1

]
, C �

[
−2 1
4 −2

]
.

Find the reduced row echelon form of each and explain how those forms enable
us to conclude that one matrix is invertible and the other is not.

Example 3.1.3 We can reformulate this procedure for finding the inverse of a matrix. For the
sake of convenience, suppose that A is a 2 × 2 invertible matrix with inverse B �

[
b1 b2

]
.

Rather than solving the equations

Ab1 �

[
1
0

]
, Ab2 �

[
0
1

]
separately, we can solve them at the same time by augmenting A by both vectors

[
1
0

]
and[

0
1

]
and finding the reduced row echelon form.

For example, if A �

[
1 2
1 1

]
, we form[

1 2 1 0
1 1 0 1

]
∼
[

1 0 −1 2
0 1 1 −1

]
.

This shows that the matrix B �

[
−1 2
1 1

]
is the inverse of A.
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In other words, beginning with A, we augment by the identify and find the reduced row
echelon form to determine A−1: [

A I
]
∼
[

I A−1 ]
.

In fact, this reformulation will always work. Suppose that A is an invertible n × n matrix
with inverse B. Suppose furthermore that b is any n-dimensional vector and consider the
equation Ax � b. We know that x � Bb is a solution because A(Bb) � (AB)b � Ib � b.

Proposition 3.1.4 If A is an invertible matrix with inverse B, then any equation Ax � b is consistent
and x � Bb is a solution. In other words, the solution to Ax � b is x � A−1b.

Notice that this is similar to saying that the solution to 3x � 5 is x �
1
3 · 5, as we saw in the

preview activity.

Now since Ax � b is consistent for every vector b, the columns of A must span �n so there
is a pivot position in every row. Since A is also square, this means that the reduced row
echelon form of A is the identity matrix.

Proposition 3.1.5 The matrix A is invertible if and only if the reduced row echelon form of A is the
identity matrix: A ∼ I. In addition, we can find the inverse by augmenting A by the identity and
finding the reduced row echelon form:[

A I
]
∼
[

I A−1 ]
.

You may have noticed that Proposition 3.1.4 says that the solution to the equation Ax � b is
x � A−1b. Indeed, we know that this equation has a unique solution because A has a pivot
position in every column.

It is important to remember that the product of two matrices depends on the order in which
they are multiplied. That is, if C and D are matrices, then it sometimes happens that CD ,
DC. However, something fortunate happens when we consider invertibility. It turns out
that if A is an n × n matrix and that AB � I, then it is also true that BA � I. We have verified
this in a few examples so far, and Exercise 3.1.5.12 explains why it always happens. This
leads to the following proposition.

Proposition 3.1.6 If A is a n × n invertible matrix with inverse B, then BA � I, which tells us that
B is invertible with inverse A. In other words,

(A−1)−1
� A.

3.1.2 Solving equations with an inverse

If A is an invertiblematrix, then Proposition 3.1.4 shows us how to use A−1 to solve equations
involving A. In particular, the solution to Ax � b is x � A−1b.
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Activity 3.1.3. We’ll begin by considering the square matrix

A �


1 0 2
2 2 1
1 1 1

 .
a. Describe the solution space to the equation Ax �


3
4
3

 by augmenting A and

finding the reduced row echelon form.

b. Using Proposition 3.1.5, explain why A is invertible and find its inverse.

c. Nowuse the inverse to solve the equation Ax �


3
4
3

 and verify that your result

agrees with what you found in part a.

d. If you have defined a matrix B in Sage, you can find it’s inverse as B.inverse()
or B^-1. Use Sage to find the inverse of the matrix

B �


1 −2 −1

−1 5 6
5 −4 6


and use it to solve the equation Bx �


8
3

36

 .
e. If A and B are the two matrices defined in this activity, find their product AB

and verify that it is invertible.

f. Compute the products A−1B−1 and B−1A−1. Which one agrees with (AB)−1?

g. Explain your finding by considering the product

(AB)(B−1A−1)

and using associativity to regroup the products so that the middle two terms
are multiplied first.

The next proposition summarizes much of what we have found about invertible matrices.

Proposition 3.1.7 Properties of invertible matrices.
• An n × n matrix A is invertible if and only if A ∼ I.
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• If A is invertible, then the solution to the equation Ax � b is given by x � A−1b.

• We can find A−1 by finding the reduced row echelon form of
[

A I
]
; namely,[

A I
]
∼
[

I A−1 ]
.

• If A and B are two invertible n × n matrices, then their product AB is also invertible and
(AB)−1 � B−1A−1.

There is a simple formula for finding the inverse of a 2 × 2 matrix:[
a b
c d

]−1

�
1

ad − bc

[
d −b

−c a

]
,

which can be easily checked. The condition that A be invertible is, in this case, reduced to the
condition that ad − bc , 0. We will understand this condition better once we have explored
determinants in Section 3.4. There is a similar formula for the inverse of a 3 × 3 matrix, but
there is not a good reason to write it here.

3.1.3 Triangular matrices and Gaussian elimination

With some of the ideas we’ve developed, we can recast the Gaussian elimination algorithm
in terms of matrix multiplication and invertibility. This will be especially helpful later when
we consider determinants and LU factorizations. Triangular matrices will play an important
role.
Definition 3.1.8 We say that a matrix A is lower triangular if all its entries above the diagonal
are zero. Similarly, A is upper triangular if all the entries below the diagonal are zero.

For example, the matrix L below is a lower triangular matrix while U is an upper triangular
one.

L �


∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0
∗ ∗ ∗ ∗

 , U �


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

 .
We can develop a simple test to determine whether an n × n lower triangular matrix is in-
vertible. Let’s use Gaussian elimination to find the reduced row echelon form of the lower
triangular matrix 

1 0 0
2 −2 0

−3 4 −4

 ∼


1 0 0
0 −2 0
0 4 −4


∼


1 0 0
0 −2 0
0 0 −4

 ∼


1 0 0
0 1 0
0 0 1

 .
Because the entries on the diagonal are nonzero, we find a pivot position in every row, which
tells us that the matrix is invertible.
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If, however, there is a zero entry on the diagonal, the matrix cannot be invertible. Consid-
ering the matrix below, we see that having a zero on the diagonal leads to a row without a
pivot position. 

1 0 0
2 0 0

−3 4 −4

 ∼


1 0 0
0 0 0
0 4 −4

 ∼


1 0 0
0 1 −1
0 0 0

 .
Proposition 3.1.9 An n × n triangular matrix is invertible if and only if the entries on the diagonal
are all nonzero.

Activity 3.1.4 Gaussian elimination and matrix multiplication.. This activity ex-
plores how the row operations of scaling, interchange, and replacement can be per-
formed using matrix multiplication.

As an example, we consider the matrix

A �


1 2 1
2 0 −2

−1 2 −1


and apply a replacement operation that multiplies the first row by −2 and adds it to
the second row. Rather than performing this operation in the usual way, we construct
a new matrix by applying the desired replacement operation to the identity matrix.
To illustrate, we begin with the identity matrix

I �

1 0 0
0 1 0
0 0 1


and form a newmatrix by multiplying the first row by −2 and adding it to the second
row to obtain

R �


1 0 0
−2 1 0
0 0 1

 .
a. Show that the product RA is the result of applying the replacement operation

to A.

b. Explain why R is invertible and find its inverse R−1.

c. Describe the relationship between R and R−1 and use the connection to replace-
ment operations to explain why it holds.

d. Other row operations can be performed using a similar procedure. For instance,
suppose we want to scale the second row of A by 4. Find a matrix S so that SA
is the same as that obtained from the scaling operation. Why is S invertible and
what is S−1?
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e. Finally, suppose we want to interchange the first and third rows of A. Find a
matrix P, usually called a permutation matrix that performs this operation. What
is P−1?

f. The originalmatrix A is seen to be row equivalent to the upper triangularmatrix
U by performing three replacement operations on A:

A �


1 2 1
2 0 −2

−1 2 −1

 ∼


1 2 1
0 −4 −4
0 0 −4

 � U.

Find the matrices L1, L2, and L3 that perform these row replacement operations
so that L3L2L1A � U.

g. Explain why the matrix product L3L2L1 is invertible and use this fact to write
A � LU. What is the matrix L that you find? Why do you think we denote it by
L?

The following are examples of matrices, known as elementary matrices, that perform the row
operations on a matrix having three rows.

Replacement Multiplying the second row by 3 and adding it to the third row is
performed by

L �


1 0 0
0 1 0
0 3 1

 .
We often use L to describe these matrices because they are lower tri-
angular.

Scaling Multiplying the third row by 2 is performed by

S �


1 0 0
0 1 0
0 0 2

 .
Interchange Interchanging the first two rows is performed by

P �


0 1 0
1 0 0
0 0 1

 .
Example 3.1.10 Suppose we have

A �


1 3 −2

−3 −6 3
2 0 −2

 .
For the forward substitution phase of Gaussian elimination, we perform a sequence of three
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replacement operations. The first replacement operation multiplies the first row by 3 and
adds the result to the second row. We can perform this operation by multiplying A by the
lower triangular matrix L1 where

L1A �


1 0 0
3 1 0
0 0 1




1 3 −2
−3 −6 3

2 0 −2

 �


1 3 −2
0 3 −3
2 0 −1

 .
The next two replacement operations are performed by the matrices

L2 �


1 0 0
0 1 0

−2 0 1

 , L3 �


1 0 0
0 1 0
0 2 1


so that

L3L2L1A � U �


1 3 −2
0 3 −3
0 0 −3

 .
Notice that the inverse of L1 has the simple form:

L1 �


1 0 0
3 1 0
0 0 1

 , L−1
1 �


1 0 0

−3 1 0
0 0 1

 .
This says that if we want to undo the operation of multiplying the first row by 3 and adding
to the second row, we should multiply the first row by −3 and add it to the second row. That
is the effect of L−1

1 .

Notice that we now have L3L2L1A � U, which gives

(L3L2L1)A � U

(L3L2L1)−1(L3L2L1)A � (L3L2L1)−1U

A � (L3L2L1)−1U � LU

where L is the lower triangular matrix

L � (L3L2L1)−1
�


1 0 0
−3 1 0
2 −2 1

 .
This way of writing A � LU as the product of a lower and an upper triangular matrix is
known as an LU factorization of A, and its usefulness will be explored in Section 5.1.
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3.1.4 Summary

In this section, we found conditions guaranteeing that a matrix has an inverse. When these
conditions hold, we also found an algorithm for finding the inverse.

• A square matrix is invertible if there is a matrix B, known as the inverse of A, such that
AB � I. We usually write A−1 � B.

• The n×n matrix A is invertible if and only if it is row equivalent to In , the n×n identity
matrix.

• If a matrix A is invertible, we can use Gaussian elimination to find its inverse:[
A I

]
∼
[

I A−1 ]
.

• If a matrix A is invertible, then the solution to the equation Ax � b is x � A−1b.

• The row operations of replacement, scaling, and interchange can be performed bymul-
tiplying by elementary matrices.

3.1.5 Exercises

1. Consider the matrix

A �


3 −1 1 4
0 2 3 1

−2 1 0 −2
3 0 1 2

 .

a. Explain why A has an inverse.

b. Find the inverse of A by augmenting by the identity I to form
[

A I
]
.

c. Use your inverse to solve the equation Ax �


3
2

−3
−1

 .
2. In this exercise, we will consider 2 × 2 matrices as defining matrix transformations.

a. Write the matrix A that performs a 45◦ rotation. What geometric operation un-
does this rotation? Find the matrix that perform this operation and verify that it
is A−1.

b. Write the matrix A that performs a 180◦ rotation. Verify that A2 � I so that A−1 �

A, and explain geometrically why this is the case.

c. Find three more matrices A that satisfy A2 � I.
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3. Inverses for certain types of matrices can be found in a relatively straightforward fash-
ion.

a. The matrix D �


2 0 0
0 −1 0
0 0 −4

 is called diagonal since the only nonzero entries are

on the diagonal of the matrix.

1. Find D−1 by augmenting D by the identity and finding its reduced row ech-
elon form.

2. Under what conditions is a diagonal matrix invertible?
3. Explain why the inverse of a diagonal matrix is also diagonal and explain

the relationship between the diagonal entries in D and D−1.

b. Consider the lower triangular matrix L �


1 0 0
−2 1 0
3 −4 1

 .
1. Find L−1 by augmenting L by the identity and finding its reduced row eche-

lon form.
2. Explain why the inverse of a lower triangular matrix is also lower triangular.

4. Our definition of an invertible matrix requires that A be a square n × n matrix. Let’s
examine what happens when A is not square. For instance, suppose that

A �


−1 −1
−2 −1

3 0

 , B �

[
−2 2 1

1 −2 −1

]
.

a. Verify that BA � I2. In this case, we say that B is a left inverse of A.

b. If A has a left inverse B, we can still use it to find solutions to linear equations. If
we know there is a solution to the equation Ax � b, we can multiply both sides
of the equation by B to find x � Bb.

Suppose you know there is a solution to the equation Ax �


−1
−3

6

 . Use the left

inverse B to find x and verify that it is a solution.

c. Now consider the matrix
C �

[
1 −1 0

−2 1 0

]
and verify that C is also a left inverse of A. This shows that thematrix A may have
more than one left inverse.

5. If a matrix A is invertible, there is a sequence of row operations that transforms A into
the identity matrix I. We have seen that every row operation can be performed by
matrix multiplication. If the jth step in the Gaussian elimination process is performed
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by multiplying by E j , then we have

Ep · · ·E2E1A � I,

which means that
A−1

� Ep · · ·E2E1.

For each of the following matrices, find a sequence of row operations that transforms
the matrix to the identity I. Write the matrices E j that perform the steps and use them
to find A−1.

a.

A �


0 2 0

−3 0 0
0 0 1

 .
b.

A �


1 0 0 0
2 1 0 0
0 −3 1 0
0 0 2 1

 .
c.

A �


1 1 1
0 1 1
0 0 2

 .
6. Suppose that A is an n × n matrix.

a. Suppose that A2 � AA is invertible with inverse B. Thismeans that A2B � AAB �

I. Explain why A must be invertible with inverse AB.

b. Suppose that A100 is invertible with inverse B. Explain why A is invertible. What
is A−1 in terms of A and B?

7. Determine whether the following statements are true or false and explain your reason-
ing.

a. If A is invertible, then the columns of A are linearly independent.

b. If A is a square matrix whose diagonal entries are all nonzero, then A is invertible.

c. If A is an invertible n × n matrix, then span of the columns of A is �n .

d. If A is invertible, then there is a nonzero solution to the homogeneous equation
Ax � 0.

e. If A is an n × n matrix and the equation Ax � b has a solution for every vector b,
then A is invertible.

8. Provide a justification for your response to the following questions.
a. Suppose that A is a square matrix with two identical columns. Can A be invert-

ible?

b. Suppose that A is a square matrix with two identical rows. Can A be invertible?
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c. Suppose that A is an invertible matrix and that AB � AC. Can you conclude that
B � C?

d. Suppose that A is an invertible n × n matrix. What can you say about the span of
the columns of A−1?

e. Suppose that A is an invertible matrix and that B is row equivalent to A. Can you
guarantee that B is invertible?

9. Suppose that we start with the 3 × 3 matrix A, perform the following sequence of row
operations:

1. Multiply row 1 by -2 and add to row 2.

2. Multiply row 1 by 4 and add to row 3.

3. Scale row 2 by 1/2.

4. Multiply row 2 by -1 and add to row 3,

and arrive at the upper triangular matrix

U �


3 2 −1
0 1 3
0 0 −4

 .

a. Write the matrices E1, E2, E3, and E4 that perform the four row operations.

b. Find the matrix E � E4E3E2E1.

c. We then have E4E3E2E1A � EA � U. Now that we have the matrix E, find the
original matrix A � E−1U.

10. We say that two square matrices A and B are similar if there is an invertible matrix P
such that B � PAP−1.

a. If A and B are similar, explain why A2 and B2 are similar as well. In particular, if
B � PAP−1, explain why B2 � PA2P−1.

b. If A and B are similar and A is invertible, explain why B is also invertible.

c. If A and B are similar and both are invertible, explainwhy A−1 and B−1 are similar.

d. If A is similar to B and B is similar to C, explain why A is similar to C. To begin,
you may wish to assume that B � PAP−1 and C � QBQ−1.

11. Suppose that A and B are two n × n matrices and that AB is invertible. We would like
to explain why both A and B are invertible.

a. We first explain why B is invertible.

1. Since AB is invertible, explain why any solution to the homogeneous equa-
tion ABx � 0 is x � 0.
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2. Use this fact to explain why any solution to Bx � 0 must be x � 0.
3. Explain why B must be invertible.

b. Now we explain why A is invertible.

1. Since AB is invertible, explain why the equation ABx � b is consistent for
every vector b.

2. Using the fact that ABx � A(Bx) � b is consistent for every b, explain why
every equation Ax � b is consistent.

3. Explain why A must be invertible.
12. We defined an n × n matrix to be invertible if there is a matrix B such that AB � In . In

this exercise, we will explain why it is also true that BA � I, which is the statement of
Proposition 3.1.6. This means that, if B � A−1, then A � B−1.

a. Suppose that x is an n-dimensional vector. Since AB � I, explain why ABx � x
and use this to explain why the only vector for which Bx � 0 is x � 0.

b. Explain why this implies that B must be invertible. We will call the inverse C so
that BC � I.

c. Beginning with AB � I, explain why B(AB)C � BIC and why this tells us that
BA � I.
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3.2 Bases and coordinate systems

Standard Cartesian coordinates are commonly used to describe points in the plane. If we
mention the point (4, 3), we know that we arrive at this point from the origin bymoving four
units to the right and three units up.

Sometimes, however, it is more natural to work in a different coordinate system. Suppose
that you live in the city whose map is shown in Figure 3.2.1 and that you would like to
give a guest directions for getting from your house to the store. You would probably say
something like, ”Go four blocks up Maple. Then turn left on Main for three blocks.” The
grid of streets in the city gives a more natural coordinate system than standard north-south,
east-west coordinates.

House

Store

Map
le

M
ainN

Figure 3.2.1 A city map.

In this section, we will develop the concept of a basis through which we will create new
coordinate systems in�m . We will see that the right choice of a coordinate system provides
a more natural way to approach some problems.

Preview Activity 3.2.1. Consider the vectors

v1 �

[
2
1

]
, v2 �

[
1
2

]
in �2, which are shown in Figure 3.2.2.
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v1

v2

Figure 3.2.2 Linear combinations of v1 and v2.

a. Indicate the linear combination v1 − 2v2 on the figure.

b. Express the vector
[
−3

0

]
as a linear combination of v1 and v2.

c. Find the linear combination 10v1 − 13v2.

d. Express the vector
[

16
−4

]
as a linear combination of v1 and v2.

e. Explain why every vector in�2 can be written as a linear combination of v1 and
v2 in exactly one way.

In the preview activity, we worked with a set of two vectors in �2 and found that we could
express any vector in�2 in two differentways: in the usualwaywhere the components of the
vector describe horizontal and vertical changes, and in a newway as a linear combination of
v1 and v2. We could also translate between these two descriptions. This example illustrates
the central idea of this section.

3.2.1 Bases

In the preview activity, we created a new coordinate system for�2 using linear combinations
of a set of two vectors. More generally, the following definition will guide us.

Definition 3.2.3 A set of vectors v1 , v2 , . . . , vn in�m is called a basis for�m if the set of vectors
spans �m and is linearly independent.
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Activity 3.2.2. We will look at some examples of bases in this activity.
a. In the preview activity, we worked with the set of vectors in �2:

v1 �

[
2
1

]
, v2 �

[
1
2

]
.

Explain why these vectors form a basis for �2.

b. Consider the set of vectors in �3

v1 �


1
1
1

 , v2 �


0
1

−1

 , v3 �


1
0

−1


and determine whether they form a basis for �3.

c. Do the vectors

v1 �


−2

1
3

 , v2 �


3
0

−1

 , v3 �


1
1
0

 , v4 �


0
3

−2


form a basis for �3?

d. Explain why the vectors e1 , e2 , e3 form a basis for �3.

e. If a set of vectors v1 , v2 , . . . , vn forms a basis for �m , what can you guarantee
about the pivot positions of the matrix[

v1 v2 . . . vn
]
?

f. If the set of vectors v1 , v2 , . . . , vn is a basis for �10, how many vectors must be
in the set?

We can develop a test to determine if a set of vectors v1 , v2 , . . . , vn forms a basis for �m by
considering the matrix

A �
[

v1 v2 . . . vn
]
.

To be a basis, this set of vectors must span �m and be linearly independent.

We know that the span of the set of vectors is�m if and only if A has a pivot position in every
row. We also know that the set of vectors is linearly independent if and only if A has a pivot
position in every column. This means that a set of vectors forms a basis if and only if A has
a pivot in every row and every column. Therefore, A must be row equivalent to the identify
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matrix I:

A ∼


1 0 · · · 0
0 0 · · · 0
...
...
. . .

...
0 0 · · · 1


� I.

In addition to helping identify bases, this fact tells us something important about the number
of vectors in a basis. Since the matrix A has a pivot position in every row and every column,
it must have the same number of rows as columns. Therefore, the number of vectors in a
basis for �m must be m. For example, a basis for �23 must have exactly 23 vectors.

Proposition 3.2.4 A set of vectors forms a basis for �m if and only if the matrix

A �
[

v1 v2 · · · vn
]
∼ I .

This means there must be m vectors in a basis for �m .

Example 3.2.5 Notice that the vectors

e1 �


1
0
0

 , e2 �


0
1
0

 , e3 �


0
0
1


form the columns of the 3 × 3 identity matrix, which implies that this set forms a basis for
�3. More generally, the set of vectors e1 , e2 , . . . , em forms a basis for �m , which we call the
standard basis for �m .

3.2.2 Coordinate systems

Abasis for�m forms a coordinate system for�m , aswewill describe. Rather than continuing
to write a list of vectors, we will find it convenient to denote a basis using a single symbol,
such as

B � {v1 , v2 , . . . , vm}
Example 3.2.6 In this section’s preview activity, we considered the vectors

v1 �

[
2
1

]
, v2 �

[
1
2

]
,

which form a basis B � {v1 , v2} for �2.
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In the standard coordinate system, the
point (2,−3) is found by moving 2 units
to the right and 3 units down. We would
like to define a new coordinate system
where we interpret (2,−3) to mean we
move two times along v1 and 3 times
along −v2. As we see in the figure, doing
so leaves us at the point (1,−4), expressed
in the usual coordinate system.

v1

v2

We have seen that
x �

[
1

−4

]
� 2v1 − 3v2.

The coordinates of the vector x in the new coordinate system are the weights that we use to
create x as a linear combination of v1 and v2.

Since we now have two descriptions of the vector x, we need some notation to keep track of

which coordinate system we are using. Because
[

1
−4

]
� 2v1 − 3v2, we will write{[

1
−4

]}
B
�

[
2

−3

]
.

More generally, {x}B will denote the coordinates of x in the basisB; that is, {x}B is the vector[
c1
c2

]
of weights such that

x � c1v1 + c2v2.

For example, if the coordinates of x in the basis B are

{x}B �

[
5

−2

]
,

then
x � 5v1 − 2v2 � 5

[
2
1

]
− 2

[
1
2

]
�

[
8
3

]
,

and we conclude that {[
8
3

]}
B
�

[
5

−2

]
.

This demonstrates howwe can translate coordinates in the basisB into standard coordinates.

Suppose we know the expression of a vector x in standard coordinates. How can we find its

coordinates in the basis B? For instance, suppose x �

[
−8

2

]
and that we would like to find
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{x}B . We can write {[
−8

2

]}
B
�

[
c1
c2

]
,

which means that [
−8

2

]
� c1v1 + c2v2

or
c1

[
2
1

]
+ c2

[
1
2

]
�

[
−8

2

]
.

This linear system for the weights defines an augmented matrix[
2 1 −8
1 2 2

]
∼
[

1 0 −6
0 1 4

]
, .

which means that {[
−8

2

]}
B
�

[
−6

4

]
.

This example illustrates how a basis in �2 provides a new coordinate system for �2 and
shows how we may translate between this coordinate system and the standard one.

More generally, suppose that B � {v1 , v2 , . . . , vm} is a basis for �m . We know that the
span of the vectors is �m , which implies that any vector x in �m can be written as a linear
combination of the vectors. In addition, we know that the vectors are linearly independent,
which means that we can write x as a linear combination of the vectors in exactly one way.
Therefore, we have

x � c1v1 + c2v2 + . . . + cmvm

where the weights c1 , c2 , . . . , cm are unique. In this case, wewrite the coordinate description
of x in the basis B as

{x}B �


c1
c2
...

cm


.

Activity 3.2.3. Let’s begin with the basis B � {v1 , v2} of �2 where

v1 �

[
3

−2

]
, v2 �

[
2
1

]
.

a. If the coordinates of x in the basis B are {x}B �

[
−2

4

]
, what is the vector x?

b. If x �

[
3
5

]
, find the coordinates of x in the basis B; that is, find {x}B .

c. Find a matrix A such that, for any vector x, we have x � A {x}B . Explain why
this matrix is invertible.
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d. Using what you found in the previous part, find a matrix B such that, for any
vector x, we have {x}B � Bx. What is the relationship between the two matrices
A and B? Explain why this relationship holds.

e. Suppose we consider the standard basis

E � {e1 , e2}.

What is the relationship between x and {x}E?

f. Suppose we also consider the basis

C �

{[
1
2

]
,

[
−2

1

]}
.

Find a matrix C that converts coordinates in the basis C into coordinates in the
basis B; that is,

{x}B � C {x}C .

You may wish to think about converting coordinates from the basis C into the
standard coordinate system and then into the basis B.

This activity demonstrates how we can efficiently convert between coordinate systems de-
fined by different bases. Let’s consider a basis B � {v1 , v2 , . . . , vm} and a vector x. We know
that

x � c1v1 + c2v2 + . . . + cmvm

�
[

v1 v2 · · · vm
] 

c1
c2
...

cm


�

[
v1 v2 · · · vm

]
{x}B .

If we use PB to denote the matrix whose columns are the basis vectors, then we find that

x � PB {x}B

where PB �
[

v1 v2 · · · vm
]
. This means that the matrix PB converts coordinates in

the basis B into standard coordinates.

Since the columns of PB are the basis vectors v1 , v2 , . . . , vm , we know that PB ∼ Im , and PB
is therefore invertible. Since we have

x � PB {x}B ,

we must also have
P−1
B x � {x}B .
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Proposition 3.2.7 If B is a basis and PB the matrix whose columns are the basis vectors, then

x � PB {x}B ,

{x}B � P−1
B x.

If we have another basis C, we find, in the same way, that x � PC {x}C for the conversion
between coordinates in the basis C into standard coordinates. We then have

{x}B � P−1
B x � P−1

B (PC {x}C) � (P−1
B PC) {x}C .

Therefore, P−1
B PC is the matrix that converts C-coordinates into B-coordinates.

3.2.3 Examples of bases

We will now look at some examples of bases that illustrate how it can be useful to study a
problem using a different coordinate system.

Example 3.2.8 Let’s consider the basis of �3:

B �




1
0

−2

 ,

−2

1
0

 ,


1
1
2


 .

It is relatively straightforward to convert a vector’s representation in this basis into to the
standard basis using the matrix whose columns are the basis vectors:

PB �


1 −2 1
0 1 1

−2 0 2

 .
For example, suppose that the vector x is described in the coordinate system defined by the

basis as {x}B �


2

−2
1

 . We then have

x � PB {x}B �


1 −2 1
0 1 1

−2 0 2




2
−2

1

 �


7
−1
−2

 .
Consider now the vector x �


3
1

−2

 . If we would like to express x in the coordinate system

defined by B, then we compute

{x}B � P−1
B x �


1
4

1
2 − 3

8
− 1

4
1
2 − 1

8
1
4

1
2

1
8




3
1

−2

 �


2
0
1

 .
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Example 3.2.9 Supposewework for a company that records its quarterly revenue, inmillions
of dollars, as:

Table 3.2.10 A company’s quarterly revenue

Quarter Revenue
1 10.3
2 13.1
3 7.5
4 8.2

Rather than using a table to record the
data, we could display it in a graph or
write it as a vector in �4:

x �


10.3
13.1
7.5
8.2

 .

1 2 3 4

5

10

15

Quarter

Revenue

Let’s consider a new basis B for �4 using vectors

v1 �


1
1
1
1

 , v2 �


1
1

−1
−1

 , v3 �


1

−1
0
0

 , v4 �


0
0
1

−1

 .
We may view these basis elements graphically, as in Figure 3.2.11

1 2 3 4

-1

1
v1

1 2 3 4

-1

1
v2

1 2 3 4

-1

1
v3

1 2 3 4

-1

1
v4

Figure 3.2.11 A representation of the basis elements of B.
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To convert our revenue vectors into the coordinates given by B, we form the matrices:

PB �


1 1 1 0
1 1 −1 0
1 −1 0 1
1 −1 0 −1

 , P−1
B �


1
4

1
4

1
4

1
4

1
4

1
4 − 1

4 − 1
4

1
2 − 1

2 0 0
0 0 1

2 − 1
2

 .

In particular, if the revenue vector is x �


x1
x2
x3
x4

 , then

{x}B �


1
4 x1 +

1
4 x2 +

1
4 x3 +

1
4 x4

1
4 x1 +

1
4 x2 − 1

4 x3 − 1
4 x4

1
2 x1 − 1

2 x2
1
2 x3 − 1

2 x4

 .
Notice that the first component of {x}B is the average of the components of x.

For our particular revenue vector x �


10.3
13.1
7.5
8.2

 , we have

{x}B � P−1
B x � P−1

B


10.3
13.1
7.5
8.2

 �


9.775
1.925

−1.400
−0.350

 .
This means that our revenue vector is

x � 9.775v1 + 1.925v2 − 1.400v3 − 0.350v4.

We will think about what these terms mean by adding them together one at a time.

The first term,

9.775v1 �


9.775
9.775
9.775
9.775

 ,
gives us the average revenue over the
year.

1 2 3 4

5

10

15

Quarter

Revenue
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The average revenue for the first two quar-
ters is 11.7, which is 1.925 million dollars
above the yearly average. Similarly, the
average revenue for the last two quarters
is 1.925 million dollars below the yearly
average. This is recorded by the second
term

1.925v2 �


1.925
1.925
−1.925
−1.925

 . 1 2 3 4

5

10

15

Quarter

Revenue

Finally, the first quarter’s revenue is 1.400
million dollars below the average over
the first two quarters and the second
quarter’s revenue is 1.400 million dollars
above that average. This, and the corre-
sponding data for the last two quarters, is
captured by the last two terms:

−1.400v3 − 0.350v4 �


−1.400
1.400
−0.350
0.350

 , 1 2 3 4

5

10

15

Quarter

Revenue

If we write {x}B �


c1
c2
c3
c4

 , we see that the coefficient c1 measures the average revenue over

the year, c2 measures the deviation from the annual average in the first and second halves of
the year, and c3 measures how the revenue in the first and second quarter differs from the
average in the first half of the year. In this way, the coefficients provide a view of the revenue
over different time scales, from an annual summary to a finer view of quarterly behavior.

This basis is sometimes called a Haar wavelet basis, and the change of basis is known as a
Haarwavelet transform. In the next section, we will see how this basis provides a useful way
to store digital images.

Activity 3.2.4 Edge detection.. An important problem in the field of computer vision
is to detect edges in a digital photograph, as is shown in Figure 3.2.12. Edge detection
algorithms are useful when, say, we want a robot to locate an object in its field of view.
Graphic designers also use these algorithms to create artistic effects.
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Figure 3.2.12 A canyon wall in Capitol Reef National Park and the result of an edge
detection algorithm.

We will consider a very simple version of an edge detection algorithm to give a sense
of how this works. Rather than considering a two-dimensional photograph, we will
think about a one-dimensional row of pixels in a photograph. The grayscale values of
a pixel measure the brightness of a pixel; a grayscale value of 0 corresponds to black,
and a value of 255 corresponds to white.

Suppose, for simplicity, that the grayscale values for a rowof six pixels are represented
by a vector x in �6:

x �



25
34
30
45

190
200


.

1 2 3 4 5 6

100

200

We can easily see that there is a jump in brightness between pixels 4 and 5, but how can
we detect it computationally? We will introduce a new basis B for �6 with vectors:

v1 �



1
0
0
0
0
0


, v2 �



1
1
0
0
0
0


, v3 �



1
1
1
0
0
0


, v4 �



1
1
1
1
0
0


, v5 �



1
1
1
1
1
0


, v6 �



1
1
1
1
1
1


.
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a. Construct the matrix PB that relates the standard coordinate system with the
coordinates in the basis B.

b. Determine the matrix P−1
B that converts the representation of x in standard co-

ordinates into the coordinate system defined by B.

c. Suppose the vectors are expressed in general terms as

x �



x1
x2
x3
x4
x5
x6


, {x}B �



c1
c2
c3
c4
c5
c6


.

Using the relationship {x}B � P−1
B x, determine an expression for the coefficient

c2 in terms of x1 , x2 , . . . , x6. What does c2 measure in terms of the grayscale
values of the pixels? What does c4 measure in terms of the grayscale values of
the pixels?

d. Now for the specific vector

x �



25
34
30
45

190
200


,

determine the representation of x in the B-coordinate system.

e. Explain how the coefficients in {x}B determine the location of the jump in bright-
ness in the grayscale values represented by the vector x.

Readers who are familiar with calculus may recognize that this change of basis con-
verts a vector x into {x}B , the set of changes in x. This process is similar to differen-
tiation in calculus. Similarly, the process of converting {x}B into the vector x adds
together the changes in a process similar to integration. As a result, this change of
basis represents a linear algebraic version of the Fundamental Theorem of Calculus.

3.2.4 Summary

We defined a basis to be a set of vectorsB � {v1 , v2 , . . . , vn} that is linearly independent and
whose span is �m .
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• A set of vectors forms a basis for �m if and only if the matrix

A �
[

v1 v2 · · · vn
]
∼ I.

This means there must be m vectors in a basis for �m .

• If v1 , v2 , . . . , vm forms a basis for �m , then any vector in �m can be written as a linear
combination of the vectors in exactly one way.

• We used the basis B to define a coordinate system in which {x}B �


c1
c2
...

cn


, the coor-

dinates of x in the basis B, are defined by

x � c1v1 + c2v2 + · · · + cnvm .

• Forming the matrix PB whose columns are the basis vectors, we can convert between
coordinate systems:

x � PB {x}B ,
P−1
B x � {x}B .

.

3.2.5 Exercises

1. Shown in Figure 3.2.13 are two vectors v1 and v2 in the plane �2.

-4 -2 2 4

-4

-2

2

4

v1

v2

Figure 3.2.13 Vectors v1 and v2 in �2.

a. Explain why B � {v1 , v2} is a basis for �2.

b. Using Figure 3.2.13, indicate the vectors x such that

1. {x}B �

[
2

−1

]
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2. {x}B �

[
−1
−2

]
3. {x}B �

[
0
3

]
c. Using Figure 3.2.13, find the representation {x}B if

1. x �

[
−2
−1

]
.

2. x �

[
2
4

]
.

3. x �

[
2

−5

]
.

d. Find {x}B if x �

[
60
90

]
.

2. Consider vectors
v1 �

[
1
2

]
,v2 �

[
1

−3

]
w1 �

[
2
3

]
,w2 �

[
−1
−2

]
.

and let B � {v1 , v2} and C � {w1 ,w2}.
a. Explain why B and C are both bases of �2.

b. If x �

[
5

−3

]
, find {x}B and {x}C .

c. If {x}B �

[
2

−4

]
, find x and {x}C .

d. If {x}C �

[
−3

2

]
, find x and {x}B .

e. Find a matrix Q such that {x}B � Q {x}C .
3. Consider the following vectors in �4:

v1 �


1
1
1
1

 , v2 �


0
1
1
1

 , v3 �


0
0
1
1

 , v4 �


0
0
0
1

 .
a. Explain why B � {v1 , v2 , v3 , v4} forms a basis for �4.

b. Explain how to convert {x}B , the representation of a vector x in the coordinates
defined by B, into x, its representation in the standard coordinate system.
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c. Explain how to convert the vector x into {x}B , its representation in the coordinate
system defined by B.

d. If x �


23
12
10
19

 , find {x}B .

e. If {x}B �


3
1

−3
−4

 , find x.

4. Consider the following vectors in �3:

v1 �


1
3
2

 , v2 �


0
1
4

 , v3 �


−2
−5

0

 , v4 �


−2
−1
−1

 , v5 �


1

−2
−1

 .
a. Do these vectors form a basis for �3? Explain your thinking.

b. Find a subset of these vectors that forms a basis of �3.

c. Suppose you have a set of vectors v1 , v2 , . . . , v6 in �4 such that

[
v1 v2 . . . v6

]
∼


1 0 −2 0 1 0
0 1 3 0 −4 0
0 0 0 1 2 0
0 0 0 0 0 1

 .
Find a subset of the vectors that forms a basis for �4.

5. This exercise involves a simple Fourier transform, which will play an important role in
the next section.

Suppose that we have the vectors

v1 �


1
1
1

 , v2 �


cos

(
π
6
)

cos
( 3π

6
)

cos
( 5π

6
)  v3 �


cos

( 2π
6
)

cos
( 6π

6
)

cos
( 10π

6
)  .

a. Explain why B � {v1 , v2 , v3} is a basis for �3. Notice that you may enter cos
(
π
6
)

into Sage as cos(pi/6).

b. If x �


15
15
15

 , find {x}B .
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c. Find the matrices PB and P−1
B . If x �


x1
x2
x3

 and {x}B �


c1
c2
c3

 , explain why c1 is

the average of x1, x2, and x3.
6. Determinewhether the following statements are true or false and provide a justification

for your response.
a. If the columns of a matrix A form a basis for �m , then A is invertible.

b. There must be 125 vectors in a basis for �125.

c. If B � {v1 , v2 , . . . , vn} is a basis of �m , then every vector in �m can be expressed
as a linear combination of basis vectors.

d. The coordinates {x}B are the weights that form x as a linear combination of basis
vectors.

e. If the basis vectors form the columns of the matrix PB , then {x}B � PBx.
7. Provide a justification for your response to each of the following questions.

a. Suppose you have m linearly independent vectors in�m . Can you guarantee that
they form a basis of �m?

b. If A is an invertible m ×m matrix, do the columns necessarily form a basis of�m?

c. Suppose we have an invertible m × m matrix A, and we perform a sequence of
row operations on A to form a matrix B. Can you guarantee that the columns of
B form a basis for �m?

d. Suppose you have a set of 10 vectors in �10 and that every vector in �10 can be
written as a linear combination of these vectors. Can you guarantee that this set
of vectors is a basis for �10?

8. Crystallographers find it convenient to use coordinate systems that are adapted to
the specific geometry of a crystal. As a two-dimensional example, consider a layer
of graphite in which carbon atoms are arranged in regular hexagons to form the crys-
talline structure shown in Figure 3.2.14.
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v1

v2

0

C

1

Figure 3.2.14 A layer of carbon atoms in a graphite crystal.

The origin of the coordinate system is at the carbon atom labeled by “0”. It is convenient
to choose the basis B defined by the vectors v1 and v2 and the coordinate system it
defines.

a. Locate the points x for which

i. {x}B �

[
1
0

]
,

ii. {x}B �

[
0
1

]
,

iii. {x}B �

[
2
1

]
.

b. Find the coordinates {x}B for all the carbon atoms in the hexagon whose lower
left vertex is labeled “0”.

c. What are the coordinates {x}B of the center of that hexagon, which is labeled
“C”?

d. How do the coordinates of the atoms in the hexagon whose lower left corner is
labeled “1” compare to the coordinates in the hexagon whose lower left corner is
labeled ”0”?

e. Does the point x whose coordinates are {x}B �

[
16
4

]
correspond to a carbon

atom or the center of a hexagon?
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9. Suppose that A �

[
2 1
1 2

]
and

v1 �

[
1
1

]
, v2 �

[
1

−1

]
.

a. Explain why B � {v1 , v2} is a basis for �2.

b. Find Av1 and Av2.

c. Use what you found in the previous part of this problem to find {Av1}B and
{Av2}B .

d. If {x}B �

[
1

−5

]
, find {Ax}B .

e. Find a matrix D such that {Ax}B � D {x}B .

You should find that the matrix D is a very simple matrix, which means that this basis
B is well suited to study the effect ofmultiplication by A. This observation is the central
idea of the next chapter.
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3.3 Image compression

Digital images, such as the photographs taken on your phone, are displayed as a rectangular
array of pixels. For example, the photograph in Figure 3.3.1 is 1440 pixels wide and 1468
pixels high. If we were to zoom in on the photograph, we would be able to see individual
pixels, such as those shown on the right.

Figure 3.3.1An image stored as a 1440×1468 array of pixels alongwith a close-up of a smaller
8 × 8 array.

A lot of data is required to display this image. A quantity of digital data is frequently mea-
sured in bytes, where one byte is the amount of storage needed to record an integer between
0 and 255. As we will see shortly, each pixel requires three bytes to record that pixel’s color.
This means the amount of data required to display this image is 3×1440×1468 � 6, 341, 760
bytes or about 6.3 megabytes.

Of course, we would like to store this image on a phone or computer and perhaps transmit
it through our data plan to share it with others. If possible, we would like to find a way to
represent this image using a smaller amount of data so that we don’t run out of memory on
our phone and quickly exhaust our data plan.

As we will see in this section, the JPEG compression algorithm provides a means for doing
just that. This image, when stored in the JPEG format, requires only 467,359 bytes of data,
which is about 7% of the 6.3 megabytes required to display the image. That is, when we
display this image, we are reconstructing it from only 7% of the original data. This isn’t too
surprising since there is quite a bit of redundancy in the image; the left half of the image
is almost uniformly blue. The JPEG algorithm detects this redundancy by representing the
data using bases that are well-suited to the task.

Preview Activity 3.3.1. Since we will be using various bases and the coordinate sys-
tems they define, let’s review how to translate between coordinate systems.

a. Suppose that we have a basis B � {v1 , v2 , . . . , vm} for �m . Explain what we
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mean by the representation {x}B of a vector x in the coordinate system defined
by B.

b. If we are given the representation {x}B , how can we recover the vector x?

c. If we are given the vector x, how can we find {x}B?

d. Suppose that

B �

{[
1
3

]
,

[
1
1

]}
is a basis for �2. If {x}B �

[
1

−2

]
, find the vector x.

e. If x �

[
2

−4

]
, find {x}B .

3.3.1 Color models

A color is represented digitally by a vector in �3. There are different ways in which we can
represent colors, however, depending onwhether a computer or a humanwill be processing
the color. Wewill describe two of these representations, called color models, and demonstrate
how they are used in the JPEG compression algorithm.

Digital displays typically create colors by blending together various amounts of red, green,
and blue. We can therefore describe a color by putting its constituent amounts of red, green,

and blue into a vector


R
G
B

 . The quantities R, G, and B are each stored with one byte of

information so they are integers between 0 and 255. This is called the RGB color model.

We define a basis B � {v1 , v2 , v3} where

v1 �


1
1
1

 , v2 �


0

−0.34413
1.77200

 , v3 �


1.40200
−0.71414

0


to define a new coordinate system with coordinates we denote Y, Cb , and Cr :


R
G
B


B

�


Y

Cb

Cr

 .
The coordinate Y is called luminance while Cb and Cr are called blue and red chrominance,
respectively. In this coordinate system, luminance will vary from 0 to 255, while the chromi-
nances vary between -127.5 and 127.5. This is known as the YCbCr color model. (To be com-
pletely accurate, we should add 127.5 to the chrominance values so that they lie between 0
and 255, but we won’t worry about that here.)
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Activity 3.3.2. This activity investigates these two color models, which we view as
coordinate systems for describing colors.

a. First, we will explore the RGB color model.

There is an interactive diagram, available at the top of the page gvsu.edu/s/0Jc,
that accompanies this activity.

Figure 3.3.2 The RGB color model.

1. What happens when G � 0, B � 0 (pushed all the way to the left), and R is
allowed to vary?

2. What happens when R � 0, G � 0, and B is allowed to vary?
3. How can you create black in this color model?
4. How can you create white?

b. Next, we will explore the YCbCr color model.

There is an interactive diagram, available in the middle of the page gvsu.edu/s/

0Jc, that accompanies this activity.

Figure 3.3.3 The YCbCr color model.

1. What happenswhen Cb � 0 and Cr � 0 (kept in the center) and Y is allowed
to vary?

2. What happens when Y � 0 (pushed to the left), Cr � 0 (kept in the center),
and Cb is allowed to increase between 0 and 127.5?

3. What happens when Y � 0, Cb � 0, and Cr is allowed to increase between
0 and 127.5?

4. How can you create black in this color model?
5. How can you create white?

c. Verify that B is a basis for �3.

d. Find the matrix PB that converts from


Y
Cb

Cr

 coordinates into


R
G
B

 coordi-

nates. Then find the matrix P−1
B that converts from


R
G
B

 coordinates back into

http://gvsu.edu/s/0Jc
http://gvsu.edu/s/0Jc
http://gvsu.edu/s/0Jc
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
Y

Cb

Cr

 coordinates.

e. Find the


Y
Cb

Cr

 coordinates for the following colors and check, using the dia-

grams above, that the two representations agree.

1. Pure red is


R
G
B

 �


255
0
0

 .
2. Pure blue is


R
G
B

 �


0
0

255

 .
3. Pure white is


R
G
B

 �


255
255
255

 .
4. Pure black is


R
G
B

 �


0
0
0

 .
f. Find the


R
G
B

 coordinates for the following colors and check, using the dia-

grams above, that the two representations agree.

1.


Y
Cb

Cr

 �


128
0
0

 .
2.


Y

Cb

Cr

 �


128
60
0

 .
3.


Y

Cb

Cr

 �


128
0

60

 .
g. Write an expression for

1. The luminance Y as it depends on R, G, and B.
2. The blue chrominance Cb as it depends on R, G, and B.
3. The red chrominance Cr as it depends on R, G, and B.

Explain how these quantities can be roughly interpreted by stating that
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1. the luminance represents the brightness of the color.
2. the blue chrominance measures the amount of blue in the color.
3. the red chrominance measures the amount of red in the color.

These two colormodels provide uswith twoways to represent colors, each ofwhich is useful
in a certain context. Digital displays, such as those in phones and computer monitors, create
colors by combining various amounts of red, green, and blue. The RGB model is therefore
most relevant in digital applications.

By contrast, the YCbCr color model was created based on research into human vision and
aims to concentrate themost visually important data into a single coordinate, the luminance,
to which our eyes are most sensitive. Of course, any basis of �3 must have three vectors so
we need twomore coordinates, blue and red chrominance, if we want to represent all colors.

To see this explicitly, shown in Figure 3.3.4 is the original image and the image as rendered
with only the luminance. That is, on the right, the color of each pixel is represented by
only one byte, which is the luminance. This image essentially looks like a grayscale version
of the original image with all its visual detail. In fact, before digital television became the
standard, television signals were broadcast using the YCbCr color model. When a signal
was displayed on a black-and-white television, the luminance was displayed and the two
chrominance values simply ignored.

Figure 3.3.4 The original image rendered with only the luminance values.

For comparison, shown in Figure 3.3.5 are the corresponding images created using only
the blue chrominance and the red chrominance. Notice that the amount of visual detail is
considerably less in these images.
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Figure 3.3.5 The original image rendered, on the left, with only blue chrominance and, on
the right, with only red chrominance.

The aim of the JPEG compression algorithm is to represent an image using the smallest
amount of data possible. By converting from the RGB colormodel to the YCbCr colormodel,
we are concentrating the most visually important data into the luminance values. This is
helpful because we can safely ignore some of the data in the chrominance values since that
data is not as visually important.

3.3.2 The JPEG compression algorithm

The key to representing the image using a smaller amount of data is to detect redundancies
in the data. To begin, we first break the image, which is composed of 1440×1468 pixels, into
small 8×8 blocks of pixels. For example, wewill consider the 8×8 block of pixels outlined in
green in the original image, shown on the left of Figure 3.3.6. The image on the right zooms
in on the block.
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Figure 3.3.6 An 8 × 8 block of pixels outlined in green in the original image on the left. We
see the same block on a smaller scale on the right.

Notice that this block, as seen in the original image, is very small. If we were to change some
of the colors in this block slightly, our eyes would probably not notice.

Here we see a close-up of the block.
The important point here is that the col-
ors do not change too much over this
block. In fact, we expect this to be true
for most of the blocks. There will, of
course, be some blocks that contain dra-
matic changes, such as where the sky and
rock intersect, but they will be the excep-
tion.

Figure 3.3.7 The 8 × 8 block under consideration.

Following our earlier work, we will change the representation of colors from the RGB color
model to the YCbCr model. This separates the colors into luminance and chrominance val-
ues that we will consider separately. In Figure 3.3.8, we see the luminance values of this
block. Again, notice how these values do not vary significantly over the block.
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176

181

165

139

131

131

140

150

170

179

170

150

137

132

142

152

170

175

169

164

157

153

157

160

169

167

161

166

165

161

166

168

162

162

162

159

163

167

166

172

160

160

161

160

163

167

166

170

155

154

160

162

164

167

167

168

150

149

158

163

164

169

169

168

Figure 3.3.8 The luminance values in this block.

Our strategy in the compression algorithm is to perform a change of basis to take advantage
of the fact that the luminance values do not change significantly over the block. Rather than
recording the luminance of each of the pixels, this change of basis will allow us to record
the average luminance along with some information about how the individual colors vary
from the average.

Let’s look at the first column of luminance values, which is a vector in �8:

x �



176
181
165
...

150


.

We will perform a change of basis and describe this vector by the average of the luminance
values and information about variations from the average.

The JPEG compression algorithm uses the Discrete Fourier Transform, which is defined using
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the basis B whose basis vectors are

v0 �



cos
(
(2·0+1)·0π

16

)
cos

(
(2·1+1)·0π

16

)
cos

(
(2·2+1)·0π

16

)
...

cos
(
(2·7+1)·0π

16

)


,v1 �



cos
(
(2·0+1)·1π

16

)
cos

(
(2·1+1)·1π

16

)
cos

(
(2·2+1)·1π

16

)
...

cos
(
(2·7+1)·1π

16

)


,

. . . , v6 �



cos
(
(2·0+1)·6π

16

)
cos

(
(2·1+1)·6π

16

)
cos

(
(2·2+1)·6π

16

)
...

cos
(
(2·7+1)·6π

16

)


,v7 �



cos
(
(2·0+1)·7π

16

)
cos

(
(2·1+1)·7π

16

)
cos

(
(2·2+1)·7π

16

)
...

cos
(
(2·7+1)·7π

16

)


.

On first glance, this probably looks intimidating, but we can make sense of it by looking at
these vectors graphically. Shown in Figure 3.3.9 are four of these basis vectors. Notice that
v0 is constantly 1, v1 varies relatively slowly, v2 varies a little more rapidly, and v7 varies
quite rapidly. The main thing to notice is that: the basis vectors vary at different rates with
the first vectors varying relatively slowly and the later vectors varying more rapidly.
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1 2 3 4 5 6 7

-1

1

v0

1 2 3 4 5 6 7

-1

1

v1

1 2 3 4 5 6 7

-1

1

v2

1 2 3 4 5 6 7

-1

1

v7

Figure 3.3.9 Four of the basis vectors v0, v1, v2, and v7.

These vectors form the basis B for�8. Re-
member that x is the vector of luminance
values in the first column as seen on the
right. We will write x in the new coordi-
nates

{x}B �



F0
F1
F2
...

F7


.

The coordinates F j are called the Fourier
coefficients of the vector x. 1 2 3 4 5 6 7

50

100

150

200

x

Activity 3.3.3. We will explore the influence that the Fourier coefficients have on the
vector x.

a. To begin, we’ll look at the Fourier coefficient F0.
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There is an interactive diagram that accompanies this part of the activity and
that is available at the top of gvsu.edu/s/0Jd.

Figure 3.3.10 The effect of the Fourier coefficient F0 on the vector x � F0v0.

Describe the effect that F0 has on the vector x. Would you describe the compo-
nents in x as constant, slowly varying, or rapidly varying?

b. By comparison, let’s see how the Fourier coefficient F3 influences x.

There is an interactive diagram that accompanies this part of the activity and
that is available in the middle of gvsu.edu/s/0Jd.

Figure 3.3.11 The effect of the Fourier coefficient F3 on the vector x � F3v3.

Describe the effect that F3 has on the vector x. Would you describe the compo-
nents in x as constant, slowly varying, or rapidly varying?

c. Let’s now investigate how the Fourier coefficient F7 influences the vector x.

http://gvsu.edu/s/0Jd
http://gvsu.edu/s/0Jd
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There is an interactive diagram that accompanies this part of the activity and
that is available at the bottom of gvsu.edu/s/0Jd.

Figure 3.3.12 The effect of the Fourier coefficient F0 on the vector x � F7v7.

Describe the effect that F7 has on the vector x. Would you describe the compo-
nents in x as constant, slowly varying, or rapidly varying?

d. If the components of x vary relatively slowly, what would you expect to be true
of the Fourier coefficients F j?

e. The Sage cell below will construct the vector PB , which is denoted P, and its
inverse P−1

B , which is denoted Pinv. Evaluate this Sage cell and notice that it
prints the matrix P−1

B .

mat = [[cos ((2*i+1)*j*pi/16) for j in range (8)] for i in
range (8)]

P = matrix(mat).numerical_approx ()
Pinv = P.inverse ()
print (Pinv.numerical_approx(digits =3))

Now look at the form of P−1
B and explain why F0 is the average of the luminance

values in the vector x.

f. The Sage cell below defines the vector x, which is the vector of luminance values
in the first column, as seen in Figure 3.3.8. Use the cell below to find the vector
f of Fourier coefficients F0 , F1 , . . . , F7. If you have evaluated the cell above, you
will still be able to refer to P and Pinv in this cell.

x = vector ([176 ,181 ,165 ,139 ,131 ,131 ,140 ,150])
# find the vector of Fourier coefficients f below
f =
print (f.numerical_approx(digits =4))

Write the Fourier coefficients and discuss the relative sizes of the coefficients.

g. Let’s see what happens when we simply ignore the coefficients F6 and F7. Form
a new vector of Fourier coefficients by rounding the coefficients to the nearest
integer and setting F6 and F7 to zero. This is an approximation to f, the vector

http://gvsu.edu/s/0Jd
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of Fourier coefficients. Use the approximation to f to form an approximation of
the vector x.

# define fapprox below and then find xapprox
fapprox =
xapprox =
print (”x␣␣␣␣␣␣=”, x)
print (”xapprox=”, xapprox.numerical_approx(digits =3))

How much does your approximation differ from the actual vector x?

h. When we ignore the Fourier coefficients corresponding to rapidly varying basis
elements, we see that the vector x that we reconstruct is very close to the original
one. In fact, the luminance values in the approximation differ by at most one or
two from the actual luminance values. Our eyes are not sensitive enough to
detect this difference.
So far, we have concentrated on only one column in our 8×8 block of luminance
values. Let’s now consider all of the columns. The following Sage cell defines
a matrix called luminance, which is the 8 × 8 matrix of luminance values. Find
the 8 × 8 matrix F whose columns are the Fourier coefficients of the columns of
luminance values.

luminance = matrix(8,8, [176, 170, 170, 169, 162, 160, 155,
150, 181,

179, 175, 167, 162, 160, 154, 149, 165, 170, 169, 161, 162,
161, 160,

158, 139, 150, 164, 166, 159, 160, 162, 163, 131, 137, 157,
165, 163,

163, 164, 164, 131, 132, 153, 161, 167, 167, 167, 169, 140,
142, 157,

166, 166, 166, 167, 169, 150, 152, 160, 168, 172, 170, 168,
168])

# define your matrix F below
F =
print (F.numerical_approx(digits =3))

i. Notice that the first row of this matrix consists of the Fourier coefficient F0 for
each of the columns. Just as we saw before, the entries in this row do not change
significantly as we move across the row. In the Sage cell below, write these en-
tries in the vector y and find the corresponding Fourier coefficients.

# define the vector y as the entries in the first row of F
y =
y_fourier =
print (y_fourier.numerical_approx(digits =3))

Up to this point, we have been working with the luminance values in one 8 × 8 block of our
image. We formed the Fourier coefficients for each of the columns of this block. Once we
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notice that the Fourier coefficients across a row are relatively constant, it seems reasonable to
find the Fourier coefficients of the rows of the matrix of Fourier coefficients. Doing so leads
to the matrix 

160.6 −4.0 −4.8 −1.7 0.0 0.9 0.8 0.3
2.7 14.7 3.8 1.1 −1.6 −0.3 −0.3 −0.4
3.8 7.0 2.1 2.9 0.8 −0.2 −0.3 −0.3

−2.4 −3.9 −1.9 0.1 1.2 1.2 0.7 0.1
−0.6 −1.4 −1.5 −0.9 0.2 0.6 −0.2 −0.5
−0.7 −1.6 0.0 −1.1 0.0 0.3 −0.1 −0.2
−0.0 −1.4 0.4 0.9 0.1 −0.5 0.0 0.5

0.0 0.2 0.3 0.3 0.0 −0.0 −0.2 0.0


.

If we were to look inside a JPEG image file, we would see lots of matrices like this. For
each 8 × 8 block, there would be three matrices of Fourier coefficients of the rows of Fourier
coefficients, one matrix for each of the luminance, blue chrominance, and red chrominance
values. However, we store these Fourier coefficients as integers inside the JPEG file so we
need to round off the coefficients to the nearest integer, as shown here:

161 −4 −5 −2 0 1 1 0
3 15 4 1 −2 0 0 0
4 7 2 3 1 0 0 0

−2 −4 −2 0 1 1 1 0
−1 −1 −1 −1 0 1 0 0
−1 −2 0 −1 0 0 0 0

0 −1 0 1 0 −1 0 1
0 0 0 0 0 0 0 0


.

There are many zeroes in this matrix, and we can save space in a JPEG image file by only
recording the nonzero Fourier coefficients.

In fact, when a JPEG file is created, there is a “quality” parameter that can be set, such as
that shown in Figure 3.3.13. When the quality parameter is high, we will store many of the
Fourier coefficients; when it is low, we will ignore more of them.
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Figure 3.3.13 When creating a JPEG file, we choose a value of the “quality” parameter.

To see how this works, suppose the quality setting is relatively high. After rounding off the
Fourier coefficients, we will set all of the coefficients whose absolute value is less than 2 to
zero, which creates the matrix:

161 −4 −5 0 0 0 0 0
3 15 4 0 0 0 0 0
4 7 2 3 0 0 0 0

−2 −4 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

Notice that there are 12 nonzero Fourier coefficients, out of 64, that we need to record. Con-
sequently, we only save 12/64 ≈ 19% of the data.

If instead, the quality setting is relatively low, we set all of the Fourier coefficients whose
absolute value is less than 4 to zero, creating the matrix:

161 −4 −5 0 0 0 0 0
0 15 0 0 0 0 0 0
0 7 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


.

Notice that there are only 5 nonzero Fourier coefficients thatwe need to record now,meaning
we save only 5/64 ≈ 8% of the data. This will result in a smaller JPEG file describing the
image.

With a lower quality setting, we have thrown awaymore information about the Fourier coef-
ficients so the image will not be reconstructed as accurately. To see this, we can reconstruct
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the luminance values from the Fourier coefficients by converting back into the standard co-
ordinate system. Rather than showing the luminance values themselves, we will show the
difference in the original luminance values and the reconstructed luminance values. When
the quality setting was high and we stored 12 Fourier coefficients, we find this difference to
be 

−7 −7 −1 3 −2 −1 0 −1
4 4 4 −1 −3 0 −1 −3
1 3 0 −7 −3 1 3 3

−7 −3 3 1 −5 −2 1 2
0 −3 4 4 −1 −1 −1 −2
2 −5 3 1 1 −1 −1 1
1 −2 4 3 −4 −6 −2 3
0 −1 2 1 −1 −4 −1 5


.

When the quality setting is lower and we store only 5 Fourier coefficients, the difference is

3 −3 −2 0 0 7 10 10
14 11 6 −1 −1 3 4 4
7 10 5 −5 −3 −1 2 3

−10 −3 5 2 −8 −7 −3 −1
−12 −11 2 2 −5 −7 −6 −6
−11 −15 −2 −2 −2 −4 −5 −2
−3 −6 2 3 −2 −5 −4 −1

6 3 4 5 4 0 −1 0


.

This demonstrates the trade off. With a high quality setting, we require more storage to save
more of the data, but the reconstructed image is closer to the original. With the lower quality
setting, we require less storage, but the reconstructed image differs more from the original.

If we remember that the visual information stored by the blue and red chrominance values is
not as important as that contained in the luminance values, we feel safer in discarding more
of the Fourier coefficients for the chrominance values resulting in an even greater savings.

Shown in Figure 3.3.14 is the original image compared to a version stored with a very low
quality setting. If you look carefully, you can individual 8 × 8 blocks.
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Figure 3.3.14 The original image and the result of storing the image with a low quality set-
ting.

This discussion of the JPEG compression algorithm is meant to explore the ideas that un-
derlie its construction and demonstrate the importance of a choice of basis and its accompa-
nying coordinate system. There are a few details, most notably about the rounding of the
Fourier coefficients, that are not strictly accurate. The actual implementation is a little more
complicated, but the presentation here conveys the spirit of the algorithm.

The JPEG compression algorithm allows us to store image files using only a fraction of the
data. Similar ideas are used to efficiently store digital music and video files.

3.3.3 Summary

This section has explored how appropriate changes in bases help us reconstruct an image
using only a fraction of its data. This is known as image compression.

• There are several ways of representing colors, all of which use vectors in �3. We ex-
plored the RGB color model, which is appropriate in digital applications, and the
YCbCr model, in which the most important visual information is conveyed by the Y
component, known as luminance.

• We also explored a change of basis called theDiscrete Fourier Transform. In the coordi-
nate system that results, the first coefficient measures the average of the components
of a vector. Other coefficients measure variations in the components away from the
average.

• We put both of these ideas to use in demonstrating the JPEG compression algorithm.
An image is broken into 8×8 blocks, and the colors into luminance, blue chrominance,
and red chrominance. Applying the Discrete Fourier Transform allows us to recon-
struct a good approximation of the image using only a fraction of the original data.
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3.3.4 Exercises

1. Consider the vector x �



103
94
91
92

103
105
105
108


.

a. In the Sage cell below is a copy of the change of basis matrices that define the
Fourier transform. Find the Fourier coefficients of x.

mat = [[cos ((2*i+1)*j*pi/16) for j in range (8)] for i in
range (8)]

P = matrix(mat).numerical_approx ()
Pinv = P.inverse ()
print (Pinv.numerical_approx(digits =3))

b. Wewill now form the vector y, which is an approximation of x by rounding all the
Fourier coefficients of x to the nearest integer to obtain {y}C . Now find the vector
y and compare this approximation to x. What is the error in this approximation?

c. Repeat the last part of this problem, but set the rounded Fourier coefficients to
zero if they have an absolute value less than five. Use it to create a second approx-
imation of x. What is the error in this approximation?

d. Compare the number of nonzero Fourier coefficients that you have in the two
approximations and compare the accuracy of the approximations. Using a few
sentences, discuss the comparisons that you find.

2. There are several steps to the JPEG compression algorithm. The following questions
examine the motivation behind some of them.

a. What is the overall goal of the JPEG compression algorithm?

b. Why do we convert colors from the the RGB color model to the YCbCr model?

c. Why do we decompose the image into a collection of 8 × 8 arrays of pixels?

d. What role does the Discrete Fourier Transform play in the JPEG compression al-
gorithm?

e. Why is the information conveyed by the rapid-variation Fourier coefficients, gen-
erally speaking, less important than the slow-variation coefficients?

3. The Fourier transform that we used in this section is often called the Discrete Fourier
Cosine Transform because it is defined using a basis C consisting of cosine functions.
There is also a Fourier Sine Transform defined using a basis S consisting of sine func-
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tions. For instance, in �4, the basis vectors of S are

v1 �


sin

( 1·1π
8
)

sin
( 3·1π

8
)

sin
( 5·1π

8
)

sin
( 7·1π

8
)
 ,v2 �


sin

( 1·2π
8
)

sin
( 3·2π

8
)

sin
( 5·2π

8
)

sin
( 7·2π

8
)
 ,

v3 �


sin

( 1·3π
8
)

sin
( 3·3π

8
)

sin
( 5·3π

8
)

sin
( 7·3π

8
)
 ,v4 �


sin

( 1·4π
8
)

sin
( 3·4π

8
)

sin
( 5·4π

8
)

sin
( 7·4π

8
)
 .

We can think of these vectors graphically, as shown in Figure 3.3.15.

1 2 3 4

-1

1

v1

1 2 3 4

-1

1

v2

1 2 3 4

-1

1

v3

1 2 3 4

-1

1

v4

Figure 3.3.15 The vectors v1 , v2 , v3 , v4 that form the basis S.

a. The Sage cell below defines the matrix S whose columns are the vectors in the
basisS aswell as thematrix Cwhose columns form the basis C used in the Fourier
Cosine Transform.

sinmat = [[sin ((2*i+1)*j*pi/8) for j in range (1,5)] for i in
range (4)]

cosmat = [[cos ((2*i+1)*j*pi/8) for j in range (4)] for i in
range (4)]

S = matrix(sinmat).numerical_approx ()
C = matrix(cosmat).numerical_approx ()
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In the 8 × 8 block of luminance values we considered in this section, the first
column begins with the four entries 176, 181, 165, and 139, as seen in Figure 3.3.8.

These form the vector x �


176
181
165
139

 . Find both {x}S and {x}C .

b. Write a sentence or two comparing the values for the Fourier Sine coefficients
{x}S and the Fourier Cosine coefficients {x}C .

c. Suppose now that x �


100
100
100
100

 . Find the Fourier Sine coefficients {x}S and the

Fourier Cosine coefficients {x}C .

d. Write a few sentences explainingwhywe use the Fourier Cosine Transform in the
JPEG compression algorithm rather than the Fourier Sine Transform.

4. In Example 3.2.9, we looked at a basis for�4 that we called the Haar wavelet basis. The
basis vectors are

v1 �


1
1
1
1

 , v2 �


1
1

−1
−1

 , v3 �


1

−1
0
0

 , v4 �


0
0
1

−1

 ,
which may be understood graphically as in Figure 3.3.16. We will denote this basis by
W.
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1 2 3 4

-1

1
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1
v3

1 2 3 4

-1

1
v4

Figure 3.3.16 The Haar wavelet basis represented graphically.

The change of coordinates from a vector x in �4 to {x}W is called the Haar wavelet
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transform and we write

{x}W �


H1
H2
H3
H4

 .
The coefficients H1 ,H2 ,H3 ,H4 are called wavelet coefficients.

Let’s workwith the 4×4 block of luminance values in the upper left corner of our larger
8 × 8 block: 

176 170 170 169
181 179 175 167
165 170 169 161
139 150 164 166

 .
a. The following Sage cell defines the matrix W whose columns are the basis vectors

in W. If x is the first column of luminance values in the 4 × 4 block above, find
the wavelet coefficients {x}W .

W = matrix (4,4,[1,1,1,0,1,1,-1,0,1,-1,0,1,1,-1,0,-1])

b. Notice that H1 gives the average value of the components of x and H2 describes
how the averages of the first two and last two components differ from the overall
average. The coefficients H3 and H4 describe small-scale variations between the
first two components and last two components, respectively.
If we set the last wavelet coefficients H3 � 0 and H4 � 0, we obtain the wavelet co-
efficients {y}W for a vector y that approximates x. Find the vector y and compare
it to the original vector x.

c. What impact does the fact that H3 � 0 and H4 � 0 have on the form of the vector
y? Explain how setting these coefficients to zero ignores the behavior of x on a
small scale.

d. In the JPEG compression algorithm, we looked at the Fourier coefficients of all
the columns of luminance values and then performed a Fourier transform on the
rows. The Sage cell below will perform the same operation using the wavelet
transform; that is, it will first find the wavelet coefficients of each of the columns
and then perform the wavelet transform on the rows. You only need to evaluate
the cell to find the wavelet coefficients obtained in this way.

luminance = matrix (4,4,[176, 170, 170, 169, 181, 179, 175,
167, 165,

170, 169, 161, 139, 150, 164, 166])
Winv = W.inverse ()
wavelet_transform =

(Winv*(Winv*luminance).transpose ()).transpose ()
print (wavelet_transform.numerical_approx(digits =3))
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e. Now set all the wavelet coefficients equal to zero except those in the upper left
2 × 2 block and use them to define the matrix coeffs in the Sage cell below. This
has the effect of ignoring all of the small-scale differences. Evaluating this cell
will recover the approximate luminance values.

# define the matrix of coefficients below
coeffs =
# this code will undo the wavelet transform
approx_luminance = W*((W*( coeffs.transpose ())).transpose ())
print (approx_luminance.numerical_approx(digits =3))

f. Explain how the wavelet transform and this approximation can be used to create
a lower resolution version of the image.

This kind of wavelet transform is the basis of the JPEG 2000 compression algorithm,
which is an alternative to the usual JPEG algorithm.

5. In this section, we looked at the RGB and YCbCr color models. In this exercise, we will
look at the HSV color model where H is the hue, S is the saturation, and V is the value
of the color. All three quantities vary between 0 and 255.

There is an interactive diagram, available at the bottom of the page gvsu.edu/s/0Jc, that
accompanies this exercise.

Figure 3.3.17 The HSV color model.

a. If you leave S and V at some fixed values, what happens when you change the
value of H?

b. Increase the value V to 255, which is on the far right. Describe what happens
when you vary the saturation S using a fixed hue H and value V .

c. Describe what happens when H and S are fixed and V varies.

d. How can you create white in this color model?

e. How can you create black in this color model?

f. Find an approximate range of hues that correspond to blue.

g. Find an approximate range of hues that correspond to green.

The YCbCr color model concentrates the most important visual information in the lu-
minance coordinate, which roughly measures the brightness of the color. The other
two coordinates describe the hue of the color. By contrast, the HSV color model con-
centrates all the information about the hue in the H coordinate.

http://gvsu.edu/s/0Jc
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This is useful in computer vision applications. For instance, if we want a robot to detect
a blue ball in its field of vision, we can specify a range of hue values to search for. If the
lighting changes in the room, the saturation and value may change, but the hue will
not. This increases the likelihood that the robot will still detect the blue ball across a
wide range of lighting conditions.
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3.4 Determinants

As invertibility plays a central role in this chapter, we need a criterion that tells us when a
matrix is invertible. We already know that a square matrix is invertible if and only if it is
row equivalent to the identity matrix. In this section, we will develop a second, numerical
criterion that tells us when a square matrix is invertible.

To begin, let’s consider a 2 × 2 matrix A whose columns are vectors v1 and v2. We have
frequently drawn the vectors and studied the linear combinations they form using a figure
such as Figure 3.4.1.

v1

v2

Figure 3.4.1 Linear combinations of two vectors v1 and v2 form a collection of congruent
parallelograms.

Notice how the linear combinations form a set of congruent parallelograms in the plane.
In this section, we will use the area of these parallelograms to define a numerical quantity
called the determinant that tells us whether the matrix A is invertible.

To recall, the area of parallelogram is found bymultiply-
ing the length of one side by the perpendicular distance
to its parallel side. Using the notation in the figure, the
area of the parallelogram is bh.

b

h

Preview Activity 3.4.1. We will explore the area formula in this preview activity.
a. Find the area of the following parallelograms.
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1.

1 2 3 4

1

2

3

4 2.

1 2 3 4

1

2

3

4 3.

1 2 3 4

1

2

3

4

4.

1 2 3 4

1

2

3

4 5.

1 2 3 4

1

2

3

4

b.
Explain why the area of the parallelo-
gram formed by the vectors v and w1 is
the same as that formed by v and w2.

v

w1 w2

3.4.1 Determinants of 2 × 2 matrices

We will begin by defining the determinant of a 2 × 2 matrix A �
[

v1 v2
]
. First, however,

we need to define the orientation of an ordered pair of vectors. As shown in Figure 3.4.2,
an ordered pair of vectors v1 and v2 is called positively oriented if the angle, measured in
the counterclockwise direction, from v1 to v2 is less than 180◦; we say the pair is negatively
oriented if it is more than 180◦.

v1

v2

v2

v1

Figure 3.4.2 The vectors on the left are positively oriented while the ones on the right are
negatively oriented.
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Definition 3.4.3 Suppose a 2 × 2 matrix A has columns v1 and v2. If the pair of vectors is
positively oriented, then the determinant of A, denoteddet(A), is the area of the parallelogram
formed by v1 and v2. If the pair is negatively oriented, then det(A) is minus the area of the
parallelogram.

Example 3.4.4 Consider the determinant of the identity matrix

I �
[

1 0
0 1

]
�
[

e1 e2
]
.

As seen on the left of Figure 3.4.5, the vectors v1 � e1 and v2 � e2 form a positively oriented
pair. Since the parallelogram they form is a 1 × 1 square, we have det(I) � 1.

-2 2

-2

2

v1

v2

-2 2

-2

2

v1

v2

Figure 3.4.5 The determinant det(I) � 1, as seen on the left. On the right, we see that det(A) �
−2 where A is the matrix whose columns are shown.

Now consider the matrix
A �

[
−2 0

0 1

]
�
[

v1 v2
]
.

As seen on the right of Figure 3.4.5, the vectors v1 and v2 form a negatively oriented pair.
The parallelogram they define is a 2 × 1 rectangle so we have det(A) � −2.

Activity 3.4.2. In this activity, we will find the determinant of some simple 2 × 2
matrices and discover some important properties of determinants.
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There is an interactive diagram at gvsu.edu/s/0J9 that accompanies this activity.

Figure 3.4.6 The geometric meaning of the determinant of a matrix.

a. Use the diagram to find the determinant of the matrix
[
− 1

2 0
0 2

]
. Along with

Example 3.4.4, what does this lead you to believe is generally true about the
determinant of a diagonal matrix?

b. Use the diagram to find the determinant of the matrix
[

0 1
1 0

]
. What is the

geometric effect of the matrix transformation defined by this matrix?

c. Use the diagram to find the determinant of thematrix
[

2 1
0 1

]
. More generally,

what do you notice about the determinant of any matrix of the form
[

2 k
0 1

]
?

What does this say about the determinant of an upper triangular matrix?

d. Use the diagram to find the determinant of any matrix of the form
[

2 0
k 1

]
.

What does this say about the determinant of a lower triangular matrix?

e. Use the diagram to find the determinant of the matrix
[

1 −1
−2 2

]
. In general,

what is the determinant of a matrix whose columns are linearly dependent?

http://gvsu.edu/s/0J9
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f. Consider the matrices

A �

[
2 1
2 −1

]
, B �

[
1 0
0 2

]
.

Use the diagram to find the determinants of A, B, and AB. What does this
suggest is generally true about the relationship of det(AB) to det(A) and det(B)?

Later in this section, we will learn an algebraic technique for computing determinants. In
the meantime, we will simply note that we can define determinants for n × n matrices by
measuring the volume of a box defined by the columns of the matrix, even if this box resides
in �n for some very large n.

For example, the columns of a 3 × 3 matrix A will form
a parallelpiped, like the one shown here, and there is a
means by which we can classify sets of such vectors as
either positively or negatively oriented. Therefore, we
can define the determinant det(A) in terms of the vol-
ume of the parallelpiped, but we will not worry about
the details here.

v1

v2

v3

Though the previous activity deals with determinants of 2 × 2 matrices, it illustrates some
important properties of determinants that are true more generally.

• If A is a triangularmatrix, then det(A) equals the product of the entries on the diagonal.
For example,

det
[

2 2
0 3

]
� 2 · 3 � 6,

since the two parallelograms in Figure 3.4.7 have equal area.

1 2 3 4

1

2

3

4

1 2 3 4

1

2

3

4

Figure 3.4.7 The determinant of a triangular matrix equals the product of its diagonal
entries.
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• We also saw that
det

[
0 1
1 0

]
� −1

because the columns form a negatively oriented pair. You may remember from Sub-
section 3.1.3 that a matrix such as this is obtained by interchanging two rows of the
identity matrix.

• The determinant satisfies a multiplicative property, which says that

det(AB) � det(A)det(B).

Rather than simply thinking of the determinant as the area of a parallelogram, wemay
also think of it as a factor by which areas are scaled under the matrix transformation
defined by thematrix. Applying thematrix transformation defined by B will scale area
by det(B). If we then compose B with thematrix transformation defined by A, areawill
scale a second time by the factor det(A). The net effect is that thematrix transformation
defined by AB scales area by det(A)det(B) so that det(AB) � det(A)det(B).

Proposition 3.4.8 The determinant satisfies these properties:
• The determinant of a triangular matrix equals the product of its diagonal entries.

• If P is obtained by interchanging two rows of the identity matrix, then det(P) � −1.

• det(AB) � det(A)det(B).

3.4.2 Determinants and invertibility

Perhaps the most important property of determinants also appeared in the previous activity.
We saw that when the columns of the matrix A are linearly dependent, the parallelogram

formed by those vectors folds down onto a line. For instance, if A �

[
1 2
−1 −2

]
, then the

resulting parallelogram, as shown in Figure 3.4.9, has zero area, which means that det(A) �
0.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 3.4.9 When the columns of A are linearly dependent, we find that det(A) � 0.
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The condition that the columns of A are linearly dependent is precisely the same as the
condition that A is not invertible. This leads us to believe that A is not invertible if and only
if its determinant is zero. The following proposition expresses this thought.

Proposition 3.4.10 The matrix A is invertible if and only if det(A) , 0.

To understand this proposition more fully, let’s remember that the matrix A is invertible if
and only if it is row equivalent to the identity matrix I. We will therefore consider how the
determinant changes when we perform row operations on a matrix. Along the way, we will
discover an effective means to compute the determinant.

In Subsection 3.1.3, we saw how to describe the three row operations, scaling, interchange,
and replacement, using matrix multiplication. If we perform a row operation on the matrix
A to obtain the matrix A′, we would like to relate det(A) and det(A′). To do so, remember
that

• Scalings are performed by multiplying a matrix A by a diagonal matrix, such as

S �


1 0 0
0 3 0
0 0 1

 ,
which has the effect of multiplying the second row of A by 3 to obtain A′. Since S is
diagonal, we know that its determinant is the product of its diagonal entries so that
det(S) � 3. This means that A′ � SA and therefore

det(A′) � det(S)det(A) � 3 det(A).

In general, if we scale a row of A by k, we have det(A′) � k det(A).

• Interchanges are performed by matrices such as

P �


0 1 0
1 0 0
0 0 1

 ,
which has the effect of interchanging the first and second rows of A. As we saw in
Proposition 3.4.8, det(P) � −1. Therefore, when PA � A′, we have

det(A′) � det(P)det(A) � −det(A).

In other words, det(A′) � −det(A) when we perform an interchange.

• Row replacement operations are performed by matrices such as

R �


1 0 0
0 1 0

−2 0 1

 ,
which multiplies the first row by −2 and adds the result to the third row. Since this
is a lower triangular matrix, we know that the determinant is the product of the di-
agonal entries, which says that det(R) � 1. This means that when RA � A′, we have
det(A′) � det(R)det(A) � det(A). In other words, a row replacement does not change
the determinant.
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Proposition 3.4.11 The effect of row operations on the determinant.
• If A′ is obtained from A by scaling a row by k, then det(A′) � k det(A).

• If A′ is obtained from A by interchanging two rows, then det(A′) � −det(A).

• If A′ is obtained from A by performing a row replacement operation, then det(A′) � det(A).

Activity 3.4.3. Wewill investigate the connection between the determinant of amatrix
and its invertibility using Gaussian elimination.

a. Consider the two upper triangular matrices

U1 �


1 −1 2
0 2 4
0 0 −2

 , U2 �


1 −1 2
0 2 4
0 0 0

 .
Remembering Proposition 3.1.9, which of thematrices U1 and U2 are invertible?
What are the determinants det(U1) and det(U2)?

b. Explain why an upper triangular matrix is invertible if and only if its determi-
nant is not zero.

c. Let’s now consider the matrix

A �


1 −1 2

−2 2 −6
3 −1 10


and begin the Gaussian elimination process with a row replacement operation

A �


1 −1 2

−2 2 −6
3 −1 10

 ∼


1 −1 2
0 0 −2
3 −1 10

 � A1.

What is the relationship between det(A) and det(A1)?

d. Next we perform another row replacement operation:

A1 �


1 −1 2
0 0 −2
3 −1 10

 ∼


1 −1 2
0 0 −2
0 2 4

 � A2.

What is the relationship between det(A) and det(A2)?

e. Finally, we perform an interchange:

A2 �


1 −1 2
0 0 −2
0 2 4

 ∼


1 −1 2
0 2 4
0 0 −2

 � U

to arrive at an upper triangular matrix U. What is the relationship between
det(A) and det(U)?
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f. Since U is upper triangular, we can compute its determinant, which allows us
to find det(A). What is det(A)? Is A invertible?

g. Now consider the matrix

A �


1 −1 3
0 2 −2
2 1 3

 .
Perform a sequence of row operations to find an upper triangular matrix U that
is row equivalent to A. Use this to determine det(A) andwhether A is invertible.

h. Suppose we apply a sequence of row operations on a matrix A to obtain A′.
Explain why det(A) , 0 if and only if det(A′) , 0.

i. Explain why an n × n matrix A is invertible if and only if det(A) , 0.

As seen in this activity, row operations can be used to compute the determinant of a matrix.
More specifically, applying the forward substitution phase of Gaussian elimination to the
matrix A leads us to an upper triangular matrix U so that A ∼ U.

We know that U is invertible when all of its diagonal entries are nonzero. We also know that
det(U) , 0 under the same condition. This tells us U is invertible if and only if det(U) , 0.

Now if det(A) , 0, we also have det(U) , 0 since applying a sequence of row operations to
A only multiplies the determinant by a nonzero number. It then follows that U is invertible
so U ∼ I. Therefore, we also know that A ∼ I and so A must also be invertible.

This explains Proposition 3.4.10 and so we know that A is invertible if and only if det(A) , 0.

Finally, notice that if A is invertible, we have A−1A � I, which tells us that

det(A−1A) � det(A−1)det(A) � 1.

Therefore, det(A−1) � 1/det(A).

Proposition 3.4.12 If A is an invertible matrix, then det(A−1) � 1/det(A).

3.4.3 Cofactor expansions

We now have a technique for computing the determinant of a matrix using row operations.
There is anotherway to compute determinants, usingwhat are called cofactor expansions, that
will be important for us in the next chapter. We will describe this method here.

To begin, the determinant of a 2 × 2 matrix is

det
[

a b
c d

]
� ad − bc.

With a little bit of work, it can be shown that this number is the same as the signed area of
the parallelogram we introduced earlier.
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Using a cofactor expansion to find the determinant of a more general n × n matrix is a little
more work so we will demonstrate it with an example.

Example 3.4.13 We illustrate how to use a cofactor expansion to find the determinant of A
where

A �


1 −1 2

−2 2 −6
3 −1 10

 .
To begin, we choose one row or column. It doesn’t matter which we choose because the
result will be the same in any case. Here, we choose the second row

1 −1 2
−2 2 −6

3 −1 10

 .
The determinant will be found by creating a sum of terms, one for each entry in the row we
have chosen. For each entry in the row, we form its term by multiplying

• (−1)i+ j where i and j are the row and column numbers, respectively, of the entry,

• the entry itself, and

• the determinant of the entries left over when we have crossed out the row and column
containing the entry.

Since we are computing the determinant of this matrix
1 −1 2

−2 2 −6
3 −1 10


using the second row, the entry in the first column of this row is −2. Let’s see how to form
the term from this entry.

The term itself is −2, and the matrix that is left over when we cross out the second row and
first column is 

1 −1 2
−2 2 −6

3 −1 10


whose determinant is

det
[
−1 2
−1 10

]
� −1(10) − 2(−1) � −8.

Since this entry is in the second rowandfirst column, the termwe construct is (−1)2+1(−2)(−8) �
−16.
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Putting this together, we find the determinant to be
1 −1 2

−2 2 −6
3 −1 10

 � (−1)2+1(−2)det
[
−1 2
−1 10

]
+ (−1)2+2(2)det

[
1 2
3 10

]
+ (−1)2+3(−6)det

[
−1 −1

3 −1

]
� (−1)(−2)(−1(10) − 2(−1))

+ (1)(2)(1(10) − 2(3))
+ (−1)(−6)((−1)(−1) − (−1)3)

� − 16 + 8 + 12
� 4

.

Notice that this agrees with the determinant that we found for this matrix using row opera-
tions in the last activity.

Activity 3.4.4. We will explore cofactor expansions through some examples.
a. Using a cofactor expansion, show that the determinant of the following matrix

det


2 0 −1
3 1 2

−2 4 −3

 � −36.

Remember that you can choose any row or column to create the expansion, but
the choice of a particular row or column may simplify the computation.

b. Use a cofactor expansion to find the determinant of
−3 0 0 0

4 1 0 0
−1 4 −4 0

0 3 2 3

 .
Explain how the cofactor expansion technique shows that the determinant of a
triangular matrix is equal to the product of its diagonal entries.

c. Use a cofactor expansion to determine whether the following vectors form a
basis of �3: 

2
−1
−2

 ,


1
−1

2

 ,


1
0

−4

 .
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d. Sage will compute the determinant of a matrix A with the command A.det().
Use Sage to find the determinant of the matrix

2 1 −2 −3
3 0 −1 −2

−3 4 1 2
1 3 3 −1

 .

3.4.4 Summary

In this section, we associated a numerical quantity, the determinant, to a square matrix and
showed how it tells us whether the matrix is invertible.

• The determinant of a matrix has a geometric interpretation. In particular, when n � 2,
the determinant is the signed area of the parallelogram formed by the two columns of
the matrix.

• The determinant satisfies many properties. For instance, det(AB) � det(A)det(B) and
the determinant of a triangular matrix is equal to the product of its diagonal entries.

• These properties helped us compute the determinant of amatrix using row operations.
This also led to the important observation that the determinant of a matrix is nonzero
if and only if the matrix is invertible.

• Finally, we learned how to compute the determinant of a matrix using cofactor expan-
sions, which will be a valuable tool for us in the next chapter.

We have seen three ways to compute the determinant: by interpreting the determinant as
a signed area or volume; by applying appropriate row operations; and by using a cofactor
expansion. It’s worth spending a moment to think about the relative merits of these ap-
proaches.

The geometric definition of the determinant tells us that the determinant is measuring a
natural geometric quantity, an insight that does not easily come through the other two ap-
proaches. The intuition we gain by thinking about the determinant geometrically makes it
seem reasonable that the determinant should be zero for matrices that are not invertible: if
the columns are linearly dependent, the vectors cannot create a positive volume.

Approaching the determinant through row operations provides an effective means of com-
puting the determinant. In fact, this is what most computer programs do behind the scenes
when they compute a determinant. This approach is also a useful theoretical tool for ex-
plaining why the determinant tells us whether a matrix is invertible.

The cofactor expansion method will be useful to us in the next chapter when we look at
eigenvalues and eigenvectors. It is not, however, a practical way to compute a determinant.
To see why, consider the fact that the determinant of a 2 × 2 matrix, written as ad − bc,
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requires us to compute two terms, ad and bc. To compute the determinant of a 3× 3 matrix,
we need to compute three 2 × 2 determinants, which involves 3 · 2 � 6 terms. For a 4 × 4
matrix, we need to compute four 3 × 3 determinants, which produces 4 · 3 · 2 � 24 terms.
Continuing in this way, we see that the cofactor expansion of a 10× 10 matrix would involve
10 · 9 · 8 . . . 3 · 2 � 10! � 3628800 terms.

By contrast, we have seen that the number of steps required to performGaussian elimination
on an n × n matrix is proportional to n3. When n � 10, we have n3 � 1000, which points to
the fact that finding the determinant usingGaussian elimination is considerably lesswork.

3.4.5 Exercises

1. Consider the matrices

A �


2 1 0

−4 −4 3
2 1 −3

 , B �


−2 3 0 0

0 4 2 0
4 −6 −1 2
0 4 2 −3

 .
a. Find the determinants of A and B using row operations.

b. Now find the determinants of A and B using cofactor expansions to verify your
results

2. This exercise concerns rotations and reflections in �2.
a. Suppose that A is the matrix that performs a counterclockwise rotation in �2.

Draw a typical picture of the vectors that form the columns of A and use the
geometric definition of the determinant to determine det(A).

b. Suppose that B is the matrix that performs a reflection in a line passing through
the origin. Draw a typical picture of the columns of B and use the geometric
definition of the determinant to determine det(B).

c. As we saw in Section 2.6, the matrices have the form

A �

[
cos θ − sin θ
sin θ cos θ

]
, B �

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]
.

Compute the determinants of A and B and verify that they agree with what you
found in the earlier parts of this exercise.

3. In the next chapter, we will say that matrices A and B are similar if there is a matrix P
such that A � PBP−1.

a. Suppose that A and B are matrices and that there is a matrix P such that A �

PBP−1. Explain why det(A) � det(B).
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b. Suppose that A is a 3 × 3 matrix and that there is a matrix P such that

A � P


2 0 0
0 −5 0
0 0 −3

 P−1.

Find det(A).
4. Consider the matrix

A �


−2 1 k

2 3 0
1 2 2


where k is a parameter.

a. Find an expression for det(A) in terms of the parameter k.

b. Use your expression for det(A) to determine the values of k for which the vectors
−2

2
1

 ,


1
3
2

 ,


k
0
2


are linearly independent.

5. Determine whether the following statements are true or false and explain your re-
sponse.

a. If we have a squarematrix A andmultiply the first row by 5 and add it to the third
row to obtain A′, then det(A′) � 5 det(A).

b. If we interchange two rows of a matrix, then the determinant is unchanged.

c. If we scale a row of the matrix A by 17 to obtain A′, then det(A′) � 17 det(A).

d. If A and A′ are row equivalent and det(A′) � 0, then det(A) � 0 also.

e. If A is row equivalent to the identity matrix, then det(A) � det(I) � 1.
6. Suppose that A and B are 5×5 matrices such that det(A) � −2 and det(B) � 5. Find the

following determinants:
a. det(2A).

b. det(A3).

c. det(AB).

d. det(−A).

e. det(AB−1).
7. Suppose that A and B are n × n matrices.

a. If A and B are both invertible, use determinants to explain why AB is invertible.

b. If AB is invertible, use determinants to explain why both A and B are invertible.
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8. Provide a justification for your responses to the following questions.
a. If every entry in one row of a matrix is zero, what can you say about the determi-

nant?

b. If two rows of a square matrix are identical, what can you say about the determi-
nant?

c. If two columns of a square matrix are identical, what can you say about the deter-
minant?

d. If one column of a matrix is a linear combination of the others, what can you say
about the determinant?

9. Consider the matrix

A �


0 1 x
2 2 y

−1 0 z

 .
a. Assuming that det(A) � 0, rewrite the equation in terms of x, y, and z.

b. Explain why v1 and v2, the first two columns of A, satisfy the equation you found
in the previous part.

c. Explain why the solution space of this equation is the plane spanned by v1 and
v2.

10. In this section, we studied the effect of row operations on the matrix A. In this exercise,
we will study the effect of analogous column operations.

Suppose that A is the 3 × 3 matrix A �
[

v1 v2 v3
]
. Also consider elementary

matrices

R �


1 0 0
0 1 0

−3 0 1

 , S �


1 0 0
0 3 0
0 0 1

 , P �


0 0 1
0 1 0
1 0 0

 .
a. Explain why the matrix AR is obtained from A by replacing the first column v1

by v1 − 3v3. We call this a column replacement operation. Explain why column
replacement operations do not change the determinant.

b. Explain why thematrix AS is obtained from A bymultiplying the second column
by 3. Explain the effect that scaling a column has on the determinant of a matrix.

c. Explainwhy thematrix AP is obtained from A by interchanging the first and third
columns. What is the effect of this operation on the determinant?

d. Use column operations to compute the determinant of

A �


0 −3 1
1 1 4
1 1 0

 .
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11. Consider the matrices

A �


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 , B �


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , C �


0 0 0 a
0 0 b 0
0 c 0 0
d 0 0 0

 .
Use row operations to find the determinants of these matrices.

12. Consider the matrices

A �

[
0 1
1 0

]
, B �


0 1 0
1 0 1
0 1 0

 ,

C �


0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

 , D �


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0


a. Use row (and/or column) operations to find the determinants of these matrices.

b. Write the 6 × 6 and 7 × 7 matrices that follow in this pattern and state their deter-
minants based on what you have seen.

13. The following matrix is called a Vandermond matrix:

V �


1 a a2

1 b b2

1 c c2

 .
a. Use row operations to explain why det(V) � (b − a)(c − a)(c − b).

b. Explain why V is invertible if and only if a, b, and c are all distinct real numbers.

c. There is a natural way to generalize this to a 4 × 4 matrix with parameters a, b, c,
and d. Write this matrix and state its determinant based on your previous work.

This matrix appeared in Exercise 1.4.4.9 when wewere found a polynomial that passed
through a given set of points.
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3.5 Subspaces

In this chapter, we have been looking at bases for �p , sets of vectors that are linearly inde-
pendent and span �p . Frequently, however, we focus on only a subset of �p . In particular,
if we are given an m × n matrix A, we have been interested in both the span of the columns
of A and the solution space to the homogeneous equation Ax � 0. In this section, we will
expand the concept of basis to describe sets like these.

Preview Activity 3.5.1. Let’s consider the following matrix A and its reduced row
echelon form.

A �


2 −1 2 3
1 0 0 2

−2 2 −4 −2

 ∼


1 0 0 2
0 1 −2 1
0 0 0 0

 .
a. Are the columns of A linearly independent? Is the span of the columns �3?

b. Give a parametric description of the solution space to the homogeneous equa-
tion Ax � 0.

c. Explain how this parametric description produces two vectors w1 and w2 whose
span is the solution space to the equation Ax � 0.

d. What can you say about the linear independence of the set of vectors w1 and
w2?

e. Let’s denote the columns of A as v1, v2, v3, and v4. Explain why v3 and v4 can
be written as linear combinations of v1 and v2.

f. Explain why v1 and v2 are linearly independent and

Span{v1 , v2} � Span{v1 , v2 , v3 , v4}.

3.5.1 Subspaces

Our goal is to develop a common framework for describing subsets like the span of the
columns of a matrix and the solution space to a homogeneous equation. That leads us to the
following definition.

Definition 3.5.1 A subspace of �p is a subset of �p that is the span of a set of vectors.

Since we have explored the concept of span in some detail, this definition just gives us a new
word to describe something familiar. Let’s look at some examples.

Example 3.5.2 Subspaces of�3. In Activity 2.3.3 and the following discussion, we looked at
subspaces in�3 without explicitly using that language. Let’s recall some of those examples.
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• Suppose we have a single nonzero vec-
tor v. The span of v is a subspace,
which we’ll write as S � Span{v}. As
we have seen, the span of a single vec-
tor consists of all scalar multiples of
that vector, and these form a line pass-
ing through the origin.

z

y

x

v

• If instead we have two linearly inde-
pendent vectors v1 and v2, the sub-
space S � Span{v1 , v2} is a plane pass-
ing through the origin.

v1

v2

• Consider the three vectors e1, e2, and e3. Since we know that every 3-dimensional
vector can be written as a linear combination, we have S � Span{e1 , e2 , e3} � �3.

• One more subspace worth mentioning is S � Span{0}. Since any linear combination
of the zero vector is itself the zero vector, this subspace consists of a single vector, 0.

In fact, any subspace of �3 is one of these types: the origin, a line, a plane, or all of �3.

Activity 3.5.2. We will look at some sets of vectors and the subspaces they form.
a. If v1 , v2 , . . . , vn is a set of vectors in �m , explain why 0 can be expressed as a

linear combination of these vectors. Use this fact to explain why the zero vector
0 belongs to any subspace in �m .

b. Explain why the line on the left of Figure 3.5.3 is not a subspace of �2 and why
the line on the right is.
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Figure 3.5.3 Two lines in�2, one of which is a subspace and one of which is not.

c. Consider the vectors

v1 �


1
0
1

 , v2 �


0
1
1

 , v3 �


1
1
0

 ,
and describe the subspace S � Span{v1 , v2 , v3} of �3.

d. Consider the vectors

w1 �


2
1
0

 , w2 �


−1

1
−1

 , w3 �


0
3

−2


1. Write w3 as a linear combination of w1 and w2.
2. Explain why Span{w1 ,w2 ,w3} � Span{w1 ,w2}.
3. Describe the subspace S � Span{w1 ,w2 ,w3} of �3.

e. Suppose that v1, v2, v3, and v4 are four vectors in �3 and that

[
v1 v2 v3 v4

]
∼

1 2 0 −2
0 0 1 1
0 0 0 0

 .
Give a description of the subspace S � Span{v1 , v2 , v3 , v4} of �3.

As the activity shows, it is possible to represent some subspaces as the span of more than
one set of vectors. We are particularly interested in representing a subspace as the span of a
linearly independent set of vectors.

Definition 3.5.4 A basis for a subspace S of �p is a set of vectors in S that are linearly inde-
pendent and whose span is S. We say that the dimension of the subspace S, denoted dim S,
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is the number of vectors in any basis.

Example 3.5.5 A subspace of�4. Suppose we have the 4-dimensional vectors v1, v2, and v3
that define the subspace S � Span{v1 , v2 , v3} of �4. Suppose also that

[
v1 v2 v3

]
∼


1 −1 0
0 0 1
0 0 0
0 0 0

 .
From the reduced row echelon form of the matrix, we see that v2 � −v. Therefore, any linear
combination of v1, v2, and v3 can be rewritten

c1v1 + c2v2 + c3v3 � (c1 − c2)v1 + c2v3

as a linear combination of v1 and v3. This tells us that

S � Span{v1 , v2 , v3} � Span{v1 , v3}.

Furthermore, the reduced row echelon form of the matrix shows that v1 and v3 are linearly
independent. Therefore, {v1 , v3} is a basis for S, which means that S is a two-dimensional
subspace of �4.

Subspaces of �3 are either

• 0-dimensional, consisting of the single vector 0,

• a 1-dimensional line,

• a 2-dimensional plane, or

• the 3-dimensional subspace �3.

There is no 4-dimensional subspace of �3 because there is no linearly independent set of
four vectors in �3.

There are two important subspaces associated to anymatrix, each of which springs from one
of our two fundamental questions, as we will now see.

3.5.2 The column space of A

The first subspace associated to a matrix that we’ll consider is its column space.

Definition 3.5.6 If A is an m × n matrix, we call the span of its columns the column space of
A and denote it as Col(A).

Notice that the columns of A are vectors in�m , which means that any linear combination of
the columns is also in�m . Since the column space is described as the span of a set of vectors,
we see that Col(A) is a subspace of �m .
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Activity 3.5.3. We will explore some column spaces in this activity.
a. Consider the matrix

A �
[

v1 v2 v3
]
�


1 3 −1

−2 0 −4
1 2 0

 .
Since Col(A) is the span of the columns, we have

Col(A) � Span{v1 , v2 , v3}.

Explain why v3 can be written as a linear combination of v1 and v2 and why
Col(A) � Span{v1 , v2}.

b. Explain why the vectors v1 and v2 form a basis for Col(A) and why Col(A) is a
2-dimensional subspace of �3 and therefore a plane.

c. Now consider the matrix B and its reduced row echelon form:

B �

[
−2 −4 0 6

1 2 0 −3

]
∼
[

1 2 0 −3
0 0 0 0

]
.

Explain why Col(B) is a 1-dimensional subspace of �2 and is therefore a line.

d. For a generalmatrix A, what is the relationship between the dimensiondim Col(A)
and the number of pivot positions in A?

e. How does the location of the pivot positions indicate a basis for Col(A)?

f. If A is an invertible 9 × 9 matrix, what can you say about the column space
Col(A)?

g. Suppose that A is an 8×10 matrix and that Col(A) � �8. If b is an 8-dimensional
vector, what can you say about the equation Ax � b?

Example 3.5.7 Consider the matrix A and its reduced row echelon form:

A �


2 0 −4 −6 0

−4 −1 7 11 2
0 −1 −1 −1 2

 ∼


1 0 −2 −3 0
0 1 1 1 −2
0 0 0 0 0

 ,
and denote the columns of A as v1 , v2 , . . . , v5.

It is certainly true that Col(A) � Span{v1 , v2 , . . . , v5} by the definition of the column space.
However, the reduced row echelon form of the matrix shows us that the vectors are not
linearly independent so v1 , v2 , . . . , v5 do not form a basis for Col(A).
From the reduced row echelon form, however, we can see that

v3 � − 2v1 + v2

v4 � − 3v1 + v2

v5 � − 2v2

.
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This means that any linear combination of v1 , v2 , . . . , v5 can be written as a linear combina-
tion of just v1 and v2. Therefore, we see that Col(A) � Span{v1 , v2}.
Moreover, the reduced row echelon form shows that v1 and v2 are linearly independent,
which implies that they form a basis for Col(A). This means that Col(A) is a 2-dimensional
subspace of �3, which is a plane in �3, having basis

2
−4

0

 ,


0
−1

1

 .
In general, a column without a pivot position can be written as a linear combination of the
columns that have pivot positions. This means that a basis for Col(A) will always be given
by the columns of A having pivot positions. This leads us to the following definition and
proposition.

Definition 3.5.8 The rank of a matrix A is the number of pivot positions in A and is denoted
by rank(A).
Proposition 3.5.9 If A is an m × n matrix, then Col(A) is a subspace of�m whose dimension equals
rank(A). The columns of A that contain pivot positions form a basis for Col(A).

For example, the rank of the matrix A in Example 3.5.7 is two because there are two pivot
positions. A basis for Col(A) is given by the first two columns of A since those columns have
pivot positions.

As a note of caution, we determine the pivot positions by looking at the reduced row eche-
lon form of A. However, we form a basis of Col(A) from the columns of A rather than the
columns of the reduced row echelon matrix.

3.5.3 The null space of A

The second subspace associated to a matrix is its null space.

Definition 3.5.10 If A is an m × n matrix, we call the subset of vectors x in �n satisfying
Ax � 0 the null space of A and denote it by Nul(A).

Remember that a subspace is a subset that can be represented as the span of a set of vectors.
The column space of A, which is simply the span of the columns of A, fits this definition. It
may not be immediately clear how the null space of A, which is the solution space of the
equation Ax � 0, does, but we will see that Nul(A) is a subspace of �n .

Activity 3.5.4. We will explore some null spaces in this activity and see why Nul(A)
satisfies the definition of a subspace.

a. Consider the matrix

A �


1 3 −1 2
−2 0 −4 2
1 2 0 1


and give a parametric description of the solution space to the equation Ax � 0.
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In other words, give a parametric description of Nul(A).

b. This parametric description shows that the vectors satisfying the equation Ax �

0 can be written as a linear combination of a set of vectors. In other words, this
description shows why Nul(A) is the span of a set of vectors and is therefore a
subspace. Identify a set of vectors whose span is Nul(A).

c. Use this set of vectors to find a basis for Nul(A) and state the dimension of
Nul(A).

d. The null space Nul(A) is a subspace of �p for which value of p?

e. Now consider the matrix B whose reduced row echelon form is given by

B ∼
[

1 2 0 −3
0 0 0 0

]
.

Give a parametric description of Nul(B).

f. The parametric description gives a set of vectors that span Nul(B). Explain why
this set of vectors is linearly independent and hence forms a basis. What is the
dimension of Nul(B)?

g. For a general matrix A, how does the number of pivot positions indicate the
dimension of Nul(A)?

h. Suppose that the columns of a matrix A are linearly independent. What can you
say about Nul(A)?

Example 3.5.11 Consider the matrix A along with its reduced row echelon form:

A �


2 0 −4 −6 0

−4 −1 7 11 2
0 −1 −1 −1 2

 ∼


1 0 −2 −3 0
0 1 1 1 −2
0 0 0 0 0

 .
To find a parametric description of the solution space to Ax � 0, imagine that we augment
both A and its reduced row echelon form by a column of zeroes, which leads to the equations

x1 − 2x3 − 3x4 � 0
x2 + x3 + x4 − 2x5 � 0.

Notice that x3, x4, and x5 are free variables so we rewrite these equations as

x1 � 2x3 + 3x4

x2 � − x3 − x4 + 2x5.
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In vector form, we have

x �


x1
x2
x3
x4
x5


�


2x3 + 3x4

−x3 − x4 + 2x5
x3
x4
x5


� x3


2

−1
1
0
0


+ x4


3

−1
0
1
0


+ x5


0
2
0
0
1


.

This expression says that any vector x satisfying Ax � 0 is a linear combination of the vectors

v1 �


2

−1
1
0
0


, v2 �


3

−1
0
1
0


, v3 �


0
2
0
0
1


.

It is straightforward to check that these vectors are linearly independent, which means that
v1, v2, and v3 form a basis for Nul(A), a 3-dimensional subspace of �5.

As illustrated in this example, the dimension of Nul(A) is equal to the number of free vari-
ables in the equation Ax � 0, which equals the number of columns of A without pivot
positions or the number of columns of A minus the number of pivot positions.

Proposition 3.5.12 If A is an m × n matrix, then Nul(A) is a subspace of �n whose dimension is

dim Nul(A) � n − rank(A).

Combining Proposition 3.5.9 and Proposition 3.5.12 shows that

Proposition 3.5.13 If A is an m × n matrix, then

dim Col(A) + dim Nul(A) � n.

3.5.4 Summary

Once again, we find ourselves revisiting our two fundamental questions concerning the ex-
istence and uniqueness of solutions to linear systems. The column space Col(A) contains
all the vectors b for which the equation Ax � b is consistent. The null space Nul(A) is the
solution space to the equation Ax � 0, which reflects on the uniqueness of solutions to this
and other equations.

• A subspace S of �p is a subset of �p that can be represented as the span of a set of
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vectors. A basis of S is a linearly independent set of vectors whose span is S.

• If A is an m × n matrix, the column space Col(A) is the span of the columns of A and
forms a subspace of �m .

• A basis for Col(A) is found from the columns of A that have pivot positions. The
dimension is therefore dim Col(A) � rank(A).

• The null space Nul(A) is the solution space to the homogeneous equation Ax � 0 and
is a subspace of �n .

• A basis for Nul(A) is found through a parametric description of the solution space of
Ax � 0, and we have that dim Nul(A) � n − rank(A).

3.5.5 Exercises

1. Suppose that A and its reduced row echelon form are

A �


0 2 0 −4 0 6
0 −4 −1 7 0 −16
0 6 0 −12 3 15
0 4 −1 −9 0 8

 ∼


0 1 0 −2 0 3
0 0 1 1 0 4
0 0 0 0 1 −1
0 0 0 0 0 0

 .
a. The null space Nul(A) is a subspace of �p for what p? The column space Col(A)

is a subspace of �p for what p?

b. What are the dimensions dim Nul(A) and dim Col(A)?

c. Find a basis for the column space Col(A).

d. Find a basis for the null space Nul(A).
2. Suppose that

A �


2 0 −2 −4

−2 −1 1 2
0 −1 −1 −2

 .
a. Is the vector


0

−1
−1

 in Col(A)?

b. Is the vector


2
1
0
2

 in Col(A)?

c. Is the vector


2
−2

0

 in Nul(A)?
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d. Is the vector


1

−1
3

−1

 in Nul(A)?

e. Is the vector


1
0
1

−1

 in Nul(A)?

3. Determinewhether the following statements are true or false and provide a justification
for your response. Unless otherwise stated, assume that A is an m × n matrix.

a. If A is a 127 × 341 matrix, then Nul(A) is a subspace of �127.

b. If dim Nul(A) � 0, then the columns of A are linearly independent.

c. If Col(A) � �m , then A is invertible.

d. If A has a pivot position in every column, then Nul(A) � �n .

e. If Col(A) � �m and Nul(A) � {0}, then A is invertible.
4. Explain why the following statements are true.

a. If B is invertible, then Nul(BA) � Nul(A).

b. If B is invertible, then Col(AB) � Col(A).

c. If A ∼ A′, then Nul(A) � Nul(A′).
5. For each of the following conditions, construct a 3 × 3 matrix having the given proper-

ties.
a. dim Nul(A) � 0.

b. dim Nul(A) � 1.

c. dim Nul(A) � 2.

d. dim Nul(A) � 3.
6. Suppose that A is a 3 × 4 matrix.

a. Is it possible that dim Nul(A) � 0?

b. If dim Nul(A) � 1, what can you say about Col(A)?

c. If dim Nul(A) � 2, what can you say about Col(A)?

d. If dim Nul(A) � 3, what can you say about Col(A)?

e. If dim Nul(A) � 4, what can you say about Col(A)?
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7. Suppose we have the vectors

v1 �


2
3

−1

 , v2 �


−1

2
4

 , w1 �


3

−1
1
0

 , w2 �


−2

4
0
1


and that A is a matrix such that Col(A) � Span{v1 , v2} and Nul(A) � Span{w1 ,w2}.

a. What are the dimensions of A?

b. Find such a matrix A.
8. Suppose that A is an 8 × 8 matrix and that det A � 14.

a. What can you conclude about Nul(A)?

b. What can you conclude about Col(A)?
9. Suppose that A is a matrix and there is an invertible matrix P such that

A � P


2 0 0
0 −3 0
0 0 1

 P−1.

a. What can you conclude about Nul(A)?

b. What can you conclude about Col(A)?
10. In this section, we saw that the solution space to the homogeneous equation Ax � 0 is

a subspace of �p for some p. In this exercise, we will investigate whether the solution
space to another equation Ax � b can form a subspace.

Let’s consider the matrix
A �

[
2 −4

−1 2

]
.

a. Find a parametric description of the solution space to the homogeneous equation
Ax � 0.
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b. Graph the solution space to the ho-
mogeneous equation to the right.

-4 -2 2 4

-4

-2

2

4

x

y

c. Find a parametric description of the solution space to the equation Ax �

[
4

−2

]
and graph it above.

d. Is the solution space to the equation Ax �

[
4

−2

]
a subspace of �2?

e. Find a parametric description of the solution space to the equation Ax �

[
−8

4

]
and graph it above.

f. What can you say about all the solution spaces to equations of the form Ax � b
when b is a vector in Col(A)?

g. Suppose that the solution space to the equation Ax � b forms a subspace. Explain
why it must be true that b � 0.



CHAPTER 4
Eigenvalues and eigenvectors

Our primary concern so far has been to develop an understanding of solutions to linear sys-
tems Ax � b. In this way, our two fundamental questions about the existence and unique-
ness of solutions led us to the concepts of span and linear independence.

We saw that some linear systems are easier to understand than others. For instance, given
the two matrices

A �

[
3 0
0 −1

]
, B �

[
1 2
2 1

]
,

we would much prefer working with the diagonal matrix A. Solutions to linear systems
Ax � b are easily determined, and the geometry of the matrix transformation defined by A
is easily described.

We saw in the last chapter, however, that some problems become simpler when we look at
them in a new basis. Is it possible that questions about the non-diagonal matrix B become
simpler when viewed in a different basis? We will see that the answer is ”yes,” and see
how the theory of eigenvalues and eigenvectors, which will be developed in this chapter,
provides the key. Wewill see how this theory provides an appropriate change of basis so that
questions about the non-diagonal matrix B are equivalent to questions about the diagonal
matrix A. In fact, we will see that these two matrices are, in some sense, equivalent to one
another.

4.1 An introduction to eigenvalues and eigenvectors

This section introduces the concept of eigenvalues and eigenvectors and offers an example
that motivates our interest in them. The point here is to develop an intuitive understanding
of eigenvalues and eigenvectors and explain how they can be used to simplify some prob-
lems that we have previously encountered. In the rest of this chapter, we will develop this
concept into a richer theory and illustrate its use with more meaningful examples.

Preview Activity 4.1.1. Before we introduce the definition of eigenvectors and eigen-
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values, it will be helpful to remember some ideas we have seen previously.
a. Suppose that v is the vector shown in

the figure. Sketch the vector 2v and the
vector −v.

v

b. State the geometric effect that scalar multiplication has on the vector v. Then
sketch all the vectors of the form λv where λ is a scalar.

c. State the geometric effect of the matrix transformation defined by[
3 0
0 −1

]
.

d. Suppose that A is a 2 × 2 matrix and that v1 and v2 are vectors such that

Av1 � 3v1 , Av2 � −v2.

Use the linearity of matrix multiplication to express the following vectors in
terms of v1 and v2.

1. A(4v1).
2. A(v1 + v2).
3. A(4v1 − 3v2).
4. A2v1.
5. A2(4v1 − 3v2).
6. A4v1.

4.1.1 A few examples

Wewill now introduce the definition of eigenvalues and eigenvectors and then look at a few
simple examples.

Definition 4.1.1 Given a square n×n matrix A, we say that a nonzero vector v is an eigenvector
of A if there is a scalar λ such that

Av � λv.
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The scalar λ is called the eigenvalue associated to the eigenvector v.

At first glance, there is a lot going on in this definition so let’s look at an example.

Example 4.1.2 Consider the matrix A �

[
7 6
6 −2

]
and the vector v �

[
2
1

]
. We find that

Av �

[
7 6
6 −2

] [
2
1

]
�

[
20
10

]
� 10

[
2
1

]
� 10v.

In other words, Av � 10v, which says that v is an eigenvector of thematrix A with associated
eigenvalue λ � 10.

Similarly, if w �

[
−1

2

]
, we find that

Aw �

[
7 6
6 −2

] [
−1

2

]
�

[
5

−10

]
� −5

[
−1

2

]
� −5w.

Here again, we have Aw � −5w showing that w is an eigenvector of A with associated
eigenvalue λ � −5.

Activity 4.1.2. This definition has an important geometric interpretation that we will
investigate here.

a. Suppose that v is a nonzero vector and that λ is a scalar. What is the geometric
relationship between v and λv?

b. Let’s now consider the eigenvector condition: Av � λv. Here we have two
vectors, v and Av. If Av � λv, what is the geometric relationship between v and
Av?
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c. There is an interactive diagram, available at gvsu.edu/s/0Ja, that accompanies
this activity.

Figure 4.1.3 A geometric interpretation of the eigenvalue-eigenvector condition
Av � λv .

Choose the matrix A �

[
1 2
2 1

]
. Move the vector v so that the eigenvector con-

dition holds. What is the eigenvector v and what is the associated eigenvalue?

d. By algebraically computing Av, verify that the eigenvector condition holds for
the vector v that you found.

e. If you multiply the eigenvector v that you found by 2, do you still have an eigen-
vector? If so, what is the associated eigenvalue?

f. Are you able to find another eigenvector v that is not a scalar multiple of the first
one that you found? If so, what is the eigenvector and what is the associated
eigenvalue?

g. Now consider the matrix A �

[
2 1
0 2

]
. Use the diagram to describe any eigen-

vectors and associated eigenvalues.

h. Finally, consider the matrix A �

[
0 −1
1 0

]
. Use the diagram to describe any

eigenvectors and associated eigenvalues. What geometric transformation does
thismatrix performonvectors? Howdoes this explain the presence of any eigen-
vectors?

Let’s consider the ideas we saw in the activity in some more depth. To be an eigenvector of
A, the vector v must satisfy Av � λv for some scalar λ. This means that v and Av are scalar
multiples of each other so they must lie on the same line.

http://gvsu.edu/s/0Ja
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Consider now the matrix A �

[
1 2
2 1

]
. On the left of Figure 4.1.4, we see that v �

[
1
0

]
is

not an eigenvector of A since the vectors v and Av do not lie on the same line. On the right,

however, we see that v �

[
1
1

]
is an eigenvector. In fact, Av is obtained from v by stretching

v by a factor of 3. Therefore, v is an eigenvector of A with eigenvalue λ � 3.

-2 2

-2

2

-2 2

-2

2

Figure 4.1.4 On the left, the vector v is not an eigenvector. On the right, the vector v is an
eigenvector with eigenvalue λ � 3.

It is not difficult to see that any multiple of
[

1
1

]
is also an eigenvector of A with eigenvalue

λ � 3. Indeed, we will see later that all the eigenvectors associated to a given eigenvalue
form a subspace of �n .

In Figure 4.1.5, we see that v �

[
−1

1

]
is also an eigenvector with eigenvalue λ � −1.
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-2 2

-2

2

Figure 4.1.5 Here we see another eigenvector v with eigenvalue λ � −1.

The interactive diagramwe used in the activity is meant to convey the fact that the eigenvec-
tors of a matrix A are special vectors. Most of the time, the vectors v and Av appear visually
unrelated. For certain vectors, however, v and Av line up with one another. Something im-
portant is going on when that happens so we call attention to these vectors by calling them
eigenvectors. For these vectors, the operation of multiplying by A reduces to the much sim-
pler operation of scalar multiplying by λ. The reason eigenvectors are important is because
it is extremely convenient to be able to replace matrix multiplication by scalar multiplica-
tion.

4.1.2 The usefulness of eigenvalues and eigenvectors

In the next section, we will introduce an algebraic technique for finding the eigenvalues
and eigenvectors of a matrix. Before doing that, however, we would like to discuss why
eigenvalues and eigenvectors are so useful.

Let’s continue looking at the example A �

[
1 2
2 1

]
. We have seen that v1 �

[
1
1

]
is an

eigenvectorwith eigenvalue λ � 3 and v2 �

[
−1

1

]
is an eigenvectorwith eigenvalue λ � −1.

This means that Av1 � 3v1 and Av2 � −v2. By the linearity of matrix multiplication, we can
determine what happens when we multiply a linear combination of v1 and v2 by A:

A(c1v1 + c2v2) � 3c1v1 − c2v2.
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For instance, if we consider the vector x � v1−
2v2, we find that

Ax � A(v1 − 2v2)
Ax � 3v1 + 2v2

as seen in the figure.
v1v2

x

Ax

In other words, multiplying by A has the effect of stretching a vector x in the v1 direction by
a factor of 3 and flipping x in v2 direction.

We candrawan analogywith themore familiar example of the diagonalmatrix D �

[
3 0
0 −1

]
.

As we have seen, the matrix transformation defined by D combines a horizontal stretching
by a factor of 3 with a reflection across the horizontal axis, as is illustrated in Figure 4.1.6.

-3 3

-3

3

e1

e2

-3 3

-3

3

3e1

−e2

Figure 4.1.6 The diagonal matrix D stretches vectors horizontally by a factor of 3 and flips
vectors vertically.

The matrix A �

[
1 2
2 1

]
has a similar effect when viewed in the basis defined by the eigen-

vectors v1 and v2, as seen in Figure 4.1.7.
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-2 2

-2

2

v1v2

-2 2

-2

2

3v1

−v2

Figure 4.1.7 The matrix A has the same geometric effect as the diagonal matrix D when
expressed in the coordinate system defined by the basis of eigenvectors.

In a sense that will be made precise later, having a set of eigenvectors of A that forms a basis
of �2 enables us to think of A as being equivalent to a diagonal matrix D. Of course, as
the other examples in the previous activity show, it may not always be possible to form a
basis from the eigenvectors of a matrix. For example, the only eigenvectors of the matrix[

2 1
0 2

]
, which represents a shear, have the form

[
x
0

]
. In this example, we are not able to

create a basis for �2 consisting of eigenvectors of the matrix. This is also true for the matrix[
0 −1
1 0

]
, which represents a 90◦ rotation.

Activity 4.1.3. Let’s consider an example that illustrates how we can put these ideas
to use.

Suppose that wework for a car rental company that has two locations, P and Q. When
a customer rents a car at one location, they have the option to return it to either location
at the end of the day. After doing some market research, we determine:

• 80% of the cars rented at location P are returned to P and 20% are returned to
Q.

• 40% of the cars rented at location Q are returned to Q and 60% are returned to
P.

a. Suppose that there are 1000 cars at location P and no cars at location Q on Mon-
day morning. How many cars are there are locations P and Q at the end of the
day on Monday?

b. How many are at locations P and Q at end of the day on Tuesday?

c. If we let Pk and Qk be the number of cars at locations P and Q, respectively, at
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the end of day k, we then have

Pk+1 � 0.8Pk + 0.6Qk

Qk+1 � 0.2Pk + 0.4Qk .

We can write the vector xk �

[
Pk

Qk

]
to reflect the number of cars at the two

locations at the end of day k, which says that

xk+1 �

[
0.8 0.6
0.2 0.4

]
xk

or xk+1 � Axk where A �

[
0.8 0.6
0.2 0.4

]
.

Suppose that

v1 �

[
3
1

]
, v2 �

[
−1

1

]
.

Compute Av1 and Av2 to demonstrate that v1 and v2 are eigenvectors of A. What
are the associated eigenvalues λ1 and λ2?

d. We said that 1000 cars are initially at location P and none at location Q. This

means that the initial vector describing the number of cars is x0 �

[
1000

0

]
.

Write x0 as a linear combination of v1 and v2.

e. Remember that v1 and v2 are eigenvectors of A. Use the linearity of matrix mul-
tiplication to write the vector x1 � Ax0, describing the number of cars at the two
locations at the end of the first day, as a linear combination of v1 and v2.

f. Write the vector x2 � Ax1 as a linear combination of v1 and v2. Then write the
next few vectors as linear combinations of v1 and v2:

1. x3 � Ax2.
2. x4 � Ax3.
3. x5 � Ax4.
4. x6 � Ax5.

g. What will happen to the number of cars at the two locations after a very long
time? Explain how writing x0 as a linear combination of eigenvectors helps you
determine the long-term behavior.

This activity is important and motivates much of our work with eigenvalues and eigenvec-
tors so it’s worth reviewing to make sure we have a clear understanding of the concepts.
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First, we compute

Av1 �

[
0.8 0.6
0.2 0.4

] [
3
1

]
�

[
3
1

]
� 1v1

Av2 �

[
0.8 0.6
0.2 0.4

] [
−1

1

]
�

[
−0.2

0.2

]
� 0.2v2.

This shows that v1 is an eigenvector of A with eigenvalue λ1 � 1 and v2 is an eigenvector of
A with eigenvalue λ2 � 0.2.

By the linearity of matrix matrix multiplication, we have

A(c1v1 + c2v2) � c1v1 + 0.2c2v2.

Therefore, we will write the vector describing the initial distribution of cars x0 �

[
1000

0

]
as a linear combination of v1 and v2; that is, x0 � c1v2 + c2v2. To do, we form the augmented
matrix and row reduce:[

v1 v2 x0
]
�

[
3 −1 1000
1 1 0

]
∼
[

1 0 250
0 1 −250

]
.

Therefore, x0 � 250v1 − 250v2.

To determine the distribution of cars on subsequent days, we will repeatedly multiply by A.
We find that

x1 � Ax0 � A(250v1 − 250v2) � 250v1 − (0.2)250v2

x2 � Ax1 � A(250v1 − (0.2)250v2) � 250v1 − (0.2)2250v2

x3 � Ax2 � A(250v1 − (0.2)2250v2) � 250v1 − (0.2)3250v2

x4 � Ax3 � A(250v1 − (0.2)3250v2) � 250v1 − (0.2)4250v2

x5 � Ax4 � A(250v1 − (0.2)4250v2) � 250v1 − (0.2)5250v2

.

In particular, this shows us that

x5 � 250v1 − (0.2)5250v2 �

[
250 · 3 − (0.2)5250 · (−1)

250 · 1 − (0.2)5250 · 1

]
�

[
750.09
249.92

]
.

Taking notice of the pattern, we may write

xk � 250v1 − (0.2)k250v2.

Multiplying a number by 0.2 is the same as taking 20% of that number. As each day goes by,
the second term is multiplied by 0.2 so the coefficient of v2 in the expression for xk will even-
tually become extremely small. We therefore see that the distribution of cars will stabilize

at x � 250v1 �

[
750
250

]
.

Notice how our understanding of the eigenvectors of the matrix allows us to replace matrix
multiplication with the simpler operation of scalar multiplication. As a result, we can look
far into the future without having to repeatedly perform matrix multiplication.
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Furthermore, notice how this example relies on the fact that we can express the initial vector
x0 as a linear combination of eigenvectors. For this reason, we would like, when given an
n × n matrix, to be able to create a basis of �n that consists of its eigenvectors. We will
frequently return to this question in later sections.

Question 4.1.8 If A is an n × n matrix, can we form a basis of �n consisting of eigenvectors
of A?

4.1.3 Summary

We defined an eigenvector of a square matrix A to be a nonzero vector v such that Av � λv
for some scalar λ, which is called the eigenvalue associated to v.

• If v is an eigenvector, then matrix multiplication by A reduces to the simpler operation
of scalar multiplication by λ.

• Scalar multiples of an eigenvector are also eigenvectors. In fact, we will see that the
eigenvectors associated to an eigenvalue λ form a subspace.

• If we can form a basis for �n consisting of eigenvectors of A, then A is, in some sense,
equivalent to a diagonal matrix.

• Rewriting a vector x as a linear combination of eigenvectors of A simplifies the process
of repeatedly multiplying x by A.

4.1.4 Exercises

1. Consider the matrix and vectors

A �

[
8 −10
5 −7

]
, v1 �

[
2
1

]
, v2 �

[
1
1

]
.

a. Show that v1 and v2 are eigenvectors of A and find their associated eigenvalues.

b. Express the vector x �

[
−4
−1

]
as a linear combination of v1 and v2.

c. Use this expression to compute Ax, A2x, and A−1x as a linear combination of
eigenvectors.

2. Consider the matrix and vectors

A �


−5 −2 2
24 14 −10
21 14 −10

 , v1 �


1

−2
−1

 , v2 �


2

−3
0

 , v3 �


0

−1
−1


a. Show that the vectors v1, v2, and v3 are eigenvectors of A and find their associated

eigenvalues.



240 CHAPTER 4. EIGENVALUES AND EIGENVECTORS

b. Express the vector x �


0

−3
−4

 as a linear combination of the eigenvectors.

c. Use this expression to compute Ax, A2x, and A−1x as a linear combination of
eigenvectors.

3. Suppose that A is an n × n matrix.
a. Explain why λ � 0 is an eigenvalue of A if and only if there is a nonzero solution

to the homogeneous equation Ax � 0.

b. Explain why A is not invertible if and only if λ � 0 is an eigenvalue.

c. If v is an eigenvector of A having associated eigenvalue λ, explain why v is also
an eigenvector of A2 with associated eigenvalue λ2.

d. If A is invertible and v is eigenvector of A having associated eigenvalue λ, explain
why v is also an eigenvector of A−1 with associated eigenvalue λ−1.

e. The matrix A �

[
1 2
2 1

]
has eigenvectors v1 �

[
1
1

]
and v2 �

[
−1

1

]
and

associated eigenvalues λ1 � 3 and λ � −1. What are some eigenvectors and
associated eigenvalues for A5?

4. Suppose that A is a matrix with eigenvectors v1 and v2 and eigenvalues λ1 � −1 and
λ2 � 2 as shown in Figure 4.1.9.

v1
v2

x

Figure 4.1.9 The vectors v1 and v2 are eigenvectors of A.

Sketch the vectors Ax, A2x, and A−1x.
5. For the following matrices, find the eigenvectors and associated eigenvalues by think-

ing geometrically about the corresponding matrix transformation.

a.
[

3 0
0 3

]
.
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b.
[
−2 0

0 4

]
.

c. What are the eigenvectors and associated eigenvalues of the identity matrix?

d. What are the eigenvectors and associated eigenvalues of a diagonal matrix with
distinct diagonal entries?

6. Suppose that A is a 2 × 2 matrix having eigenvectors

v1 �

[
2
1

]
, v2 �

[
−1

2

]
and associated eigenvalues λ1 � 2 and λ2 � −3.

a. If x �

[
5
0

]
, find the vector A4x.

b. Find the vectors A
[

1
0

]
and A

[
0
1

]
.

c. What is the matrix A?
7. Determinewhether the following statements are true or false and provide a justification

for your response.
a. The eigenvalues of a diagonal matrix are equal to the entries on the diagonal.

b. If Av � λv, then A2v � λv as well.

c. Every vector is an eigenvector of the identity matrix.

d. If λ � 0 is an eigenvalue of A, then A is invertible.

e. For every n × n matrix A, it is possible to find a basis of�n consisting of eigenvec-
tors of A.

8. Suppose that A is an n × n matrix.
a. Assuming that v is an eigenvector of A whose associated eigenvector is nonzero,

explain why v is in Col(A).

b. Assuming that v is an eigenvector of A whose associated eigenvector is zero, ex-
plain why v is in Nul(A).

c. Consider the two special matrices below and find their eigenvectors and associ-
ated eigenvalues.

A �


1 1 1
1 1 1
1 1 1

 , B �


1 1 1
2 2 2
3 3 3

 .
9. For each of the following matrix transformations, describe the eigenvalues and eigen-

vectors of the corresponding matrix A.
a. A reflection in �2 in the line y � x.
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b. A 180◦ rotation in �2.

c. A 180◦ rotation in �3 about the y-axis.

d. A 90◦ rotation in �3 about the x-axis.
10. Suppose we have two species, P and Q, where species P preys on Q. Their populations,

in millions, in year k are denoted by Pk and Qk and satisfy

Pk+1 � 0.8Pk + 0.2Qk

Qk+1 � − 0.3Pk + 1.5Qk
.

We will keep track of the populations in year k using the vector xk �

[
Pk

Qk

]
so that

xk+1 � Axk �

[
0.8 0.2

−0.3 1.5

]
xk .

a. Show that v1 �

[
1
3

]
and v2 �

[
2
1

]
are eigenvectors of A and find their associ-

ated eigenvalues.

b. Suppose that the initial populations are described by the vector x0 �

[
38
44

]
. Ex-

press x0 as a linear combination of v1 and v2.

c. Find the populations after one year, two years, and three years by writing the
vectors x1, x2, and x3 as linear combinations of v1 and v2.

d. What is the general form for xk?

e. After a very long time, what is the ratio of Pk to Qk?



4.2. FINDING EIGENVALUES AND EIGENVECTORS 243

4.2 Finding eigenvalues and eigenvectors

The last section introduced eigenvalues and eigenvectors, presented the underlying geomet-
ric intuition behind their definition, and demonstrated their use in understanding the long-
term behavior of certain systems. We will now develop a more algebraic understanding of
eigenvalues and eigenvectors. In particular, we will find an algebraic method for determin-
ing the eigenvalues and eigenvectors of a square matrix.

Preview Activity 4.2.1. Let’s begin by reviewing some important ideas that we have
seen previously.

a. Suppose that A is a square matrix and that the nonzero vector x is a solution to
the homogeneous equation Ax � 0. What can we conclude about the invertibil-
ity of A?

b. How does the determinant det(A) tell us if there is a nonzero solution to the
homogeneous equation Ax � 0?

c. Suppose that

A �


3 −1 1
0 2 4
1 1 3

 .
Find the determinant det(A). What does this tell us about the solution space to
the homogeneous equation Ax � 0?

d. Find a basis for Nul(A).

e. What is the relationship between the rank of a matrix and the dimension of its
null space?

4.2.1 The characteristic polynomial

We will first see that the eigenvalues of a square matrix appear as the roots of a particular
polynomial. To begin, notice that we originally defined an eigenvector as a nonzero vector
v that satisfies the equation Av � λv. We will rewrite this as

Av � λv
Av − λv � 0

Av − λIv � 0
(A − λI)v � 0.

In other words, an eigenvector v is a solution of the homogeneous equation (A − λI)v � 0.
This puts us in the familiar territory explored in the next activity.
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Activity 4.2.2. The eigenvalues of a square matrix are defined by the condition that
there be a nonzero solution to the homogeneous equation (A − λI)v � 0.

a. If there is a nonzero solution to the homogeneous equation (A − λI)v � 0, what
can we conclude about the invertibility of the matrix A − λI?

b. If there is a nonzero solution to the homogeneous equation (A − λI)v � 0, what
can we conclude about the determinant det(A − λI)?

c. Let’s consider the matrix
A �

[
1 2
2 1

]
from which we construct

A − λI �
[

1 2
2 1

]
− λ

[
1 0
0 1

]
�

[
1 − λ 2

2 1 − λ

]
.

Find the determinant det(A − λI). What kind of equation do you obtain when
we set this determinant to zero to obtain det(A − λI) � 0?

d. Use the determinant you found in the previous part to find the eigenvalues λ by
solving the equation det(A−λI) � 0. We considered this matrix in Activity 4.1.2
so we should find the same eigenvalues for A that we found by reasoning geo-
metrically there.

e. Consider the matrix A �

[
2 1
0 2

]
and find its eigenvalues by solving the equa-

tion det(A − λI) � 0.

f. Consider the matrix A �

[
0 −1
1 0

]
and find its eigenvalues by solving the

equation det(A − λI) � 0.

g. Find the eigenvalues of the triangular matrix


3 −1 4
0 −2 3
0 0 1

 . What is generally

true about the eigenvalues of a triangular matrix?

This activity demonstrates a technique that enables us to find the eigenvalues of a square
matrix A. Since an eigenvalue λ is a scalar for which the equation (A − λI)v � 0 has a
nonzero solution, it must be the case that A−λI is not invertible. Therefore, its determinant
is zero. This gives us the equation

det(A − λI) � 0

whose solutions are the eigenvalues of A. This equation is called the characteristic equation of
A.

Example 4.2.1 If we write the characteristic equation for the matrix A �

[
−4 4
−12 10

]
, we see
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that
det(A − λI) � 0

det
[
−4 − λ 4

−12 10 − λ

]
� 0

(−4 − λ)(10 − λ) + 48 � 0
λ2 − 6λ + 8 � 0

(λ − 4)(λ − 2) � 0.

This shows us that the eigenvalues are λ � 4 and λ � 2.

In general, the expression det(A − λI) is a polynomial in λ, which is called the characteristic
polynomial of A. If A is an n × n matrix, the degree of the characteristic polynomial is n. For
instance, if A is a 2 × 2 matrix, then det(A − λI) is a quadratic polynomial; if A is a 3 × 3
matrix, then det(A − λI) is a cubic polynomial.

The matrix in Example 4.2.1 has a characteristic polynomial with two real and distinct roots.
This will not always be the case, as demonstrated in the next two examples.

Example 4.2.2 Consider the matrix A �

[
5 −1
4 1

]
, whose characteristic equation is

λ2 − 6λ + 9 � (λ − 3)2 � 0.

In this case, the characteristic polynomial has one real root, which means that this matrix
has a single real eigenvalue, λ � 3.

Example 4.2.3 To find the eigenvalues of a triangular matrix, we remember that the deter-
minant of a triangular matrix is the product of the entries on the diagonal. For instance, the
following triangular matrix has the characteristic equation

det ©­«


4 2 3
0 −2 −1
0 0 3

 − λIª®¬ � det


4 − λ 2 3
0 −2 − λ −1
0 0 3 − λ


� (4 − λ)(−2 − λ)(3 − λ) � 0,

showing that the eigenvalues are the diagonal entries λ � 4,−2, 3.

4.2.2 Finding eigenvectors

Now that we can find the eigenvalues of a square matrix A by solving the characteristic
equation det(A− λI) � 0, we will turn to the question of finding the eigenvectors associated
to an eigenvalue λ. The key, as before, is to note that an eigenvector is a nonzero solution to
the homogeneous equation (A − λI)v � 0. In other words, the eigenvectors associated to an
eigenvalue λ form the null space Nul(A − λI).
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This shows that the eigenvectors associated to an eigenvalue form a subspace of�n . We will
denote the subspace of eigenvectors of a matrix A associated to the eigenvalue λ by Eλ and
note that

Eλ � Nul(A − λI).
We say that Eλ is the eigenspace of A associated to the eigenvalue λ.

Activity 4.2.3. In this activity, we will find the eigenvectors of a matrix as the null
space of the matrix A − λI.

a. Let’s begin with the matrix A �

[
1 2
2 1

]
. We have seen that λ � 3 is an eigen-

value. Form thematrix A−3I andfind a basis for the eigenspace E3 � Nul(A−3I).
What is the dimension of this eigenspace? For each of the basis vectors v, verify
that Av � 3v.

b. We also saw that λ � −1 is an eigenvalue. Form the matrix A − (−1)I and find
a basis for the eigenspace E−1. What is the dimension of this eigenspace? For
each of the basis vectors v, verify that Av � −v.

c. Is it possible to form a basis of �2 consisting of eigenvectors of A?

d. Now consider the matrix A �

[
3 0
0 3

]
. Write the characteristic equation for A

and use it to find the eigenvalues of A. For each eigenvalue, find a basis for its
eigenspace Eλ. Is it possible to form a basis of �2 consisting of eigenvectors of
A?

e. Next, consider the matrix A �

[
2 1
0 2

]
. Write the characteristic equation for A

and use it to find the eigenvalues of A. For each eigenvalue, find a basis for its
eigenspace Eλ. Is it possible to form a basis of �2 consisting of eigenvectors of
A?

f. Finally, find the eigenvalues and eigenvectors of the diagonalmatrix A �

[
4 0
0 −1

]
.

Explain your result by considering the geometric effect of thematrix transforma-
tion defined by A.

Once we find an eigenvalue of a matrix A, describing the associated eigenspace Eλ amounts
to the familiar task of describing the null space Nul(A − λI).

Example 4.2.4 Revisiting the matrix A �

[
−4 4
−12 10

]
from Example 4.2.1, we recall that we

found eigenvalues λ � 4 and λ � 2.

Considering the eigenvalue λ � 4, we have

A − 4I �
[
−8 4
−12 6

]
∼
[
1 −1/2
0 0

]
.
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Since the eigenvectors v �

[
v1
v2

]
are the solutions of the equation (A − 4I)v � 0, we see

that they are determined by the single equation v1 − 1
2 v2 � 0 or v1 �

1
2 v2. Therefore the

eigenvectors in E4 have the form

v �

[
v1
v2

]
�

[ 1
2 v2
v2

]
� v2

[
1/2
1

]
.

In other words, E4 is a one-dimensional subspace of �2 with basis vector
[

1/2
1

]
or basis

vector
[

1
2

]
. In the same way, we find that a basis for the eigenspace E2 is

[
2
3

]
.

We note that, for thismatrix, it is possible to construct a basis of�2 consisting of eigenvectors,
namely,

B �

{[
1
2

]
,

[
2
3

]}
.

Example 4.2.5 Consider the matrix A �

[
1 1
−1 3

]
whose characteristic equation is

det(A − λI) � λ2 − 4λ + 4 � (λ − 2)2 � 0.

There is a single eigenvalue λ � 2, and we find that

A − 2λ �

[
−1 1
−1 1

]
∼
[
1 −1
0 0

]
.

Therefore, the eigenspace E2 � Nul(A − 2I) is one-dimensional with a basis vector
[

1
1

]
.

Example 4.2.6 If A �

[
−1 0
0 −1

]
, then

det(A − λI) � (λ + 1)2 � 0,

which implies that there is a single eigenvalue λ � −1. We find that

A − (−1)I �
[
0 0
0 0

]
,

which says that every two-dimensional vector v satisfies (A − (−1)I)v � 0. Therefore, every
vector is an eigenvector and so E−1 � �2. This eigenspace is two-dimensional.

We can see this in another way. The matrix transformation defined by A rotates vectors by
180◦, which says that Ax � −x for every vector x. In other words, every two-dimensional
vector is an eigenvector with associated eigenvalue λ � −1.

These last two examples illustrate two types of behavior when there is a single eigenvalue.
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In one case, we are able to construct a basis of�2 using eigenvectors; in the other, we are not.
We will explore this behavior more in the next subsection.

A check on our work.
When finding eigenvalues and their associated eigenvectors in this way, we first find
eigenvalues λ by solving the characteristic equation. If λ is a solution to the charac-
teristic equation, then A−λI is not invertible and, consequently, A−λI must contain
a row without a pivot position.

This serves as a check on our work. If we row reduce A − λI and find the identity
matrix, then we have made an error either in solving the characteristic equation or in
finding Nul(A − λI).

4.2.3 The characteristic polynomial and the dimension of eigenspaces

Given a square n × n matrix A, we saw in the previous section the value of being able to
express any vector in�n as a linear combination of eigenvectors of A. For this reason, Ques-
tion 4.1.8 asks when we can construct a basis of �n consisting of eigenvectors. We will ex-
plore this question more fully now.

Aswe saw above, the eigenvalues of A are the solutions of the characteristic equation det(A−
λI) � 0. The examples we have considered demonstrate some different types of behavior.
For instance, we have seen the characteristic equations

• (4 − λ)(−2 − λ)(3 − λ) � 0, which has real and distinct roots,

• (2 − λ)2 � 0, which has repeated roots, and

• λ2 + 1 � (i − λ)(−i − λ) � 0, which has complex roots.

If A is an n × n matrix, then the characteristic polynomial is a degree n polynomial, and this
means that it has n roots. Therefore, the characteristic equation can be written as

det(A − λI) � (λ1 − λ)(λ2 − λ) . . . (λn − λ) � 0

giving eigenvalues λ1 , λ2 , . . . , λn . Aswehave seen, some of the eigenvaluesmay be complex.
Moreover, some of the eigenvalues may appear in this list more than once. However, we can
always write the characteristic equation in the form

(λ1 − λ)m1(λ2 − λ)m2 . . . (λp − λ)mp � 0.

The number of times that λ j −λ appears as a factor in the characteristic polynomial, is called
the multiplicity of the eigenvalue λ j .

Example 4.2.7 We have seen that the matrix A �

[
1 1

−1 3

]
has the characteristic equation

(2 − λ)2 � 0. This matrix has a single eigenvalue λ � 2, which has multiplicity 2.
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Example 4.2.8 If a matrix has the characteristic equation

(4 − λ)2(−5 − λ)(1 − λ)7(3 − λ)2 � 0,

then that matrix has four eigenvalues: λ � 4 having multiplicity 2; λ � −5 having multi-
plicity 1; λ � 1 having multiplicity 7; and λ � 3 having multiplicity 2. The degree of the
characteristic polynomial is the sum of the multiplicities 2 + 1 + 7 + 2 � 12 so this matrix
must be a 12 × 12 matrix.

The multiplicities of the eigenvalues are important because they influence the dimension of
the eigenspaces. We know that the dimension of an eigenspace must be at least one; the
following proposition also tells us the dimension of an eigenspace can be no larger than the
multiplicity of its associated eigenvalue.

Proposition 4.2.9 If λ is a real eigenvalue of the matrix A with multiplicity m, then

1 ≤ dim Eλ ≤ m.

Example 4.2.10The diagonalmatrix
[
−1 0

0 −1

]
has the characteristic equation (−1−λ)2 � 0.

There is a single eigenvalue λ � −1 having multiplicity m � 2, and we saw earlier that
dim E−1 � 2 ≤ m � 2.

Example 4.2.11 The matrix
[

1 1
−1 3

]
has the characteristic equation (2 − λ)2 � 0. This tells

us that there is a single eigenvalue λ � 2 having multiplicity m � 2. In contrast with the
previous example, we have dim E2 � 1 ≤ m � 2.

Example 4.2.12 We saw earlier that thematrix


4 2 3
0 −2 −1
0 0 3

 has the characteristic equation

(4 − λ)(−2 − λ)(3 − λ) � 0.

There are three eigenvalues λ � 3,−2, 1 each having multiplicity 1. By the proposition, we
are guaranteed that the dimension of each eigenspace is 1; that is,

dim E3 � dim E−2 � dim E1 � 1.

It turns out that this is enough to guarantee that there is a basis of�3 consisting of eigenvec-
tors.
Example 4.2.13 If a 12 × 12 matrix has the characteristic equation

(4 − λ)2(−5 − λ)(1 − λ)7(3 − λ)2 � 0,
we know there are four eigenvalues λ � 4,−5, 1, 3. Without more information, all we can
say about the dimensions of the eigenspaces is

1 ≤ dim E4 ≤ 2
1 ≤ dim E−5 ≤ 1
1 ≤ dim E1 ≤ 7
1 ≤ dim E3 ≤ 2.
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We can guarantee that dim E−5 � 1, but we cannot be more specific about the dimensions of
the other eigenspaces.

Fortunately, if we have an n×n matrix, it frequently happens that the characteristic equation
has the form

(λ1 − λ)(λ2 − λ) . . . (λn − λ) � 0
where there are n distinct real eigenvalues, each of which has multiplicity 1. In this case,
the dimension of each of the eigenspaces dim Eλ j � 1. With a little work, it can be seen that
choosing a basis vector v j for each of the eigenspaces produces a basis for�n . We therefore
have the following proposition.

Proposition 4.2.14 If A is an n × n matrix having n distinct real eigenvalues, then there is a basis
of �n consisting of eigenvectors of A.

This proposition provides one answer to our Question 4.1.8. The next activity explores this
question further.

Activity 4.2.4.
a. Identify the eigenvalues, and their multiplicities, of an n × n matrix whose char-

acteristic polynomial is (2− λ)3(−3− λ)10(5− λ). What can you conclude about
the dimensions of the eigenspaces? What is the shape of the matrix? Do you
have enough information to guarantee that there is a basis of �n consisting of
eigenvectors?

b. Find the eigenvalues of
[

0 −1
4 −4

]
and state their multiplicities. Can you find a

basis of �2 consisting of eigenvectors of this matrix?

c. Consider the matrix A �


−1 0 2
−2 −2 −4

0 0 −2

 whose characteristic equation is

(−2 − λ)2(−1 − λ) � 0.

1. Identify the eigenvalues and their multiplicities.
2. For each eigenvalue λ, find a basis of the eigenspace Eλ and state its dimen-

sion.
3. Is there a basis of �3 consisting of eigenvectors of A?

d. Now consider the matrix A �


−5 −2 −6
−2 −2 −4

2 1 2

 whose characteristic equation is

also
(−2 − λ)2(−1 − λ) � 0.

1. Identify the eigenvalues and their multiplicities.
2. For each eigenvalue λ, find a basis of the eigenspace Eλ and state its dimen-

sion.
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3. Is there a basis of �3 consisting of eigenvectors of A?

e. Consider the matrix A �


−5 −2 −6

4 1 8
2 1 2

 whose characteristic equation is

(−2 − λ)(1 − λ)(−1 − λ) � 0.

1. Identify the eigenvalues and their multiplicities.
2. For each eigenvalue λ, find a basis of the eigenspace Eλ and state its dimen-

sion.
3. Is there a basis of �3 consisting of eigenvectors of A?

4.2.4 Using Sage to find eigenvalues and eigenvectors

We can use Sage to find the characteristic polynomial, eigenvalues, and eigenvectors of a
matrix. As we will see, however, some care is required when dealing with matrices whose
entries include decimals.

Activity 4.2.5. We will use Sage to find the eigenvalues and eigenvectors of a matrix.

Let’s begin with the matrix A �

[
−3 1

0 −3

]
.

a. We can find the characteristic polynomial of A bywriting A.charpoly('lambda').
Notice that we have to give Sage a variable in which to write the polynomial;
here, we use lambda though x works just as well.

A = matrix (2,2,[-3,1,0,-3])
A.charpoly( ' lambda ' )

The factored form of the characteristic polynomial may be more useful since it
will tell us the eigenvalues and their multiplicities. The factored characteristic
polynomial is found with A.fcp('lambda').

A = matrix (2,2,[-3,1,0,-3])
A.fcp( ' lambda ' )

b. If we only want the eigenvalues, we can use A.eigenvalues().

A = matrix (2,2,[-3,1,0,-3])
A.eigenvalues ()

Notice that themultiplicity of an eigenvalue is the number of times it is repeated
in the list of eigenvalues.
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c. Finally, we can find eigenvectors by A.eigenvectors_right(). (We are looking
for right eigenvalues since the vector v appears to the right of A in the definition
Av � λv.)

A = matrix (2,2,[-3,1,0,-3])
A.eigenvectors_right ()

At first glance, the result of this command can be a little confusing to interpret.
What we see is a list with one entry for each eigenvalue. For each eigenvalue,
there is a triple consisting of (i) the eigenvalue λ, (ii) a basis for Eλ, and (iii) the
multiplicity of λ.

d. When working with decimal entries, which are called floating point numbers in
computer science, we must remember that computers perform only approxi-
mate arithmetic. This is a problem when we wish to find the eigenvectors of

such a matrix. To illustrate, consider the matrix A �

[
0.4 0.3
0.6 0.7

]
.

1. Without using Sage, find the eigenvalues of this matrix.
2. What do you find for the reduced row echelon form of A − I?
3. Let’s now use Sage to determine the reduced row echelon form of A − I:

A = matrix (2 ,2 ,[0.4 ,0.3 ,0.6 ,0.7])
(A-identity_matrix (2)).rref()

What result does Sage report for the reduced row echelon form? Why is
this result not correct?

4. Because the arithmetic Sage performs with floating point entries is only
approximate, we are not able to find the eigenspace E1. In this next chapter,
wewill learn how to address this issue. In themeantime, we can get around
this problem by writing the entries in the matrix as rational numbers:

A = matrix (2 ,2 ,[4/10 ,3/10 ,6/10 ,7/10])
A.eigenvectors_right ()

4.2.5 Summary

In this section, we developed a technique for finding the eigenvalues and eigenvectors of an
n × n matrix A.

• The expression det(A−λI) is a degree n polynomial, known as the characteristic poly-
nomial of A. The eigenvalues of A are the roots of the characteristic polynomial found
by solving the characteristic equation det(A − λI) � 0.

• The set of eigenvectors associated to the eigenvalue λ forms a subspace of �n , the
eigenspace Eλ � Nul(A − λI).
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• If the factor (λ j − λ) appears m j times in the characteristic polynomial, we say that the
eigenvalue λ j has multiplicity m j and note that

1 ≤ dim Eλ j ≤ m j .

• If each of the eigenvalues is real and has multiplicity 1, then we can form a basis of�n

consisting of eigenvectors of A.

• We can use Sage to find the eigenvalues and eigenvalues of matrices. However, we
need to be careful working with floating point numbers since floating point arithmetic
is only an approximation.

4.2.6 Exercises

1. For each of the following matrices, find its characteristic polynomial, its eigenvalues,
and the multiplicity of each eigenvalue.

a. A �

[
4 −1
4 0

]
.

b. A �


3 −1 3
0 4 0
0 0 −6

 .
c. A �

[
−2 0

0 −2

]
.

d. A �

[
−1 2

2 2

]
.

2. Given an n × n matrix A, an important question, Question 4.1.8, asks whether we can
find a basis of �n consisting of eigenvectors of A. For each of the matrices in the pre-
vious exercise, find a basis of �n consisting of eigenvectors or state why such a basis
does not exist.

3. Determinewhether the following statements are true or false and provide a justification
for your response.

a. The eigenvalues of a matrix A are the entries on the diagonal of A.

b. If λ is an eigenvalue of multiplicity 1, then Eλ is one-dimensional.

c. If a matrix A is invertible, then λ � 0 cannot be an eigenvalue.

d. If A is a 13 × 13 matrix, the characteristic polynomial has degree less than 13.

e. The eigenspace Eλ of A is the same as the null space Nul(A − λI).
4. Provide a justification for your response to the following questions.

a. Suppose that A is a 3 × 3 matrix having eigenvalues λ � −3, 3,−5. What are the
eigenvalues of 2A?

b. Suppose that D is a diagonal 3 × 3 matrix. Why can you guarantee that there is a
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basis of �3 consisting of eigenvectors of D?

c. If A is a 3 × 3 matrix whose eigenvalues are λ � −1, 3, 5, can you guarantee that
there is a basis of �3 consisting of eigenvectors of A?

d. Suppose that the characteristic polynomial of a matrix A is

det(A − λI) � −λ3
+ 4λ.

What are the eigenvalues of A? Is A invertible? Is there a basis of �n consisting
of eigenvectors of A?

e. If the characteristic polynomial of A is

det(A − λI) � (4 − λ)(−2 − λ)(1 − λ),

what is the characteristic polynomial of A2? what is the characteristic polynomial
of A−1?

5. For each of the following matrices, use Sage to determine its eigenvalues, their multi-
plicities, and a basis for each eigenspace. For which matrices is it possible to construct
a basis for �3 consisting of eigenvectors?

a. A �


−4 12 −6

4 −5 4
11 −20 13


b. A �


1 −3 1

−4 8 −5
−8 17 −10


c. A �


3 −8 4

−2 3 −2
−6 12 −7


6. There is a relationship between the determinant of amatrix and the product of its eigen-

values.

a. We have seen that the eigenvalues of thematrix A �

[
1 2
2 1

]
are λ � 3,−1. What

is det A? What is the product of the eigenvalues of A?

b. Consider the triangular matrix A �


2 0 0

−1 −3 0
3 1 −2

 . What are the eigenvalues

of A? What is det A? What is the product of the eigenvalues of A?

c. Based on these examples, what do you think is the relationship between the de-
terminant of a matrix and the product of its eigenvalues?
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d. Suppose the characteristic polynomial is written as

det(A − λI) � (λ1 − λ)(λ2 − λ) . . . (λn − λ).

By substituting λ � 0 into this equation, explain why the determinant of a matrix
equals the product of its eigenvalues.

7. Consider the matrix A �

[
0.5 0.6

−0.3 1.4

]
.

a. Find the eigenvalues of A and a basis for their associated eigenspaces.

b. Suppose that x0 �

[
11
6

]
. Express x0 as a linear combination of eigenvectors of

A.

c. Define the vectors
x1 � Ax0

x2 � Ax1 � A2x0

x3 � Ax2 � A3x0

... �
...

.

Write x1, x2, and x3 as a linear combination of eigenvectors of A.

d. What happens to xk as k grows larger and larger?

8. Consider the matrix A �

[
0.4 0.3
0.6 0.7

]
a. Find the eigenvalues of A and a basis for their associated eigenspaces.

b. Suppose that x0 �

[
0
1

]
. Express x0 as a linear combination of eigenvectors of A.

c. Define the vectors
x1 � Ax0

x2 � Ax1 � A2x0

x3 � Ax2 � A3x0

... �
...

.

Write x1, x2, and x3 as a linear combination of eigenvectors of A.

d. What happens to xk as k grows larger and larger?
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4.3 Diagonalization, similarity, and powers of a matrix

The first example we considered in this chapter was the matrix A �

[
1 2
2 1

]
, which has

eigenvectors v1 �

[
1
1

]
and v2 �

[
−1

1

]
and associated eigenvalues λ1 � 3 and λ2 � −1.

In Subsection 4.1.2, we described how A is, in some sense, equivalent to the diagonal matrix

D �

[
3 0
0 −1

]
.

This equivalence is summarized by Figure 4.3.1. The diagonal matrix D has the geometric
effect of stretching vectors horizontally by a factor of 3 and flipping vectors vertically. The
matrix A has the geometric effect of stretching vectors by a factor of 3 in the v1 direction and
flipping them in the v2 direction. That is, the geometric effect of A is the same as that of D
when viewed in a basis of eigenvectors of A.

-2 2

-2

2

v1v2

-2 2

-2

2

3v1

−v2

Figure 4.3.1 The matrix A has the same geometric effect as the diagonal matrix D when
viewed in the basis of eigenvectors.

Our goal in this section is to express this geometric observation in algebraic terms. In doing
so, we will make precise the sense in which A and D are equivalent.

Preview Activity 4.3.1. In this preview activity, we will review some familiar proper-
ties about matrix multiplication that appear in this section.

a. Remember that matrix-vector multiplication constructs linear combinations of
the columns of the matrix. For instance, if A �

[
a1 a2

]
, express the product

A
[

2
−3

]
in terms of a1 and a2.

b. What is the product A
[

4
0

]
in terms of a1 and a2?

c. Next, remember how matrix-matrix multiplication is defined. Suppose that we
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have matrices A and B and that B �
[
b1 b2

]
. How can we express the matrix

product AB in terms of the columns of B?

d. Suppose that A is a matrix having eigenvectors v1 and v2 with associated eigen-
values λ1 � 4 and λ2 � −1. Express the product A(2v1 + 3v2) in terms of v1 and
v2.

e. Suppose that A is the matrix from the previous part and that P �
[
v1 v2

]
.

What is the matrix product

AP � A
[
v1 v2

]
?

4.3.1 Diagonalization of matrices

When working with an n × n matrix A, Subsection 4.1.2 demonstrated the value of having
a basis of �n consisting of eigenvectors of A. In fact, Proposition 4.2.9 tells us that if the
eigenvalues of A are real and distinct, then there is a such a basis. As we’ll see later, there
are other conditions on A that guarantee a basis of eigenvectors. For now, suffice it to say
that we can find a basis of eigenvectors for many matrices. With this assumption, we will
see how the matrix A is equivalent to a diagonal matrix D.

Activity 4.3.2. Suppose that A is a 2 × 2 matrix having eigenvectors v1 and v2 with
associated eigenvalues λ1 � 3 and λ2 � −6. Because the eigenvalues are real and
distinct, we know by Proposition 4.2.9 that these eigenvectors form a basis of �2.

a. What are the products Av1 and Av2 in terms of v1 and v2?

b. If we form the matrix P �
[
v1 v2

]
, what is the product AP in terms of v1 and

v2?

c. Use the eigenvalues to form the diagonal matrix D �

[
3 0
0 −6

]
and determine

the product PD in terms of v1 and v2.

d. The results from the previous two parts of this activity demonstrate that AP �

PD. Using the fact that the eigenvectors v1 and v2 form a basis of �2, explain
why P is invertible and that we must have A � PDP−1.

e. Suppose that A �

[
−3 6
3 0

]
. Verify that v1 �

[
1
1

]
and v2 �

[
2

−1

]
are eigen-

vectors of A with eigenvalues λ1 � 3 and λ2 � −6.

f. Use the Sage cell below to define the matrices P and D and then verify that
A � PDP−1.
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# enter the matrices P and D below
P =
D =
P*D*P.inverse ()

More generally, suppose that we have an n × n matrix A and that there is a basis of �n

consisting of eigenvectors v1 , v2 , . . . , vn of A with associated eigenvalues λ1 , λ2 , . . . , λn . If
we use the eigenvectors to form the matrix

P �
[
v1 v2 · · · vn

]
and the eigenvalues to form the diagonal matrix

D �


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . . 0

0 0 . . . λn


and apply the same reasoning demonstrated in the activity, we find that AP � PD and hence

A � PDP−1.

We have now seen the following proposition.

Proposition 4.3.2 If A is an n × n matrix and there is a basis {v1 , v2 , . . . , vn} of �n consisting
of eigenvectors of A having associated eigenvalues λ1 , λ2 , . . . , λn , then we can write A � PDP−1

where D is the diagonal matrix whose diagonal entries are the eigenvalues of A

D �


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . . 0

0 0 . . . λn


and the matrix P �

[
v1 v2 . . . vn

]
.

Example 4.3.3 We have seen that A �

[
1 2
2 1

]
has eigenvectors v1 �

[
1
1

]
and v2 �

[
−1

1

]
with associated eigenvalues λ1 � 3 and λ2 � −1. Forming the matrices

P �
[
v1 v2

]
�

[
1 −1
1 1

]
, D �

[
3 0
0 −1

]
,

we see that A � PDP−1.

This is the sense in which we mean that A is equivalent to a diagonal matrix D. The expres-
sion A � PDP−1 says that A, expressed in the basis defined by the columns of P, has the
same geometric effect as D, expressed in the standard basis e1 , e2 , . . . , en .
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Definition 4.3.4 We say that the matrix A is diagonalizable if there is a diagonal matrix D and
invertible matrix P such that

A � PDP−1.

Example 4.3.5 We will try to find a diagonalization of A �

[
−5 6
−3 4

]
whose characteristic

equation is
det(A − λI) � (−5 − λ)(4 − λ) + 18 � (−2 − λ)(1 − λ) � 0.

This shows that the eigenvalues of A are λ1 � −2 and λ2 � 1.

By constructing Nul(A − (−2)I), we find a basis for E−2 consisting of the vector v1 �

[
2
1

]
.

Similarly, a basis for E1 consists of the vector v2 �

[
1
1

]
. This shows that we can construct a

basis {v1 , v2} of �2 consisting of eigenvectors of A.

We now form the matrices

D �

[
−2 0

0 1

]
, P �

[
v1 v2

]
�

[
2 1
1 1

]
and verify that

PDP−1
�

[
2 1
1 1

] [
−2 0

0 1

] [
1 −1

−1 2

]
�

[
−5 6
−3 4

]
� A.

There are, in fact, many ways to diagonalize A. For instance, we could change the order of
the eigenvalues and eigenvectors and write

D �

[
1 0
0 −2

]
, P �

[
v2 v1

]
�

[
1 2
1 1

]
.

If we choose a different basis for the eigenspaces, we will also find a different matrix P that
diagonalizes A. The point is that there are many ways in which A can be written in the form
A � PDP−1.

Example 4.3.6 We will try to find a diagonalization of A �

[
0 4

−1 4

]
.

Once again, we find the eigenvalues by solving the characteristic equation:

det(A − λI) � −λ(4 − λ) + 4 � (2 − λ)2 � 0.

In this case, there is a single eigenvalue λ � 2.

We find a basis for the eigenspace E2 by describing Nul(A − 2I):

A − 2I �
[
−2 4
−1 2

]
∼
[

1 −2
0 0

]
.

This shows that the eigenspace E2 is one-dimensional with v1 �

[
2
1

]
forming a basis.
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In this case, there is not a basis of�2 consisting of eigenvectors of A, which tells us that A is
not diagonalizable.

In fact, if we only know that A � PDP−1, we can say that the columns of P are eigenvectors
of A and that the diagonal entries of D are the associated eigenvalues.

Proposition 4.3.7 An n×n matrix A is diagonalizable if and only if there is a basis of�n consisting
of eigenvectors of A.

Example 4.3.8 Suppose we know that A � PDP−1 where

D �

[
2 0
0 −2

]
, P �

[
v2 v1

]
�

[
1 1
1 2

]
.

The columns of P form eigenvectors of A so that v1 �

[
1
1

]
is an eigenvector of A with

eigenvalue λ1 � 2 and v2 �

[
1
2

]
is an eigenvector with eigenvalue λ2 � −2.

We can verify this by computing

A � PDP−1
�

[
6 −4
8 −6

]
and checking that Av1 �

[
1
1

]
� 2v1 and Av2 �

[
1
2

]
� −2v2.

Activity 4.3.3.
a. Find a diagonalization of A, if one exists, when

A �

[
3 −2
6 −5

]
.

b. Can the diagonal matrix

A �

[
2 0
0 −5

]
be diagonalized? If so, explain how to find the matrices P and D.

c. Find a diagonalization of A, if one exists, when

A �


−2 0 0

1 −3 0
2 0 −3

 .
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d. Find a diagonalization of A, if one exists, when

A �


−2 0 0

1 −3 0
2 1 −3

 .
e. Suppose that A � PDP−1 where

D �

[
3 0
0 −1

]
, P �

[
v2 v1

]
�

[
2 2
1 −1

]
.

1. Explain why A is invertible.
2. Find a diagonalization of A−1.
3. Find a diagonalization of A3.

4.3.2 Powers of a diagonalizable matrix

In several earlier examples, we have been interested in computing powers of a given matrix.

For instance, in Activity 4.1.3, we had the matrix A �

[
0.8 0.6
0.2 0.4

]
and an initial vector

x0 �

[
1000

0

]
, and we wanted to compute

x1 � Ax0

x2 � Ax1 � A2x0

x3 � Ax2 � A3x0.

In particular, we wanted to find xk � Akx0 and determine what happens as k becomes very
large. If a matrix A is diagonalizable, writing A � PDP−1 can help us understand powers of
A more easily.

Activity 4.3.4.
a. Let’s begin with the diagonal matrix

D �

[
2 0
0 −1

]
.

Find the powers D2, D3, and D4. What is Dk for a general value of k?

b. Suppose that A is a matrix with eigenvector v and associated eigenvalue λ; that
is, Av � λv. By considering A2v, explain why v is also an eigenvector of A with
eigenvalue λ2.
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c. Suppose that A � PDP−1 where

D �

[
2 0
0 −1

]
.

Remembering that the columns of P are eigenvectors of A, explain why A2 is
diagonalizable and find a diagonalization in terms of P and D.

d. Give another explanation of the diagonalizability of A2 by writing

A2
� (PDP−1)(PDP−1) � PD(P−1P)DP−1.

e. In the same way, find a diagonalization of A3, A4, and Ak .

f. Suppose that A is a diagonalizable 2 × 2 matrix with eigenvalues λ1 � 0.5 and
λ2 � 0.1. What happens to Ak as k becomes very large?

If A is diagonalizable, the activity demonstrates that any power of A is as well.

Proposition 4.3.9 If A � PDP−1, then Ak � PDkP−1. When A is invertible, we also have A−1 �

PD−1P−1.

Example 4.3.10 Let’s revisit Activity 4.1.3 where we had the matrix A �

[
0.8 0.6
0.2 0.4

]
and the

initial vector x0 �

[
1000

0

]
. We were interested in understanding the sequence of vectors

xk+1 � Axk , which means that xk � Akx0.

We can verify that v1 �

[
3
1

]
and v2 �

[
−1

1

]
are eigenvectors of A having associated

eigenvalues λ1 � 1 and λ2 � 0.2. This means that A � PDP−1 where

P �

[
3 −1
1 1

]
, D �

[
1 0
0 0.2

]
.

Therefore, the powers of A have the form Ak � PDkP−1.

Notice that Dk �

[
1k 0
0 0.2k

]
�

[
1 0
0 0.2k

]
. As k increases, 0.2k becomes closer and closer to

zero. This means that for very large powers k, we have

Dk ≈
[
1 0
0 0

]
and therefore

Ak
� PDkP−1 ≈ P

[
1 0
0 0

]
P−1

�

[ 3
4

3
4

1
4

1
4

]
.

Beginning with the vector x0 �

[
1000

0

]
, we find that xk � Akx0 ≈

[
750
250

]
when k is very

large.
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4.3.3 Similarity and complex eigenvalues

We have been interested in diagonalizing a matrix A because doing so relates a matrix A to
a simpler diagonal matrix D. In particular, the effect of multiplying a vector by A � PDP−1,
viewed in the basis defined by the columns of P, is the same as the effect of multiplying by
D in the standard basis.

Whilemanymatrices are diagonalizable, there are some that are not. For example, if amatrix
has complex eigenvalues, it is not possible to find a basis of �n consisting of eigenvectors,
which means that the matrix is not diagonalizable. In this case, however, we can still relate
the matrix to a simpler form that explains the geometric effect this matrix has on vectors.

Definition 4.3.11 We say that A is similar to B if there is an invertible matrix P such that
A � PBP−1.

Notice that a matrix is diagonalizable if and only if it is similar to a diagonal matrix. In case
a matrix A has complex eigenvalues, we will find a simpler matrix C that is similar to A and
note that A � PCP−1 has the same effect, when viewed in the basis defined by the columns
of P, as C, when viewed in the standard basis.

To begin, suppose that A is a 2 × 2 matrix having a complex eigenvalue λ � a + bi. It turns

out that A is similar to C �

[
a −b
b a

]
.

The next activity shows that C has a simple geometric
effect on �2. First, however, we will use polar coordi-
nates to rewrite C. As shown in the figure, the point
(a , b) defines r, the distance from the origin, and θ, the
angle formedwith the positive horizontal axis. We then
have

a � r cos θ
b � r sin θ.

Notice that the Pythagorean theorem says that r �√
a2 + b2.

(a, b)

a

b
r

θ

Activity 4.3.5. We begin by rewriting C in terms of r and θ and noting that

C �

[
a −b
b a

]
�

[
r cos θ −r sin θ
r sin θ r cos θ

]
�

[
r 0
0 r

] [
cos θ − sin θ
sin θ cos θ

]
.

a. Explainwhy C has the geometric effect of rotating vectors by θ and scaling them
by a factor of r.

b. Let’s now consider the matrix

A �

[
−2 2
−5 4

]
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whose eigenvalues are λ1 � 1+ i and λ2 � 1− i. We will choose to focus on one
of the eigenvalues λ1 � a + bi � 1 + i.

Form the matrix C using these values of a and b. Then rewrite the point (a , b)
in polar coordinates by identifying the values of r and θ. Explain the geometric
effect of multiplying vectors by C.

c. Suppose that P �

[
1 1
2 1

]
. Verify that A � PCP−1.

C =
P =
P*C*P.inverse ()

d. Explain why Ak � PCkP−1.

e. We formed the matrix C by choosing the eigenvalue λ1 � 1 + i. Suppose we
had instead chosen λ2 � 1 − i. Form the matrix C′ and use polar coordinates to
describe the geometric effect of C.

f. Using the matrix P′ �

[
1 −1
2 −1

]
, show that A � P′C′P′−1.

If the 2 × 2 matrix A has a complex eigenvalue λ � a + bi, it turns out that A is always

similar to the matrix C �

[
a −b
b a

]
, whose geometric effect on vectors can be described in

terms of a rotation and a scaling. There is, in fact, a method for finding the matrix P so that
A � PCP−1 that we’ll see in Exercise 4.3.5.8. For now, we note that A has the same geometric
effect as C, when viewed in the basis provided by the columns of P. We will put this fact to
use in the next section to understand certain dynamical systems.

Proposition 4.3.12 If A is a 2× 2 matrix with a complex eigenvalue λ � a + bi, then A is similar to

C �

[
a −b
b a

]
; that is, there is a matrix P such that A � PCP−1.

4.3.4 Summary

Our goal in this section has been to use the eigenvalues and eigenvectors of a matrix A to
relate A to a simpler matrix.

• We said that A is diagonalizable if we can write A � PDP−1 where D is a diagonal
matrix. The columns of P consist of eigenvectors of A and the diagonal entries of D
are the associated eigenvalues.

• An n × n matrix A is diagonalizable if and only if there is a basis of �n consisting of
eigenvectors of A.
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• We said that A and B are similar if there is an invertible matrix P such that A � PBP−1.
In this case, Ak � PBkP−1.

• If A is a 2 × 2 matrix with complex eigenvalue λ � a + bi, then A is similar to C �[
a −b
b a

]
. Writing the point (a , b) in polar coordinates r and θ, we see that C rotates

vectors through an angle θ and scales them by a factor of r �
√

a2 + b2.

4.3.5 Exercises

1. Determine whether the following matrices are diagonalizable. If so, find matrices D
and P such that A � PDP−1.

a. A �

[
−2 −2
−2 1

]
.

b. A �

[
−1 1
−1 −3

]
.

c. A �

[
3 −4
2 −1

]
.

d. A �


1 0 0
2 −2 0
0 1 4

 .
e. A �


1 2 2
2 1 2
2 2 1

 .
2. Determine whether the following matrices have complex eigenvalues. If so, find the

matrix C such that A � PCP−1.

a. A �

[
−2 −2
−2 1

]
.

b. A �

[
−1 1
−1 −3

]
.

c. A �

[
3 −4
2 −1

]
.

3. Determinewhether the following statements are true or false and provide a justification
for your response.

a. If A is invertible, then A is diagonalizable.

b. If A and B are similar and A is invertible, then B is also invertible.

c. If A is a diagonalizable n × n matrix, then there is a basis of �n consisting of
eigenvectors of A.
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d. If A is diagonalizable, then A10 is also diagonalizable.

e. If A is diagonalizable, then A is invertible.
4. Provide a justification for your response to the following questions.

a. If A is a 3 × 3 matrix having eigenvalues λ � 2, 3,−4, can you guarantee that A is
diagonalizable?

b. If A is a 2 × 2 matrix with a complex eigenvalue, can you guarantee that A is
diagonalizable?

c. If A is similar to the matrix B �


−5 0 0

0 −5 0
0 0 3

 , is A diagonalizable?

d. What can you say about a matrix that is similar to the identity matrix?

e. If A is a diagonalizable 2 × 2 matrix with a single eigenvalue λ � 4, what is A?

5. Describe geometric effect that the following matrices have on �2:

a. A �

[
2 0
0 2

]
b. A �

[
4 2
0 4

]
c. A �

[
3 −6
6 3

]
d. A �

[
4 0
0 −2

]
e. A �

[
1 3
3 1

]
6. We say that A is similar to B if there is a matrix P such that A � PBP−1.

a. If A is similar to B, explain why B is similar to A.

b. If A is similar to B and B is similar to C, explain why A is similar to C.

c. If A is similar to B and B is diagonalizable, explain why A is diagonalizable.

d. If A and B are similar, explain why A and B have the same characteristic polyno-
mial; that is, explain why det(A − λI) � det(B − λI).

e. If A and B are similar, explain why A and B have the same eigenvalues.

7. Suppose that A � PDP−1 where

D �

[
1 0
0 0

]
, P �

[
1 −2
2 1

]
.

a. Explain the geometric effect that D has on vectors in �2.
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b. Explain the geometric effect that A has on vectors in �2.

c. What can you say about A2 and other powers of A?

d. Is A invertible?
8. When A is a 2× 2 matrix with a complex eigenvalue λ � a + bi, we have said that there

is a matrix P such that A � PCP−1 where C �

[
a −b
b a

]
. In this exercise, we will learn

how to find the matrix P. As an example, we will consider the matrix A �

[
2 2

−1 4

]
.

a. Show that the eigenvalues of A are complex.

b. Choose one of the complex eigenvalues λ � a + bi and construct the usual matrix
C.

c. Using the same eigenvalue, we will find an eigenvector v where the entries of v
are complex numbers. As always, we will describe Nul(A − λI) by constructing
the matrix A − λI and finding its reduced row echelon form. In doing so, we will
necessarily need to use complex arithmetic.

d. We have now found a complex eigenvector v. Write v � v1− iv2 to identify vectors
v1 and v2 having real entries.

e. Construct the matrix P �
[

v1 v2
]
and verify that A � PCP−1.

9. For each of the following matrices, sketch the vector x �

[
1
0

]
and powers Akx for

k � 1, 2, 3, 4.
a.

A �

[
0 −1.4

1.4 0

]
.
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b.
A �

[
0 −0.8

0.8 0

]
.

c.
A �

[
0 −1
1 0

]
.

d. Consider a matrix of the form C �

[
a −b
b a

]
with r �

√
a2 + b2. What happens

when k becomes very large when

1. r < 1.
2. r � 1.
3. r > 1.

10. For each of the following matrices and vectors, sketch the vector x along with Akx for
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k � 1, 2, 3, 4.
a.

A �

[
1.4 0

0 0.7

]

x �

[
1
2

]
.

.

b.
A �

[
0.6 0

0 0.9

]

x �

[
4
3

]
.

c.
A �

[
1.2 0

0 1.4

]

x �

[
2
1

]
.
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d.
A �

[
0.95 0.25
0.25 0.95

]

x �

[
3
0

]
.

Find the eigenvalues and eigenvectors
of A to create your sketch.

e. If A is a 2 × 2 matrix with eigenvalues λ1 � 0.7 and λ2 � 0.5 and x is any vector,
what happens to Akx when k becomes very large?
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4.4 Dynamical systems

The last section demonstrated ways in which wemay relate a matrix, and the effect that mul-
tiplication has on vectors, to a simpler form. For instance, if there is a basis of�n consisting
of eigenvectors of A, we saw that A is similar to a diagonal matrix D. As a result, the effect
of multiplying vectors by A, when expressed using the basis of eigenvectors, is the same as
multiplying by D.

In this section, we will put these ideas to use as we explore discrete dynamical systems, first
encountered in Subsection 2.5.3. Recall that we used a state vector x to characterize the state
of some system at a particular time, such as the distribution of delivery trucks between two
locations. A matrix A described the transition of the state vector with Ax characterizing the
state of the system at a later time. Since we would like to understand how the state vector
evolves over time, we are interested in studying the sequence of vectors Akx.

Our goal in this section is to describe the types of behaviors that dynamical systems exhibit
and to develop a means of detecting these behaviors.

Preview Activity 4.4.1. Suppose that we have a diagonalizable matrix A � PDP−1

where
P �

[
1 −1
1 2

]
, D �

[
2 0
0 −3

]
.

a. Find the eigenvalues of A and find a basis for the associated eigenspaces.

b. Form a basis of�2 consisting of eigenvectors of A andwrite the vector x �

[
1
4

]
as a linear combination of basis vectors.

c. Write Ax as a linear combination of basis vectors.

d. For some power k, write Akx as a linear combination of basis vectors.

e. Find the vector A5x.

4.4.1 A first example

We will begin with a dynamical system that illustrates how the ideas we’ve been develop-
ing can help us understand the populations of two interacting species. There are several
possible ways in which two species may interact. For example, wolves on Isle Royale in
northernMichigan prey onmoose so this interaction is often called a predator-prey relation-
ship. Other interactions between species, such as bees and flowering plants, are mutually
beneficial for both species.

Activity 4.4.2. Suppose we have two species R and S that interact with each another
and that we record the change in their populations from year to year. When we begin
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our study, the populations, measured in thousands, are R0 and S0; after k years, the
populations are Rk and Sk .

If we know the populations in one year, suppose that the populations in the following
year are determined by the expressions

Rk+1 � 0.9Rk + 0.8Sk

Sk+1 � 0.2Rk + 0.9Sk .

This is an example of amutually beneficial relationship between two species. If species
S is not present, then Rk+1 � 0.9Rk , which means that the population of species R de-
creases every year. However, species R benefits from the presence of species S, which
helps R to grow by 80% of the population of species S. In the same way, S benefits
from the presence of R.

We will record the populations in a vector xk �

[
Rk

Sk

]
and note that xk+1 � Axk

where A �

[
0.9 0.8
0.2 0.9

]
.

a. Verify that

v1 �

[
2
1

]
, v2 �

[
−2

1

]
are eigenvectors of A and find their respective eigenvalues.

b. Suppose that initially x0 �

[
2
3

]
. Write x0 as a linear combination of the eigen-

vectors v1 and v2.

c. Write the vectors x1, x2, and x3 as linear combinations of the eigenvectors v1 and
v2.

d. What happens to xk after a very long time?

e. When k becomes very large, what happens to the ratio of the populations Rk/Sk?

f. After a very long time, by approximately what factor does the population of R
grow every year? By approximately what factor does the population of S grow
every year?

g. If we begin instead with x0 �

[
4
4

]
, what eventually happens to the ratio Rk/Sk

as k becomes very large?

This activity demonstrates the type of systems we will be considering. In particular, we will
have vectors xk that describe the state of the system at time k and a matrix A that describes
how the state evolves from one time to the next: xk+1 � Axk . The eigenvalues and eigen-
vectors of A provide the key that helps us understand how the vectors xk evolve and that
enables us to make long-range predictions.
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Let’s look at the specific example in the previous activity more carefully. We see that

xk+1 � Axk �

[
0.9 0.8
0.2 0.9

]
xk

and that the matrix A has eigenvectors v1 �

[
2
1

]
and v2 �

[
−2

1

]
with associated eigen-

values λ1 � 1.3 and λ2 � 0.5.

With initial populations x0 �

[
2
3

]
, we have

x0 � 2v1 + 1v2

x1 � 1.3 · 2v1 + 0.5 · 1v2

x2 � 1.32 · 2v1 + 0.52 · 1v2

xk � 1.3k · 2v1 + 0.5k · 1v2.

Let’s shift our perspective slightly. The eigenvectors v1 and v2 form a basis B of �2, which
says that A is diagonalizable; that is, A � PDP−1 where

P �
[

v1 v2
]
�

[
2 −2
1 1

]
, D �

[
1.3 0

0 0.5

]
.

The coordinate system defined by the basis B can be used to express the state vectors. For

instance, we can write the initial state vector x0 �

[
2
3

]
� 2v1 + v2, which means that

{x0}B �

[
2
1

]
. Moreover, x1 � Ax0 � (1.3) · 2v1 + (0.5) · 1v2 so that

{x1}B �

[
1.3 · 2
0.5 · 1

]
� D

[
2
1

]
� D {x0}B .

In the same way,

{x1}B � D {x0}B �

[
1.3 · 2
0.5 · 1

]
{x2}B � D {x1}B �

[
1.32 · 2
0.52 · 1

]
{x3}B � D {x2}B �

[
1.33 · 2
0.53 · 1

]
{xk}B �

[
1.3k · 2
0.5k · 1

]
.

More generally, we have
{Ax}B � D {x}B ,

which is a restatement of the fact that A is similar to D.
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Thinking about this geometrically, we begin with

the vector {x0}B �

[
2
1

]
. Subsequent vectors

{xk}B are obtained by scaling horizontally by a fac-
tor of 1.3 and scaling vertically by a factor 0.5. No-
tice how the points move along a curve away from
the origin becoming ever closer to the horizontal

axis. After a very long time, {xk}B ≈
[

1.3k · 2
0

]
.

{x0}B

To recover the behavior of the sequence
x0 , x1 , x2 , . . ., we change coordinate systems
using the basis defined by v1 and v2. Here, the
points move along a curve away from the origin
becoming ever closer to the line defined by v1. x0

v1v2

Eventually, the vectors become practically indistinguishable from a scalar multiple of v1 �[
2
1

]
since xk ≈ 1.3k · 2v1. This means that

xk �

[
Rk

Sk

]
≈ 1.3k · 2v1 �

[
1.3k · 4
1.3k · 2

]
.

This shows that
Rk/Sk ≈ (1.3k · 4)/(1.3k · 2) � 2

so that we expect the population of species R to eventually be about twice that of species S.

In addition, xk+1 ≈ 1.3xk so that Rk+1 ≈ 1.3Rk and Sk+1 ≈ 1.3Sk , which tells us that both
populations are multiplied by 1.3 every year meaning the annual growth rate for both pop-
ulations is about 30%.

In the same way, we can consider other possible initial populations x0 as shown in Fig-
ure 4.4.1. Regardless of x0, the population vectors, in the coordinates defined by B, are
scaled horizontally by a factor of 1.3 and vertically by a factor of 0.5. The sequence of points
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{xk}B , called trajectories, move along the curves, as shown on the left. In the standard coor-
dinate system, we see that the trajectories converge to the eigenspace E1.3.

Figure 4.4.1 The trajectories of the dynamical system formed by the matrix A in the coordi-
nate system defined by B, on the left, and in the standard coordinate system, on the right.

We conclude that, regardless of the initial populations, the ratio of the populations Rk/Sk
will approach 2 to 1 and that the growth rate for both populations approaches 30%. This
example demonstrates the power of using eigenvalues and eigenvectors to rewrite the prob-
lem in terms of a new coordinate system. By doing so, we are able to predict the long-term
behavior of the populations independently of the initial populations.

Diagrams like those shown in Figure 4.4.1 are called phase portraits. On the left of Figure 4.4.1

is the phase portrait of the diagonal matrix D �

[
1.3 0

0 0.5

]
while the right of that figure

shows the phase portrait of A �

[
0.9 0.8
0.2 0.9

]
. The phase portrait of D is relatively easy to

understand because it is determined only by the two eigenvalues. Once we have the phase
portrait of D, however, the phase portrait of A has a similar appearancewith the eigenvectors
v j replacing the standard basis vectors e j .

4.4.2 Classifying dynamical systems

In the previous example, wewere able to make predictions about the behavior of trajectories
xk � Akx0 by considering the eigenvalues and eigenvectors of thematrix A. The next activity
looks at a collection of matrices that demonstrate the types of behavior a 2 × 2 dynamical
system can exhibit.

Activity 4.4.3. We will now look at several more examples of dynamical systems. If

P �

[
1 −1
1 1

]
, we note that the columns of P form a basis B of �2. Given below are
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several matrices A written in the form A � PEP−1 for some matrix E. For each matrix,
state the eigenvalues of A and sketch a phase portrait for the matrix E on the left and
a phase portrait for A on the right. Describe the behavior of Akx0 as k becomes very
large for a typical initial vector x0.

a. A � PEP−1 where E �

[
1.3 0

0 1.5

]
.

b. A � PEP−1 where E �

[
0 −1
1 0

]
.

c. A � PEP−1 where E �

[
0.7 0

0 1.5

]
.
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d. A � PEP−1 where E �

[
0.3 0

0 0.7

]
.

e. A � PEP−1 where E �

[
1 −0.9

0.9 1

]
.

f. A � PEP−1 where E �

[
0.6 −0.2
0.2 0.6

]
.
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This activity demonstrates six possible types of dynamical systems, which are determined
by the eigenvalues of A.

• Suppose that A has two real eigenvalues λ1 and λ2 and that both |λ1 |, |λ2 | > 1. In this
case, any nonzero vector x0 forms a trajectory that moves away from the origin so we
say that the origin is a repellor. This is illustrated in Figure 4.4.2.

Figure 4.4.2 The origin is a repellor when |λ1 |, |λ2 | > 1.

• Suppose that A has two real eigenvalues λ1 and λ2 and that |λ1 | > 1 > |λ2 |. In this
case, most nonzero vectors x0 form trajectories that converge to the eigenspace Eλ1 . In
this case, we say that the origin is a saddle as illustrated in Figure 4.4.3.
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Figure 4.4.3 The origin is a saddle when |λ1 | > 1 > |λ2 |.

• Suppose that A has two real eigenvalues λ1 and λ2 and that both |λ1 |, |λ2 | < 1. In this
case, any nonzero vector x0 forms a trajectory that moves into the origin so we say that
the origin is an attractor. This is illustrated in Figure 4.4.4.

Figure 4.4.4 The origin is an attractor when |λ1 |, |λ2 | < 1.

• Suppose that A has a complex eigenvalue λ � a + bi where |λ | > 1. In this case, a
nonzero vector x0 forms a trajectory that spirals away from the origin. We say that the
origin is a spiral repellor, as illustrated in Figure 4.4.5.
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Figure 4.4.5 The origin is a spiral repellor when A has an eigenvalue λ � a + bi with
a2 + b2 > 1.

• Suppose that A has a complex eigenvalue λ � a + bi where |λ | � 1. In this case, a
nonzero vector x0 forms a trajectory that moves on a closed curve around the origin.
We say that the origin is a center, as illustrated in Figure 4.4.6.

Figure 4.4.6 The origin is a center when A has an eigenvalue λ � a+ bi with a2+ b2 � 1.

• Suppose that A has a complex eigenvalue λ � a + bi where |λ | < 1. In this case, a
nonzero vector x0 forms a trajectory that spirals into the origin. We say that the origin
is a spiral attractor, as illustrated in Figure 4.4.7.
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Figure 4.4.7 The origin is a spiral attractor when A has an eigenvalue λ � a + bi with
a2 + b2 < 1.

This list includes many types of expected behavior, but there are other possibilities if, for
instance, one of the eigenvalues is 0. The next section explores the situation when one of the
eigenvalues is 1.

Activity 4.4.4. In this activity, we will consider several ways in which two species
might interact with one another. Throughout, we will consider two species R and S

whose populations in year k form a vector xk �

[
Rk

Sk

]
and which evolve according

to the rule
xk+1 � Axk .

a. Suppose that A �

[
0.7 0

0 1.6

]
.

Explainwhy the species do not interact with one another. Which of the six types
of dynamical systems do we have? What happens to both species after a long
time?

b. Suppose now that A �

[
0.7 0.3

0 1.6

]
.

Explain why S is a beneficial species for R. Which of the six types of dynamical
systems do we have? What happens to both species after a long time?

c. If A �

[
0.7 0.5

−0.4 1.6

]
, explainwhy this describes a predator-prey system. Which

of the species is the predator and which is the prey? Which of the six types of
dynamical systems dowe have? What happens to both species after a long time?

d. Suppose that A �

[
0.5 0.2

−0.4 1.1

]
. Compare this predator-prey system to the one

in the previous part. Which of the six types of dynamical systems do we have?
What happens to both species after a long time?
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4.4.3 A 3 × 3 system

Up to this point, we have focused on 2 × 2 systems. In fact, the general case is quite similar.
As an example, consider a 3 × 3 system xk+1 � Axk where the matrix A has eigenvalues
λ1 � 0.6, λ2 � 0.8, and λ3 � 1.1. Since the eigenvalues are real and distinct, there is a basis
B consisting of eigenvectors of A so we can look at the trajectories {xk}B in the coordinate
system defined by B. The phase portraits in Figure 4.4.8 show how some representative
trajectories will evolve. We see that all the trajectories will converge into the eigenspace E1.1.

x1

x2

x3

x1

x2

x3

Figure 4.4.8 In a 3 × 3 system with λ1 � 0.6, λ2 � 0.8, and λ3 � 1.1, the trajectories {xk}B
move along the curves shown above.

In the same way, suppose we have a 3 × 3 system with complex eigenvalues λ � 0.8 ± 0.5i
and λ3 � 1.1. Since the complex eigenvalues satisfy |λ | < 1, there is a two-dimensional sub-
space in which the trajectories spiral in toward the origin. The phase portraits in Figure 4.4.9
show some of the trajectories. Once again, we see that all the trajectories converge into the
eigenspace E1.1.
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x1

x2

x3

x1

x2

x3

Figure 4.4.9 In a 3× 3 system with complex eigenvalues λ � a ± bi with |λ | < 1 and λ3 � 1.1,
the trajectories {xk}B move along the curves shown above.

Activity 4.4.5. The following type of analysis has been used to study the population
of a bison herd. We will divide the population of female bison into three groups:
juveniles who are less than one year old; yearlings between one and two years old;
and adults who are older than two years.
Each year,

• 80% of the juveniles survive to be-
come yearlings.

• 90% of the yearlings survive to be-
come adults.

• 80% of the adults survive.

• 40% of the adults give birth to a juve-
nile.

40% 80%

90%

80%

Juveniles

YearlingsAdults

By Jk , Yk , and Ak , we denote the number of juveniles, yearlings, and adults in year k.
We have

Jk+1 � 0.4Ak .

a. Find similar expressions for Yk+1 and Ak+1 in terms of Jk , Yk , and Ak .

b. As is usual, we write the matrix xk �


Jk

Yk

Ak

 . Write the matrix A such that

xk+1 � Axk and find its eigenvalues.
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c. We can write A � PEP−1 where the matrices E and P are approximately:

E �


1.058 0 0

0 −0.128 −0.506
0 0.506 −0.128

 ,

P �


1 1 0

0.756 −0.378 1.486
2.644 −0.322 −1.264

 .
Make a prediction about the long-term behavior of xk . For instance, at what
rate does it grow? For every 100 adults, how many juveniles, and yearlings are
there?

d. Suppose that the birth rate decreases so that only 30% of adults give birth to a
juvenile. How does this affect the long-term growth rate of the herd?

e. Suppose that the birth rate decreases further so that only 20% of adults give
birth to a juvenile. How does this affect the long-term growth rate of the herd?

f. Find the smallest birth rate that supports a stable population.

4.4.4 Summary

Wehave been exploring discrete dynamical systems inwhich an initial state vector x0 evolves
over time according to the rule xk+1 � Axk . The eigenvalues and eigenvectors of A help us
understand the behavior of the state vectors. In the 2 × 2 case, we saw that

• |λ1 |, |λ2 | < 1 produces an attractor so that trajectories are pulled in toward the origin.

• |λ1 | > 1 and |λ2 | < 1 produces a saddle in which most trajectories are pushed away
from the origin and in the direction of Eλ1 .

• |λ1 |, |λ2 | > 1 produces a repellor inwhich trajectories are pushed away from the origin.

The same kind of reasoning allows us to analyze n × n systems as well.

4.4.5 Exercises

1. For each of the 2 × 2 matrices below, find the eigenvalues and, when appropriate, the
eigenvectors to classify the dynamical system xk+1 � Axk . Use this information to
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sketch the phase portraits.

a. A �

[
3 1
1 3

]
.

b. A �

[
3 −2
4 −1

]
.

c. A �

[
1.9 1.4

−0.7 −0.2

]
.

d. A �

[
1.1 −0.2
0.4 0.5

]
.

2. We will consider matrices that have the form A � PDP−1 where

D �

[
p 0
0 1

2

]
, P �

[
2 −2
1 1

]
where p is a parameter that we will vary. Sketch phase portraits for D and A below
when

a. p �
1
2 .

b. p � 1.
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c. p � 2.

d. For the different values of p, determine which types of dynamical system results.
For what range of p values do we have an attractor? For what range of p values
do we have a saddle? For what value does the transition between the two types
occur?

3. Suppose that the populations of two species interact according to the relationships

Rk+1 �
1
2 Rk +

1
2Sk

Sk+1 � − pRk + 2Sk

where p is a parameter. As we saw in the text, this dynamical system represents a
typical predator-prey relationship, and the parameter p represents the rate at which

species R preys on S. We will denote the matrix A �

[ 1
2

1
2

−p 2

]
.

a. If p � 0, determine the eigenvectors and eigenvalues of the system and classify
it as one of the six types. Sketch the phase portraits for the diagonal matrix D to
which A is similar as well as the phase portrait for A.

R

S

b. If p � 1, determine the eigenvectors and eigenvalues of the system. Sketch the
phase portraits for the diagonal matrix D to which A is similar as well as the
phase portrait for A.
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R

S

c. For what values of p is the origin a saddle? What can you say about the popula-
tions when this happens?

d. Describe the evolution of the dynamical system as p begins at 0 and increases to
p � 1.

4. Consider the matrices

A �

[
3 2
−5 −3

]
, B �

[
5 7
−3 −4

]
.

a. Find the eigenvalues of A. To which of the six types does the system xk+1 � Axk
belong?

b. Using the eigenvalues of A, we can write A � PEP−1 for some matrices E and P.
What is the matrix E and what geometric effect does multiplication by E have on
vectors in the plane?

c. If we remember that Ak � PEkP−1, determine the smallest positive value of k for
which Ak � I.

d. Find the eigenvalues of B.

e. Find a matrix E such that B � PEP−1 for some matrix P. What geometric effect
does multiplication by E have on vectors in the plane?

f. Determine the smallest positive value of k for which Bk � I.
5. Suppose we have the female population of a species is divided into juveniles, yearlings,

and adults and that each year
• 90% of the juveniles live to be yearlings.

• 80% of the yearlings live to be adults.

• 60% of the adults survive to the next year.

• 50% of the adults give birth to a juvenile.

a. Set up a system of the form xk+1 � Axk that describes this situation.
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b. Find the eigenvalues of the matrix A.

c. What prediction can you make about these populations after a very long time?

d. If the birth rate goes up to 80%, what prediction can you make about these pop-
ulations after a very long time? For every 100 adults, how many juveniles, and
yearlings are there?

6. Determinewhether the following statements are true or false and provide a justification
for your response. In each case, we are considering a dynamical system of the form
xk+1 � Axk .

a. If the 2×2 matrix A has a complex eigenvalue, we cannotmake a prediction about
the behavior of the trajectories.

b. If A has eigenvalues whose absolute value is smaller than 1, then all the trajecto-
ries are pulled in toward the origin.

c. If the origin is a repellor, then it is an attractor for the system xk+1 � A−1xk .

d. If a 4 × 4 matrix has complex eigenvalues λ1, λ2, λ3, and λ4, all of which satisfy
|λ j | > 1, then all the trajectories are pushed away from the origin.

e. If the origin is a saddle, then all the trajectories are pushed away from the origin.
7. The Fibonacci numbers form the sequence of numbers that begins 0, 1, 1, 2, 3, 5, 8, 13, . . ..

If we let Fn denote the nth Fibonacci number, then

F0 � 0, F1 � 1, F2 � 1, F3 � 2, F4 � 3, . . . .

In general, a Fibonacci number is the sum of the previous two Fibonacci numbers; that
is, Fn+2 � Fn + Fn+1 so that we have

Fn+2 � Fn + Fn+1

Fn+1 � Fn+1.

a. If we write xn �

[
Fn+1

Fn

]
, find the matrix A such that xn+1 � Axn .

b. Show that A has eigenvalues

λ1 �
1 +

√
5

2 ≈ 1.61803 . . .

λ2 �
1 −

√
5

2 ≈ −0.61803 . . .

with associated eigenvectors v1 �

[
λ1

1

]
and v2 �

[
λ2

1

]
.

c. Classify this dynamical system as one of the six types that we have seen in this
section. What happens to xn as n becomes very large?
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d. Write the initial vector x0 �

[
1
0

]
as a linear combination of eigenvectors v1 and

v2.

e. Write the vector xn as a linear combinations of v1 and v2.

f. Explain why the nth Fibonacci number

Fn �
1√
5

[(
1 +

√
5

2

)n

−
(
1 −

√
5

2

)n]
.

g. Use this relationship to compute F20.

h. Explain why Fn+1/Fn ≈ λ1 when n is very large.

The number λ1 �
1+

√
5

2 � ϕ is called the golden ratio and is one of mathematics’ special
numbers.

8. This exercise is a continuation of the previous one.

The Lucas numbers Ln are defined by the same relationship as the Fibonacci numbers:
Ln+2 � Ln+1 + Ln . However, we begin with L0 � 2 and L1 � 1, which leads to the
sequence 2, 1, 3, 4, 7, 11, . . ..

a. As before, form the vector xn �

[
Ln+1

Ln

]
so that xn+1 � Axn . Express x0 as a

linear combination of v1 and v2, eigenvectors of A.

b. Explain why

Ln �

(
1 +

√
5

2

)n

+

(
1 −

√
5

2

)n

.

c. Explain why Ln is the closest integer to ϕn when n is large, where ϕ � λ1 is the
golden ratio.

d. Use this observation to find L20.
9. Gil Strang defines the Gibonacci numbers Gn as follows. We begin with G0 � 0 and

G1 � 1. A subsequent Gibonacci number is the average of the two previous; that is,
Gn+2 �

1
2 (Gn + Gn+1). We then have

Gn+2 �
1
2 Gn +

1
2 Gn+1

Gn+1 � Gn+1.

a. If xn �

[
Gn+1

Gn

]
, find the matrix A such that xn+1 � Axn .

b. Find the eigenvalues and associated eigenvectors of A.

c. Explain why this dynamical system does not neatly fit into one of the six types
that we saw in this section.
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d. Write x0 as a linear combination of eigenvectors of A.

e. Write xn as a linear combination of eigenvectors of A.

f. What happens to Gn as n becomes very large?
10. Consider a small rodent that lives for three years. Once again, we can separate a popu-

lation of females into juveniles, yearlings, and adults. Suppose that, each year,
• Half of the juveniles live to be yearlings.

• One quarter of the yearlings live to be adults.

• Adult females produce eight female offspring.

• None of the adults survive to the next year.

a. Writing the populations of juveniles, yearlings, and adults in year k using the

vector xk �


Jk

Yk

Ak

 , find the matrix A such that xk+1 � Axk .

b. Show that A3 � I.

c. What are the eigenvalues of A3? What does this say about the eigenvalues of A?

d. Verify your observation by finding the eigenvalues of A.

e. What can you say about the trajectories of this dynamical system?

f. What does this mean about the population of rodents?

g. Find a population vector x0 that is unchanged from year to year.
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4.5 Markov chains and Google’s PageRank algorithm

In the last section, we used our understanding of eigenvalues and eigenvectors to describe
the long-term behavior of some discrete dynamical systems. The state of the system, which
could record, say, the populations of a few interacting species, at one time is described by a
vector xk . The state vector then evolves according to a linear rule xk+1 � Axk .

This section continues this exploration by looking at Markov chains, which form a specific
type of discrete dynamical system. For instance, we could be interested in a rental car com-
pany that rents cars from several locations. From one day to the next, the number of cars
at different locations can change, but the total number of cars stays the same. Once again,
an understanding of eigenvalues and eigenvectors will help us make predictions about the
long-term behavior of the system.

Preview Activity 4.5.1. Suppose that our rental car company rents from two locations
P and Q. We find that 80% of the cars rented from location P are returned to P while
the other 20% are returned to Q. For cars rented from location Q, 60% are returned
to Q and 40% to P.

We will use Pk and Qk to denote the number of cars at the two locations on day k. The
following day, the number of cars at P equals 80% of Pk and 40% of Qk . This shows
that

Pk+1 � 0.8Pk + 0.4Qk

Qk+1 � 0.2Pk + 0.6Qk .

a. If we use the vector xk �

[
Pk

Qk

]
to represent the distribution of cars on day k,

find a matrix A such that xk+1 � Axk .

b. Find the eigenvalues and associated eigenvectors of A.

c. Suppose that there are initially 1500 cars, all of which are at location P. Write
the vector x0 as a linear combination of eigenvectors of A.

d. Write the vectors xk as a linear combination of eigenvectors of A.

e. What happens to the distribution of cars after a long time?

4.5.1 A first example

In the preview activity, the distribution of rental cars was described by the discrete dynam-
ical system

xk+1 � Axk �

[
0.8 0.4
0.2 0.6

]
xk .

This matrix has some special properties. First, each entry represents the probability that a
car rented at one location is returned to another. For instance, there is an 80% chance that
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a car rented at P is returned to P, which explains the entry of 0.8 in the upper left corner.
Therefore, the entries of the matrix are between 0 and 1.

Second, a car rented at one location must be returned to one of the locations. For example,
since 80% of the cars rented at P are returned to P, it follows that the other 20% of cars rented
at P are returned to Q. This implies that the entries in each column must add to 1. This will
occur frequently in our discussion so we introduce the following definitions.

Definition 4.5.1 A vector whose entries are nonnegative and add to 1 is called a probability
vector. A square matrix whose columns are probability vectors is called a stochastic matrix.

Activity 4.5.2. Suppose you live in a country with three political parties P, Q, and
R. We use Pk , Qk , and Rk to denote the percentage of voters voting for that party in
election k.
Voters will change parties from one election to
the next as shown in the figure. We see that 60%
of voters stay with the same party. However,
40% of those who vote for party P will vote for
party Q in the next election.

P

QR

0.6

0.6 0.6

0.40.2

00

0.4

0.2

a. Write expressions for Pk+1, Qk+1, and Rk+1 in terms of Pk , Qk , and Rk .

b. If we write xk �


Pk

Qk

Rk

 , find the matrix A such that xk+1 � Axk .

c. Explain why A is a stochastic matrix.

d. Suppose that initially 40% of citizens vote for party P, 30% vote for party Q, and
30% vote for party R. Form the vector x0 and explain why x0 is a probability
vector.

e. Find x1, the percentageswho vote for the three parties in the next election. Verify
that x1 is also a probability vector and explainwhy xk will be a probability vector
for every k.

f. Find the eigenvalues of the matrix A and explain why the eigenspace E1 is a

one-dimensional subspace of�3. Then verify that v �


1
2
2

 is a basis vector for

E1.
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g. As every vector in E1 is a scalar multiple of v, find a probability vector in E1 and
explain why it is the only probability vector in E1.

h. Describe what happens to xk after a very long time.

The previous activity illustrates some important points that we wish to emphasize.

First, to determine Pk+1, we note that in election k + 1, party P retains 60% of its voters from
the previous election and adds 20% of those who voted for party R. In this way, we see that

Pk+1 � 0.6Pk +0.2Rk

Qk+1 � 0.4Pk + 0.6Qk + 0.2Rk

Rk+1 � 0.4Qk + 0.6Rk

We therefore define the matrix

A �


0.6 0 0.2
0.4 0.6 0.2

0 0.4 0.6


and note that xk+1 � Axk .

If we consider the first column of A, we see that the entries represent the percentages of
party P’s voters in the last election who vote for each of the three parties in the next election.
Since everyone who voted for party P previously votes for one of the three parties in the
next election, the sum of these percentages must be 1. This is true for each of the columns
of A, which explains why A is a stochastic matrix.

We beginwith the vector x0 �


0.4
0.3
0.3

 , the entries ofwhich represent the percentage of voters

voting for each of the three parties. Since every voter votes for one of the three parties, the
sum of these entries must be 1, which means that x0 is a probability vector. We then find
that

x1 �


0.300
0.400
0.300

 , x2 �


0.240
0.420
0.340

 , x3 �


0.212
0.416
0.372

 , . . . ,
x5 �


0.199
0.404
0.397

 , . . . , x10 �


0.200
0.400
0.400

 , . . .

.

Notice that the vectors xk are also probability vectors and that the sequence xk seems to be

converging to


0.2
0.4
0.4

 . It is this behavior that we would like to understand more fully by

investigating the eigenvalues and eigenvectors of A.

We find that the eigenvalues of A are

λ1 � 1, λ2 � 0.4 + 0.2i , λ3 � 0.4 − 0.2i.
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Notice that if v is an eigenvector of A with associated eigenvalue λ1 � 1, then Av � 1v � v.
That is, v is unchanged when we multiply it by A.

Otherwise, we have A � PEP−1 where

E �


1 0 0
0 0.4 −0.2
0 0.2 0.4


Notice that |λ2 | � |λ3 | < 1 so the trajectories xk spi-
ral into the eigenspace E1 as indicated in the figure.

x3

x2

x1

This tells us that the sequence xk converges to a vector in E1. In the usual way, we see that

v �


1
2
2

 is a basis vector for E1 because Av � v so we expect that xk will converge to a

scalar multiple of v. Indeed, since the vectors xk are probability vectors, we expect them to
converge to a probability vector in E1.

We can find the probability vector in E1 by finding the appropriate scalar multiple of v. No-

tice that cv �


c

2c
2c

 is a probability vector when c + 2c + 2c � 5c � 1, which implies that

c � 1/5. Therefore, q �


0.2
0.4
0.4

 is the unique probability vector in E1. Since the sequence xk

converges to a probability vector in E1, we see that xk converges to q, which agrees with the
computations we showed above.

The role of the eigenvalues is important in this example. Since λ1 � 1, we can find a proba-
bility vector q that is unchanged by multiplication by A. Also, the other eigenvalues satisfy
|λ j | < 1, which means that all the trajectories get pulled in to the eigenspace E1. Since xk is
a sequence of probability vectors, these vectors converge to the probability vector q as they
are pulled into E1.

4.5.2 Markov chains

If we have a stochastic matrix A and a probability vector x0, we can form the sequence xk
where xk+1 � Axk . We call this sequence of vectors a Markov chain. Exercise 4.5.5.6 explains
why we can guarantee that the vectors xk are probability vectors.

In the example that studied voting patterns, we constructed a Markov chain that described
how the percentages of voters choosing different parties changed from one election to the



4.5. MARKOV CHAINS AND GOOGLE’S PAGERANK ALGORITHM 295

next. We saw that the Markov chain converges to q �


0.2
0.4
0.4

 , a probability vector in the

eigenspace E1. In other words, q is a probability vector that is unchanged under multiplica-
tion by A; that is, Aq � q. This implies that, after a long time, 20% of voters choose party P,
40% choose Q, and 40% choose R.

Definition 4.5.2 If A is a stochastic matrix, we say that a probability vector q is a steady-state
or stationary vector if Aq � q.

An important question that arises from our previous example is

Question 4.5.3 If A is a stochastic matrix and xk aMarkov chain, does xk converge to a steady-
state vector?

Activity 4.5.3. Consider the matrices

A �

[
0 1
1 0

]
, B �

[
0.4 0.3
0.6 0.7

]
.

a. Verify that both A and B are stochastic matrices.

b. Find the eigenvalues of A and then find a steady-state vector for A.

c. We will form the Markov chain beginning with the vector x0 �

[
1
0

]
and defin-

ing xk+1 � Axk . The Sage cell below constructs the first N terms of the Markov
chain with the command markov_chain(A, x0, N). Define the matrix A and vec-
tor x0 and evaluate the cell to find the first 10 terms of the Markov chain.

def markov_chain(A, x0, N):
for i in range(N):

x0 = A*x0
print (x0)

## define the matrix A and x0
A =
x0 =
markov_chain(A, x0, 10)

What do younotice about theMarkov chain? Does it converge to the steady-state
vector for A?

d. Now find the eigenvalues of B along with a steady-state vector for B.

e. As before, find the first 10 terms in theMarkov chain beginning with x0 �

[
1
0

]
and xk+1 � Bxk . What do you notice about the Markov chain? Does it converge
to the steady-state vector for B?

f. What condition on the eigenvalues of a stochastic matrix will guarantee that a
Markov chain will converge to a steady-state vector?
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As this activity implies, the eigenvalues of a stochasticmatrix tell uswhether aMarkov chain
will converge to a steady-state vector. Here are a few important facts about the eigenvalues
of a stochastic matrix.

• As is demonstrated in Exercise 4.5.5.8, λ � 1 is an eigenvalue of any stochastic matrix.
We usually order the eigenvalues so it is the first eigenvalue meaning that λ1 � 1.

• All other eigenvalues satisfy the property that |λ j | ≤ 1.

• Any stochastic matrix has at least one steady-state vector q.

As illustrated in the activity, a Markov chain could fail to converge to a steady-state vector

if |λ2 | � 1. This happens for the matrix A �

[
0 1
1 0

]
, whose eigenvalues are λ1 � 1 and

λ2 � −1.

However, if all but the first eigenvalue satisfy |λ j | < 1, then there is a unique steady-state
vector q and any Markov chain will converge to q. This was the case for the matrix B �[

0.4 0.3
0.6 0.7

]
, whose eigenvalues are λ1 � 1 and λ2 � 0.1. In this case, any Markov chain

will converge to the unique steady-state vector q �

[ 1
3
2
3

]
.

In this way, we see that the eigenvalues of a stochastic matrix tell us whether aMarkov chain
will converge to a steady-state vector. However, it is somewhat inconvenient to compute the
eigenvalues to answer this question. Is there someway to conclude that everyMarkov chain
will converge to a steady-state vector without actually computing the eigenvalues? It turns
out that there is a simple condition on the matrix A that guarantees this.

Definition 4.5.4 We say that amatrix A is positive if either A or some power Ak has all positive
entries.

Example 4.5.5 The matrix A �

[
0 1
1 0

]
is not positive. We can see this because some of the

entries of A are zero and therefore not positive. In addition, we see that A2 � I, A3 � A and
so forth. Therefore, every power of A also has some zero entries, which means that A is not
positive.

The matrix B �

[
0.4 0.3
0.6 0.7

]
is positive because every entry of B is positive.

Also, the matrix C �

[
0 0.5
1 0.5

]
clearly has a zero entry. However, C2 �

[
0.5 0.25
0.5 0.75

]
,

which has all positive entries. Therefore, we see that C is a positive matrix.

Positive matrices are important because of the following theorem.

Theorem 4.5.6 Perron-Frobenius. If A is a positive stochastic matrix, then the eigenvalues satisfy
λ1 � 1 and |λ j | < 1 for j > 1. This means that A has a unique positive, steady-state vector q and
that every Markov chain defined by A will converge to q.
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Activity 4.5.4. We will explore the meaning of the Perron-Frobenius theorem in this
activity.

a. Consider the matrix C �

[
0 0.5
1 0.5

]
. This is a positive matrix, as we saw in

the previous example. Find the eigenvectors of C and verify there is a unique
steady-state vector.

b. Using the Sage cell below, construct the Markov chain with initial vector x0 �[
1
0

]
and describe what happens to xk as k becomes large.

def markov_chain(A, x0, N):
for i in range(N):

x0 = A*x0
print (x0)

## define the matrix C and x0
C =
x0 =
markov_chain(C, x0, 10)

c. Construct another Markov chain with initial vector x0 �

[
0.2
0.8

]
and describe

what happens to xk as k becomes large.

d. Consider the matrix D �


0 0.5 0
1 0.5 0
0 0 1

 and compute several powers of D be-

low.

Determine whether D is a positive matrix.

e. Find the eigenvalues of D and then find the steady-state vectors. Is there a
unique steady-state vector?

f. What happens to the Markov chain defined by D with initial vector x0 �


1
0
0

?
What happens to the Markov chain with initial vector x0 �


0
0
1

 .
g. Explain how the matrices C and D, which we have considered in this activity,

relate to the Perron-Frobenius theorem.
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4.5.3 Google’s PageRank algorithm

Markov chains and the Perron-Frobenius theorem are the central ingredients in Google’s
PageRank algorithm, developed by Google to assess the quality of web pages.

Suppose we enter “linear algebra” into Google’s search engine. Google responds by telling
us there are 138 million web pages containing those terms. On the first page, however, there
are links to ten web pages that Google judges to have the highest quality and to be the ones
we are most likely to be interested in. How does Google assess the quality of web pages?

At the time this is being written, Google is tracking 35 trillion web pages. Clearly, this is
too many for humans to evaluate. Plus, human evaluators may inject their own biases into
their evaluations, perhaps even unintentionally. Google’s idea is to use the structure of the
Internet to assess the quality of web pages without any human intervention. For instance, if
a web page has quality content, other web pages will link to it. This means that the number
of links to a page reflect the quality of that page. In addition, we would expect a page to
have even higher quality content if those links are coming from pages that are themselves
assessed to have high quality. Simply said, if many quality pages link to a page, that page
must itself be of high quality. This is the essence of the PageRank algorithm, which we
introduce in the next activity.

Activity 4.5.5.
We will consider a simple model of the In-
ternet that has three pages and links be-
tween them as shown here. For instance,
page 1 links to both pages 2 and 3, but page
2 only links to page 1.

1

2

3

Figure 4.5.7 Our first Internet.
We will measure the quality of the jth page with a number x j , which is called the
PageRank of page j. The PageRank is determined by the following rule: each page
divides its PageRank into equal pieces, one for each outgoing link, and gives one piece
to each of the pages it links to. A page’s PageRank is the sum of all the PageRank it
receives from pages linking to it.

For instance, page 3 has two outgoing links. It therefore divides its PageRank x3 in
half and gives half to page 1. Page 2 has only one outgoing link so it gives all of its
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PageRank x2 to page 1. We therefore have

x1 � x2 +
1
2 x3.

a. Find similar expressions for x2 and x3.

b. We now form the PageRank vector x �


x1
x2
x3

 . Find a matrix G such that the

expressions for x1, x2, and x3 can be written in the form Gx � x. The matrix G
is called the “Google matrix”.

c. Explain why G is a stochastic matrix.

d. Since x is defined by the equation Gx � x, any vector in the eigenspace E1 satis-
fies this equation. So that we might work with a specific vector, we will define
the PageRank vector to be the steady-state vector of the stochasticmatrix G. Find
this steady state vector.

e. The PageRank vector x is composed of the PageRanks for each of the three pages.
Which page of the three is assessed to have the highest quality? By referring to
the structure of this small model of the Internet, explain why this is a good
choice.

f. If we begin with the initial vector x0 �


1
0
0

 and form the Markov chain xk+1 �

Gxk , what does the Perron-Frobenius theorem tell us about the long-term be-
havior of the Markov chain?

g. Verify that this Markov chain converges to the steady-state PageRank vector.

def markov_chain(A, x0, N):
for i in range(N):

x0 = A*x0
print (x0.numerical_approx(digits =3))

## define the matrix G and x0
G =
x0 =
markov_chain(G, x0, 20)

This activity shows us two ways to find the PageRank vector. In the first, we determine a
steady-state vector directly by finding a description of the eigenspace E1 and then finding
the appropriate scalar multiple of a basis vector that gives us the steady-state vector. To
find a description of the eigenspace E1, however, we need to find the null space Nul(G − I).
Remember that the real Internet has 35 trillion pages so finding Nul(G − I) requires us to
row reduce a matrix with 35 trillion rows and columns. As we saw in Subsection 1.3.3, that
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is not computationally feasible.

As suggested by the activity, the second way to find the PageRank vector is to use a Markov
chain that converges to the PageRank vector. Since multiplying a vector by a matrix is signif-
icantly less work than row reducing the matrix, this approach is computationally feasible,
and it is, in fact, how Google computes the PageRank vector.

Activity 4.5.6. Consider the Internet with eight web pages, shown in Figure 4.5.8.

1

2

3

4

5

6

7

8

Figure 4.5.8 A simple model of the Internet with eight web pages.

a. Construct the Google matrix G for this Internet. Then use a Markov chain to
find the steady-state PageRank vector x.

def markov_chain(A, x0 , N):
for i in range(N):

x0 = A*x0
print (x0.numerical_approx(digits =3))

## define the matrix G and x0
G =
x0 =
markov_chain(G, x0, 20)

b. What does this vector tell us about the relative quality of the pages in this Inter-
net? Which page has the highest quality and which the lowest?

c. Now consider the Internet with five pages, shown in Figure 4.5.9.
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1

2

3

4

5

Figure 4.5.9 A model of the Internet with five web pages.

What happens when you begin the Markov chain with the vector x0 �


1
0
0
0
0


?

Explain why this behavior is consistent with the Perron-Frobenius theorem.

d. What do you think the PageRank vector for this Internet should be? Is any one
page of a higher quality than another?

e. Now consider the Internet with eight web pages, shown in Figure 4.5.10.

1

2

3

4

5

6

7

8

Figure 4.5.10 Another model of the Internet with eight web pages.

Notice that this version of the Internet is identical to the first one that we saw in
this activity, except that a single link from page 7 to page 1 has been removed.
We can therefore find its Google matrix G by slightly modifying the earlier ma-
trix.
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What is the long-term behavior of a Markov chain defined by G and why is
this behavior not desirable? How is this behavior consistent with the Perron-
Frobenius theorem?

The Perron-Frobenius theorem Theorem 4.5.6 tells us that a Markov chain xk+1 � Gxk con-
verges to a unique steady-state vector when the matrix G is positive. This means that G or
some power of G should have only positive entries. Clearly, this is not the case for thematrix
formed from the Internet in Figure 4.5.9.

We can understand the problem with the Internet shown in Figure 4.5.10 by adding a box
around some of the pages as shown in Figure 4.5.11. Here we see that the pages outside
of the box give up all of their PageRank to the pages inside the box. This is not desirable
because the PageRanks of the pages outside of the box are found to be zero. Once again, the
Google matrix G is not a positive matrix.

1

2

3

4

5

6

7

8

Figure 4.5.11 The pages outside the box give up all of their PageRank to the pages inside the
box.

Google solves this problem by slightly modifying the Google matrix G to obtain a positive
matrix G′. To understand this, think of the entries in the Google matrix as giving the prob-
ability that an Internet user follows a link from one page of another. To create a positive
matrix, we will allow that user to randomly jump to any other page on the Internet with a
small probability.

To make sense of this, suppose that there are N pages on our internet. The matrix

Hn �


1
n

1
n . . . 1

n
1
n

1
n . . . 1

n
...
...
. . .

...
1
n

1
n . . . 1

n


is a positive stochastic matrix describing a process where we can move from any page to an-
otherwith equal probability. To form themodifiedGooglematrix G′, we choose a parameter
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α that is used to mix G and Hn together; that is, G′ is the positive stochastic matrix

G′
� αG + (1 − α)Hn .

In practice, it is thought that Google uses a value of α � 0.85 (Google doesn’t publish this
number as it is a trade secret) so that we have

G′
� 0.85G + 0.15Hn .

Intuitively, this means that an Internet user will randomly follow a link from one page to
another 85% of the time and will randomly jump to any other page on the Internet 15%
of the time. Since the matrix G′ is positive, the Perron-Frobenius theorem tells us that any
Markov chain will converge to a unique steady-state vector that we call the PageRank vector.

Activity 4.5.7. The following Sage cell will generate theMarkov chain for themodified
Google matrix G if you simply enter the original Google matrix G in the appropriate
line.

def modified_markov_chain(A, x0, N):
r = A.nrows()
A = 0.85*A + 0.15* matrix(r,r ,[1.0/r]*(r*r))
for i in range(N):

x0 = A*x0
print (x0.numerical_approx(digits =3))

## Define original Google matrix G and initial vector x0.
## The function above finds the modified Google matrix
## and resulting Markov chain
G =
x0 =
modified_markov_chain(G, x0, 20)

a. Consider the original Internet with three pages shown in Figure 4.5.7 and find
the PageRank vector x using the modified Google matrix in the Sage cell above.
How does this modified PageRank vector compare to the vector we found using
the original Google matrix G?

b. Find the modified PageRank vector for the Internet shown in Figure 4.5.9. Ex-
plain why this vector seems to be the correct one.

c. Find the modified PageRank vector for the Internet shown in Figure 4.5.10. Ex-
plain why this modified PageRank vector fixes the problem that appeared with
the original PageRank vector.

The ability to access almost anything we want to know through the Internet is something
we take for granted in today’s society. Without Google’s PageRank algorithm, however, the
Internet would be a chaotic place indeed; imagine trying to find a useful web page among
the 30 trillion available pages without it. (There are, of course, other search algorithms, but
Google’s is themost widely used.) The fundamental role thatMarkov chains and the Perron-
Frobenius theorem play in Google’s algorithm demonstrates the vast power that mathemat-
ics has to shape our society.
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4.5.4 Summary

This section explored stochastic matrices and Markov chains.

• A probability vector is one whose entries are nonnegative and whose columns add to
1. A stochastic matrix is a square matrix whose columns are probability vectors.

• A Markov chain is formed from a stochastic matrix A and an initial probability vector
x0 using the rule xk+1 � Axk . We may think of the sequence xk as describing the evolu-
tion of some conserved quantity, such as the number of rental cars or voters, among a
number of possible states over time.

• A steady-state vector q for a stochastic matrix A is a probability vector that satisfies
Aq � q.

• The Perron-Frobenius theorem tells us that, if A is a positive stochastic matrix, then
every Markov chain defined by A converges to a unique, positive steady-state vector.

• Google’s PageRank algorithm uses Markov chains and the Perron-Frobenius theorem
to assess the relative quality of web pages on the Internet.

4.5.5 Exercises

1. Consider the following 2 × 2 stochastic matrices.
For each, make a copy of the diagram and
label each edge to indicate the probability
of that transition. Then find all the steady-
state vectors and describe what happens to
a Markov chain defined by that matrix.

P Q

a.
[

1 1
0 0

]
.

b.
[

0.8 1
0.2 0

]
.

c.
[

1 0
0 1

]
.

d.
[

0.7 0.6
0.3 0.4

]
.

2. Every year, people move between urban (U), suburban (S), and rural (R) populations
with the probabilities given in Figure 4.5.12.
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U

SR

0.88

0.07

0.05

0.85

0.08

0.07

0.86

0.08

0.06

Figure 4.5.12 The flow between urban, suburban, and rural populations.

a. Construct the stochastic matrix A describing the movement of people.

b. Explainwhat the Perron-Frobenius theorem tells us about the existence of a steady-
state vector q and the behavior of a Markov chain.

c. Use the Sage cell below to find the some terms of a Markov chain.

def markov_chain(A, x0, N):
for i in range(N):

x0 = A*x0
print (x0.numerical_approx(digits =3))

## define the matrix G and x0
A =
x0 =
markov_chain(A, x0 , 20)

d. Describe the long-term distribution of people among urban, suburban, and rural
populations.

3. Determinewhether the following statements are true or false and provide a justification
of your response.

a. Every stochastic matrix has a steady-state vector.

b. If A is a stochastic matrix, then any Markov chain defined by A converges to a
steady-state vector.

c. If A is a stochasticmatrix, then λ � 1 is an eigenvalue and all the other eigenvalues
satisfy |λ | < 1.

d. A positive stochastic matrix has a unique steady-state vector.

e. If A is an invertible stochastic matrix, then so is A−1.
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4. Consider the stochastic matrix

A �


1 0.2 0.2
0 0.6 0.2
0 0.2 0.6

 .
a. Find the eigenvalues of A.

b. Do the conditions of the Perron-Frobenius theorem apply to this matrix?

c. Find the steady-state vectors of A.

d. What can we guarantee about the long-term behavior of a Markov chain defined
by the matrix A?

5. Explain your responses to the following.
a. Why does Google use a Markov chain to compute the PageRank vector?

b. Describe two problems that can happen when Google constructs a Markov chain
using the Google matrix G.

c. Describe how these problems are consistent with the Perron-Frobenius theorem.

d. Describe why the Perron-Frobenius theorem suggests creating a Markov chain
using the modified Google matrix G′ � αG + (1 − α)Hn .

In the next few exercises, we will consider the 1 × n matrix S �
[

1 1 . . . 1
]
.

6. Suppose that A is a stochastic matrix and that x is a probability vector. We would like
to explain why the product Ax is a probability vector.

a. Explain why x �


0.4
0.5
0.1

 is a probability vector and then find the product Sx.

b. More generally, if x is any probability vector, what is the product Sx?

c. If A is a stochastic matrix, explain why SA � S.

d. Explain why Ax is a probability vector by considering the product SAx.

7. Using the results of the previous exercise, we would like to explain why A2 is a stochas-
tic matrix if A is stochastic.

a. Suppose that A and B are stochastic matrices. Explain why the product AB is a
stochastic matrix by considering the product SAB.

b. Explain why A2 is a stochastic matrix.

c. How do the steady-state vectors of A2 compare to the steady-state vectors of A?
8. This exercise explains why λ � 1 is an eigenvalue of a stochastic matrix A. To conclude

that λ � 1 is an eigenvalue, we need to know that A − I is not invertible.
a. What is the product S(A − I)?
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b. What is the product Se1?

c. Consider the equation (A − I)x � e1. Explain why this equation cannot be consis-
tent by multiplying by S to obtain S(A − I)x � Se1.

d. What can you say about the span of the columns of A − I?

e. Explain why we can conclude that A − I is not invertible and that λ � 1 is an
eigenvalue of A.

9. We saw a couple of model Internets in which a Markov chain defined by the Google
matrix G did not converge to an appropriate PageRank vector. For this reason, Google
defines the matrix

Hn �


1
n

1
n . . . 1

n
1
n

1
n . . . 1

n
...
...
. . .

...
1
n

1
n . . . 1

n


,

where n is the number of web pages, and constructs a Markov chain from the modified
Google matrix

G′
� αG + (1 − α)Hn .

Since G′ is positive, theMarkov chain is guaranteed to converge to a unique steady-state
vector.

We said that Google chooses α � 0.85 so we might wonder why this is a good choice.
Wewill explore the role of α in this exercise. Let’s consider themodel Internet described
in Figure 4.5.9 and construct the Google matrix G. In the Sage cell below, you can enter
the matrix G and choose a value for α.

def modified_markov_chain(A, x0, N):
r = A.nrows()
A = alpha*A + (1-alpha)*matrix(r,r ,[1.0/r]*(r*r))
for i in range(N):

x0 = A*x0
print (x0.numerical_approx(digits =3))

## Define the matrix original Google matrix G and choose alpha.
## The function above finds the modified Google matrix
## and resulting Markov chain
alpha = 0
G =
x0 = vector ([1,0,0,0,0])
modified_markov_chain(G, x0 , 20)

a. Let’s begin with α � 0. With this choice, what is the matrix G′ � αG + (1− α)Hn?
Construct aMarkov chain using the Sage cell above. Howmany steps are required
for the Markov chain to converge to the accuracy with which the vectors xk are
displayed?

b. Now choose α � 0.25. How many steps are required for the Markov chain to
converge to the accuracy at which the vectors xk are displayed?
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c. Repeat this experiment with α � 0.5 and α � 0.75.

d. What happens if α � 1?

This experiment gives some insight into the choice of α. The smaller α is, the faster the
Markov chain converges. This is important; since the matrix G′ that Google works with
is so large, we would like to minimize the number of terms in the Markov chain that
we need to compute. On the other hand, as we lower α, the matrix G′ � αG+ (1−α)Hn
begins to resemble Hn more and G less. The value α � 0.85 is chosen so that the matrix
G′ sufficiently resembles G while having the Markov chain converge in a reasonable
amount of steps.

10. This exercise will analyze the board game Chutes and Ladders, or at least a simplified
version of it.
The board for this game consists of 100
squares arranged in a 10×10 grid and num-
bered 1 to 100. There are pairs of squares
joined by a ladder and pairs joined by a
chute. All players begin in square 1 and
take turns rolling a die. On their turn,
a player will move ahead the number of
squares indicated on the die. If they arrive
at a square at the bottom of a ladder, they
move to the square at the top of the ladder.
If they arrive at a square at the top of a chute,
theymove down to the square at the bottom
of the chute. The winner is the first player
to reach square 100.

a. We begin by playing a simpler version of this game with only eight squares laid
out in a row as shown in Figure 4.5.13 and containing neither chutes nor ladders.
Rather than a six-sided die, wewill toss a coin andmove ahead one or two squares
depending on the result of the coin toss. If we are on square 7, we move ahead to
square 8 regardless of the coin flip, and if we are on square 8, we will stay there
forever.

1 2 3 4 5 6 7 8

Figure 4.5.13 A simple version of Chutes and Ladders with neither chutes nor
ladders.
Construct the 8×8 matrix A that records the probability that a player moves from
one square to another on one move. For instance, if a player is on square 2, there
is a 50% chance they move to square 3 and a 50% chance they move to square 4
on the next move.
Since we begin the game on square 1, the initial vector x0 � e1. Generate a few
terms of the Markov chain xk+1 � Axk .
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def markov_chain(A, x0, N):
for i in range(N):

x0 = A*x0
print (x0.numerical_approx(digits =3))

## define the matrix A and x0
A =
x0 =
markov_chain(A, x0 , 10)

What is the probability that we arrive at square 8 by the fourthmove? By the sixth
move? By the seventh move?

b. We will now modify the game by adding one chute and one ladder as shown in
Figure 4.5.14.

1 2 3 4 5 6

Figure 4.5.14 A version of Chutes and Ladders with one chute and one ladder.

Even though there are eight squares, we only need to consider six of them. For
instance, if we arrive at the first white square, we move up to square 4. Similarly,
if we arrive at the second white square, we move down to square 1.
Once again, construct the 6× 6 stochastic matrix that records the probability that
we move from one square to another on a given turn and generate some terms in
the Markov chain that begins with x0 � e1.

def markov_chain(A, x0, N):
for i in range(N):

x0 = A*x0
print (x0.numerical_approx(digits =3))

## define the matrix A and x0
A =
x0 =
markov_chain(A, x0 , 10)

1. What is the smallest number of moves we can make and arrive at square
6? What is the probability that we arrive at square 6 using this number of
moves?

2. What is the probability that we arrive at square 6 after five moves?
3. What is the probability that we are still on square 1 after five moves? After

seven moves? After nine moves?
4. After howmanymoves dowe have a 90% chance of having arrived at square

6?
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5. Find the steady-state vector and discuss what this vector implies about the
game.

One can analyze the full version of Chutes and Ladders having 100 squares in the same
way. Without any chutes or ladders, one finds that the average number of moves re-
quired to reach square 100 is 29.0. Once we add the chutes and ladders back in, the
average number of moves required to reach square 100 is 27.1. This shows that the
average number of moves does not change significantly when we add the chutes and
ladders. There is, however, much more variation in the possibilities because it is possi-
ble to reach square 100 much more quickly and much more slowly.



CHAPTER 5
Linear algebra and computing

Our principal tool for finding solutions to linear systems has been Gaussian elimination,
which we first met back in Section 1.2. When presented with a linear system, we frequently
find the reduced row echelon form of the system’s augmentedmatrix to read off the solution.

While this is a convenient approach for learning linear algebra, people rarely use the re-
duced row echelon form of a matrix. In fact, many linear algebra software packages do not
include functions for finding the reduced row echelon form. In this chapter, we will de-
scribe why this is the case and then explore some alternatives. The intent of this chapter
is to demonstrate how linear algebraic computations are handled in practice. More specifi-
cally, wewill improve our techniques for solving linear systems and for finding eigenvectors
through Gaussian elimination.

5.1 Gaussian elimination revisited

In this section, we revisit Gaussian elimination and explore some problemswith implement-
ing it in the straightforward way that we described back in Section 1.2. In particular, we will
see how the fact that computers only approximate arithmetic operations can lead us to find
solutions that are far from the actual solutions. Second, we will explore how much work
is required to implement Gaussian elimination and devise a more efficient means of imple-
menting it when we want to solve equations Ax � b for several different vectors b.

Preview Activity 5.1.1. To begin, let’s recall how we implemented Gaussian elimina-
tion by considering the matrix

A �


1 2 −1 2
1 0 −2 1
3 2 1 0


a. What is the first row operation we perform? If the resulting matrix is A1, find a

matrix E1 such that E1A � A1.

b. What is the matrix inverse E−1
1 ? You can find this using your favorite technique

for finding a matrix inverse. However, it may be easier to think about the effect
that the row operation has and how it can be undone.
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c. Perform the next two steps in the Gaussian elimination algorithm to obtain A3.
Represent these steps using multiplication by matrices E2 and E3 so that

E3E2E1A � A3.

d. Suppose we need to scale the second row by −2. What is the 3 × 3 matrix that
perfoms this row operation by left multiplication?

e. Suppose that we need to interchange the first and second rows. What is the 3×3
matrix that performs this row operation by left multiplication?

5.1.1 Partial pivoting

The first issue that we address is the fact that computers do not perform arithemtic opera-
tions exactly. For instance, Python will evaluate 0.1 + 0.2 and report 0.30000000000000004
even though we know that the true value is 0.3. There are a couple of reasons for this.

First, computers perform arithmetic using base 2 numbers, which means that numbers we
enter in decimal form, such as 0.1, must be converted to base 2. Even though 0.1 has a simple
decimal form, its representation in base 2 is the repeating decimal

0.000110011001100110011001100110011001100110011 . . . .,

To accurately represent this number inside a computer would require infinitely many dig-
its. Since a computer can only hold a finite number of digits, we are necessarily using an
approximation just by representing this number in a computer.

In addition, arithmetic operations, such as addition, are prone to error. To keep things sim-
ple, suppose we have a computer that represents numbers using only three decimal dig-
its. For instance, the number 1.023 would be represented as 1.02 while 0.023421 would be
0.0234. If we add these numbers, we have 1.023 + 0.023421 = 1.046421; the computer reports
this sum as 1.02 + 0.0234 = 1.04, whose last digit is not correctly rounded. Generally
speaking, we will see this problem, which is called round off error, whenever we add num-
bers of signficantly different magnitudes.

Remember that Gaussian elimination, when applied to an n × n matrix, requires approxi-
mately 2

3 n3 operations. If we have a 1000 × 1000 matrix, performing Gaussian elimination
requires roughly a billion operations, and the errors introduced in each operation could ac-
cumulate. How can we have confidence in the final result? We can never completely avoid
these errors, but we can take steps to mitigate them. The next activity will introduce one
such technique.

Activity 5.1.2. Suppose we have a hypothetical computer that represents numbers
using only three decimal digits. We will consider the linear system

0.0001x + y � 1
x + y � 2.
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a. Show that this system has the unique solution

x �
10000
9999 � 1.00010001 . . . ,

y �
9998
9999 � 0.99989998 . . . .

b. If we represent this solution inside our computer that only holds 3 decimal dig-
its, what do we find for the solution? This is the best that we can hope to find
using our computer.

c. Let’s imagine that we use our computer to find the solution using Gaussian
elimination; that is, after every arithmetic operation, we keep only three decimal
digits. Our first step is to multiply the first equation by 10000 and subtract it
from the second equation. If we represent numbers using only three decimal
digits, what does this give for the value of y?

d. By substituting our value for y into the first equation, what do we find for x?

e. Compare the solution we find on our computer with the actual solution and
assess the quality of the approximation.

f. Let’s now modify the linear system by simplying interchanging the equations:

x + y � 2
0.0001x + y � 1.

Of course, this doesn’t change the actual solution. Let’s imagine we use our
computer to find the solution using Gaussian elimination. Perform the first step
where we multiply the first equation by 0.0001 and subtract from the second
equation. What does this give for y if we represent numbers using only three
decimal digits?

g. Substitute the value you found for y into the first equation and solve for x. Then
compare the approximate solution foundwith our hypothetical computer to the
exact solution.

h. Which approach produces the most accurate approximation?

This activity demonstrates how the practical aspects of computing differ from the theoretical.
We know that the order in which we write the equations has no effect on the solution space;
row interchange is one of our three allowed row operations in the Gaussian elimination
algorithm. However, whenwe are only able to perform arithmetic operations approximately,
applying row interchanges can dramatically improve the accuracy of our approximations.

If we could compute the solution exactly, we find

x � 1.00010001 . . . , y � 0.99989998 . . . .

Since our hypothetical computer represents numbers using only three decimal digits, our
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computer finds
x ≈ 1.00, y ≈ 1.00.

This is the best we can hope to do with our computer since it is impossible to represent the
solution exactly.

When the equations are written in their original order and we multiply the first equation by
10000 and subtract from the second, we find

(1 − 10000)y � 2 − 10000
−9999y � − 9998
−10000y ≈ − 10000

y ≈ 1.00.

In fact, we find the same value for y when we interchange the equations. Here we multiply
the first equation by 0.0001 and subtract from the second equation. We then find

(1 − 0.0001)y � 2 − 0.0001
−0.9999y � − 0.9998

−y ≈ − 1.00
y ≈ 1.00.

The difference occurs when we substitute y ≈ 1 into the first equation. When the equations
are written in their original order, we have

0.0001x + 1.00 ≈ 1.00
0.0001x ≈ 0.00

x ≈ 0.00.

When the equations are written in their original order, we find the solution x ≈ 0.00, y ≈
1.00.

When we write the equation in the opposite order, however, substituting y ≈ 1 into the first
equation gives

x + 1.00 ≈ 2.00
x ≈ 1.00.

In this case, we find the approximate solution x ≈ 1.00, y ≈ 1.00, which is the most accurate
solution that our hypothetical computer can find. Simply interchanging the order of the
equation produces a much more accurate solution.
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We can understand why this works graphically. Each
equation represents a line in the plane, and the solution
is the intersection point. Notice that the slopes of these
lines differ considerably.

1 2

1

2

When the equations are written in their original order, we substitute y ≈ 1 into the equation
0.00001x+ y � 1, which is a nearly horizontal line. Along this line, a small change in y leads
to a large change in x. The slight difference in our approximation y ≈ 1 from the exact value
y � 0.9998999 . . . leads to a large difference in the approximation x ≈ 0 from the exact value
x � 1.00010001 . . ..

If we exchange the order in which the equations are written, we substitute our approxima-
tion y ≈ 1 into the equation x + y � 2. Notice that the slope of the associated line is −1. On
this line, a small change in y leads to a relatively small change in x as well. Therefore, the
difference in our approximation y ≈ 1 from the exact value leads to only a small difference
in the approximation x ≈ 1 from the exact value.

This example motivates the technique that computers usually use to perform Gaussian eli-
mation. We only need to perform a row interchange when a zero occurs in a pivot position,
such as 

1 −1 2 2
0 0 −3 1
0 2 2 −3

 .
However, we will perform a row interchange to put the entry having the largest possible
absolute value into the pivot position. For instance, when performing Gaussian elimination
on the followingmatrix, we begin by interchanging the first and third rows so that the upper
left entry has the largest possible absolute value.

2 1 2 3
1 −3 −2 1

−3 2 3 −2

 ∼

−3 2 3 −2

1 −3 −2 1
2 1 2 3

 .
This technique is called partial pivoting, and it means that, in practice, we will performmany
more row interchange operations than we typically do when computing exactly by hand.

5.1.2 LU factorizations

In Subsection 1.3.3, we saw that the number of arithmetic operations needed to perform
Gaussian elimination on an n × n matrix is about 2

3 n3. This means that a 1000× 1000 matrix,
requires about two thirds of a billion operations.
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Suppose that we have two equations, Ax � b1 and Ax � b2, that we would like to solve.
Usually, wewould form augmentedmatrices

[
A b1

]
and

[
A b2

]
and applyGaussian

elimination. Of course, the steps we perform in these two computations are nearly identical.
Is there away to store some of the computationwe perform in reducing

[
A b1

]
and reuse

it in solving subsequent equations? The next activity will point us in the right direction.

Activity 5.1.3. We will consider the matrix

A �


1 2 1

−2 −3 −2
3 7 4


and begin performing Gaussian elimination without using partial pivoting.

a. Perform two row replacement operations to find the row equivalent matrix

A′
�


1 2 1
0 1 0
0 1 1

 .
Find elementary matrices E1 and E2 that perform these two operations so that
E2E1A � A′.

b. Perform a third row replacement to find the upper triangular matrix

U �


1 2 1
0 1 0
0 0 1

 .
Find the elementary matrix E3 such that E3E2E1A � U.

c. We can write A � E−1
1 E−1

2 E−1
3 U. Find the inverse matrices E−1

1 , E−1
2 , and E−1

3 and
the product L � E−1

1 E−1
2 E−1

3 . Then verify that A � LU.

d. Suppose that we want to solve the equation Ax � b �


4

−7
12

 . We will write

Ax � LUx � L(Ux) � b

and introduce an unknown vector c such that Ux � c. Find c by noting that
Lc � b and solving this equation.

e. Now that we have found c, find x by solving Ux � c.

f. Using the factorization A � LU and this two-step process, solve the equation

Ax �


2

−2
7

 .
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This activity introduces a method for factoring a matrix A as a product of two triangular ma-
trices, A � LU, where L is lower triangular and U is upper triangular. The key to finding this
factorization is to represent the row operations that we apply in the Gaussian elimination
algorithm through multiplication by elementary matrices.

Example 5.1.1 Suppose we have the equation
2 −3 1
−4 5 0
2 −2 2

 x �


8

−13
8

 ,
which we write in the form Ax � b. We begin by applying the Gaussian elimination algo-
rithm to find an LU factorization of A.

The first step is to multiply the first row of A by 2 and add it to the second row. The elemen-
tary matrix

E1 �


1 0 0
2 1 0
0 0 0


performs this operation so that E1A �


2 −3 1
0 −1 2
2 −2 2

 .
We next apply matrices

E2 �


1 0 0
0 1 0
−1 0 1

 , E3 �


1 0 0
0 1 0
0 1 1


to obtain the upper triangular matrix U � E3E2E1A �


2 −3 1
0 −1 2
0 0 3

 .
We can write U � (E3E2E1)A, which tells us that

A � (E3E2E1)−1U �


1 0 0
−2 1 0
1 −1 1

 U � LU.

That is, we have

A � LU �


1 0 0
−2 1 0
1 −1 1



2 −3 1
0 −1 2
0 0 3

 .
Notice that the matrix L is lower triangular, a result of the fact that the elementary matrices
E1, E2, and E3 are lower triangular.

Now that we have factored A � LU into two triangular matrices, we can solve the equation
Ax � b by solving two triangular systems. We write

Ax � L(Ux) � b
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anddefine the unknownvector c � Ux, which is determined by the equation Lc � b. Because

L is lower triangular, we find the solution using forward substitution, c �


8
3
3

 . Finally, we

find x, the solution to our original system Ax � b, by applying back substitution to solve

Ux � c. This gives x �


2

−1
1

 .
If we want to solve Ax � b for a different right-hand side b, we can simply repeat this two-
step process.

An LU factorization allow us to trade in one equation Ax � b for two simpler equations

Lc � b
Ux � c.

For instance, the equation Lc � b in our example has the form
1 0 0

−2 1 0
1 −1 1

 c �


8

−13
8

 .
Because L is a lower-triangular matrix, we can read off the first component of c directly from
the equations: c1 � 8. We then have −2c1 + c2 � −13, which gives c2 � 3, and c1 − c2 + c3 �

8, which gives c3 � 3. Solving a triangular system is simplified because we only need to
perform a sequence of substitutions.

In fact, solving an equationwith an n×n triangular matrix requires approximately 1
2 n2 oper-

ations. Once we have the factorization A � LU, we solve the equation Ax � b by solving two
equations involving triangular matrices, which requires about n2 operations. For example,
if A is a 1000×1000 matrix, we solve the equation Ax � b using about one million steps. The
compares with roughly a billion operations needed to perform Gaussian elimination, which
represents a significant savings. Of course, we have to first find the LU factorization of A
and this requires roughly the same amount of work as performing Gaussian elimination.
However, once we have the LU factorization, we can use it to solve Ax � b for different right
hand sides b.

Our discussion so far has ignored one issue, however. Remember that we sometimes have
to perform row interchange operations in addition to row replacement. A typical row inter-
change is represented by multiplication by a matrix such as

P �


0 0 1
0 1 0
1 0 0

 ,
which has the effect of interchanging the first and third rows. Notice that this matrix is not
triangular so performing a row interchangewill disrupt the structure of the LU factorization
we seek. Without giving the details, we simply note that linear algebra software packages
provide a matrix P that describes how the rows are permuted in the Gaussian elimination
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process. In particular, we will write PA � LU, where P is a permutation matrix, L is lower
triangular, and U is upper triangular.

Therefore, to solve the equation Ax � b, we first multiply both sides by P to obtain

PAx � LUx � Pb.

That is, we multiply b by P and then find x using the factorization: Lc � Pb and Ux � c.

Activity 5.1.4. Sage will create LU factorizations; once we have a matrix A, we write
P, L, U = A.LU() to obtain the matrices P, L, and U such that PA � LU.

a. In Example 5.1.1, we found the LU factorization

A �


2 −3 1
−4 5 0
2 −2 2

 �


1 0 0
−2 1 0
1 −1 1



2 −3 1
0 −1 2
0 0 3

 � LU.

Using Sage, define the matrix A, and then ask Sage for the LU factorization.
What are the matrices P, L, and U?
Notice that Sage finds a different LU factorization thanwe found in the previous
activity because Sage uses partial pivoting, as described in the previous section,
when it performs Gaussian elimination.

b. Define the vector b �


8

−13
8

 in Sage and compute Pb.

c. Use the matrices L and U to solve Lc � Pb and Ux � c. You should find the same
solution x that you found in the previous activity.

d. Use the factorization to solve the equation Ax �


9

−16
10

 .
e. Howdoes the factorization showus that A is invertible and that, therefore, every

equation Ax � b has a unique solution?

f. Suppose that we have the matrix

B �


3 −1 2
2 −1 1
2 1 3

 .
Use Sage to find the LU factorization. Explain how the factorization shows that
B is not invertible.
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g. Consider the matrix

C �


−2 1 2 −1

1 −1 0 2
3 2 −1 0


and find its LU factorization. Explain why C and U have the same null space
and use this observation to find a basis for Nul(A).

5.1.3 Summary

We returned to Gaussian elimination, which we have used as a primary tool for finding
solutions to linear systems, and explored its practicality, both in terms of numerical accuracy
and computational effort.

• We saw that the accuracy of computations implemented on a computer could be im-
proved using partial pivoting, a technique that performs row interchanges so that the
entry in a pivot position has the largest possible magnitude.

• Beginningwith amatrix A, we used the Gaussian elimination algorithm towrite PA �

LU, where P is a permutation matrix, L is lower triangular, and U is upper triangular.

• Finding this factorization involves roughly asmuchwork as performingGaussian elim-
ination. However, once we have the factorization, we are able to quickly solve equa-
tions of the form Ax � b by first solving Lc � Pb and then Ux � c.

5.1.4 Exercises

1. In this section, we saw that errors made in computer arithmetic can produce approxi-
mate solutions that are far from the exact solutions. Here is another example in which
this can happen. Consider the matrix

A �

[
1 1
1 1.0001

]
.

a. Find the exact solution to the equation Ax �

[
2
2

]
.

b. Suppose that this linear system arises in the midst of a larger computation except
that, due to some error in the computation of the right hand side of the equation,

our computer thinks we want to solve Ax �

[
2

2.0001

]
. Find the solution to this

equation and compare it to the solution of the equation in the previous part of
this exericse.

Notice how a small change in the right hand side of the equation leads to a large change
in the solution. In this case, we say that the matrix A is ill-conditioned because the so-
lutions are extremely sensitive to small changes in the right hand side of the equation.
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Though we will not do so here, it is possible to create a measure of the matrix that tells
us when amatrix is ill-conditioned. Regrettably, there is notmuchwe can do to remedy
this problem.

2. In this section, we found the LU factorization of the matrix

A �


1 2 1

−2 −3 −2
3 7 4


in one of the activities, without using partial pivoting. Apply a sequence of row op-
erations, now using partial pivoting, to find an upper triangular matrix U that is row
equivalent to A.

3. In the following exercises, use the given LU factorizations to solve the equations Ax � b.
a. Solve the equation

Ax �

[
1 0

−2 1

] [
3 1
0 −2

]
x �

[
−3

0

]
.

b. Solve the equation

Ax �


1 0 0

−2 1 0
−1 2 1




2 1 0
0 −1 3
0 0 1

 x �


5

−5
7

 .
4. Use Sage to solve the following equation by finding an LU factorization:

3 4 −1
2 4 1

−3 1 4

 x �


−3
−3
−4

 .
5. Here is another problemwith approximate computer arithmetic that wewill encounter

in the next section. Consider the matrix

A �


0.2 0.2 0.4
0.2 0.3 0.1
0.6 0.5 0.5

 .
a. Notice that this is a positive stochastic matrix. What do we know about the eigen-

values of this matrix?

b. Use Sage to define the matrix A using decimals such as 0.2 and the 3× 3 identity
matrix I. Ask Sage to compute B � A − I and find the reduced row echelon form
of B.

c. Why is the computation that Sage performed incorrect?
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d. Explain why using a computer to find the eigenvectors of a matrix A by finding a
basis for Nul(A − λI) is problematic.

6. In practice, one rarely finds the inverse of a matrix A. It requires considerable effort to
compute, and we can solve any equation of the form Ax � b using an LU factorization,
which means that the inverse isn’t necessary. In any case, the best way to compute an
inverse is using an LU factorization, as this exericse demonstrates.

a. Suppose that PA � LU. Explain why A−1 � U−1L−1P.
Since L and U are triangular, finding their inverses is relatively efficient. That
makes this an effective means of finding A−1.

b. Consider the matrix

A �


3 4 −1
2 4 1

−3 1 4

 .
Find the LU factorization of A and use it to find A−1.

7. Consider the matrix

A �


a a a a
a b b b
a b c c
a b c d

 .
a. Find the LU factorization of A.

b. What conditions on a, b, c, and d guarantee that A is invertible?
8. In the LU factorization of a matrix, the diagonal entries of L are all 1 while the diag-

onal entries of U are not necessarily 1. This exercise will explore that observation by
considering the matrix

A �


3 1 1

−6 −4 −1
0 −4 1

 .
a. Perform Gaussian elimination without partial pivoting to find U, an upper trian-

gular matrix that is row equivalent to A.

b. The diagonal entries of U are called pivots. Explain why det A equals the product
of the pivots.

c. What is det A for our matrix A?

d. More generally, if we have PA � LU, explain why det A equals plus or minus the
product of the pivots.

9. Please provide a justification to your responses to these questions.
a. In this section, our hypothetical computer could only store numbers using 3 dec-

imal places. Most computers can store numbers using 15 or more decimal places.
Why do we still need to be concerned about the accuracy of our computations
when solving systems of linear equations?
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b. Finding the LU factorization of amatrix A is roughly the same amount of work as
finding its reduced row echelon form. Why is the LU factorization useful then?

c. How can we detect whether a matrix is invertible from its LU factorization?
10. Consider the matrix

A �


−1 1 0 0

1 −2 1 0
0 1 −2 1
0 0 −1 1

 .
a. Find the LU factorization of A.

b. Use the factorization to find a basis for Nul(A).

c. We have seen that Nul(A) � Nul(U). Is it true that Col(A) � Col(L)?



324 CHAPTER 5. LINEAR ALGEBRA AND COMPUTING

5.2 Finding eigenvectors numerically

We have typically found eigenvalues of a square matrix A as the roots of the characteristic
polynomial det(A − λI) � 0 and the associated eigenvectors as the null space Nul(A − λI).
Unfortunately, this approach is not practical whenwe are working with large matrices. First,
finding the charactertic polynomial of a large matrix requires considerable computation, as
does finding the roots of that polynomial. Second, finding the null space of a singularmatrix
is plagued by numerical problems, as we will see in the preview activity.

For this reason, we will explore a technique called the power method that finds numerical
approximations to the eigenvalues and eigenvectors of a square matrix.

Preview Activity 5.2.1. Let’s recall some earlier observations about eigenvalues and
eigenvectors.

a. How are the eigenvalues and associated eigenvectors of A related to those of
A−1?

b. How are the eigenvalues and associated eigenvectors of A related to those of
A − 3I?

c. If λ is an eigenvalue of A, what can we say about the pivot positions of A − λI?

d. Suppose that A �

[
0.8 0.4
0.2 0.6

]
. Explain how we know that 1 is an eigenvalue

of A and then explain why the following Sage computation is incorrect.

A = matrix (2,2,[0.8, 0.4, 0.2, 0.6])
I = matrix (2,2,[1, 0, 0, 1])
(A-I).rref()

e. Suppose that x0 �

[
1
0

]
, and we define a sequence xk+1 � Axk ; in other words,

xk � Akx0. What happens to xk as k grows increasingly large?

f. Explain how the eigenvalues of A are responsible for the behavior noted in the
previous question.

5.2.1 The power method

Our goal is to find a technique that produces numerical approximations to the eigenvalues
and associated eigenvectors of a matrix A. We begin by searching for the eigenvalue having
the largest absolute value, which is called the dominant eigenvalue. The next two examples
demonstrate this technique.

Example 5.2.1 Let’s begin with the positive stochastic matrix A �

[
0.7 0.6
0.3 0.4

]
. We spent
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quite a bit of time studying this type of matrix in Section 4.5; in particular, we saw that any
Markov chain will converge to the unique steady-state vector. Let’s rephrase this statement
in terms of the eigenvectors of A.

This matrix has eigenvalues λ1 � 1 and λ2 � 0.1 so the dominant eigenvalue is λ1 � 1. The

associated eigenvectors are v1 �

[
2
1

]
and v2 �

[
−1

1

]
. Suppose we begin with the vector

x0 �

[
1
0

]
�

1
3v1 −

1
3v2

and find
x1 � Ax0 �

1
3v1 −

1
3 (0.1)v2

x2 � A2x0 �
1
3v1 −

1
3 (0.1)

2v2

x3 � A3x0 �
1
3v1 −

1
3 (0.1)

3v2

...

xk � Akx0 �
1
3v1 −

1
3 (0.1)

kv2

and so forth. Notice that the powers 0.1k become increasingly small as k grows so that xk ≈
1
3v1 when k is large. Therefore, the vectors xk become increasingly close to a vector in the
eigenspace E1, the eigenspace associated to the dominant eigenvalue. If we did not know the
eigenvector v1, we could use a Markov chain in this way to find a basis vector for E1, which,
as seen in Section 4.5, is essentially how the Google PageRank algorithm works.

Example 5.2.2 Let’s now look at the matrix A �

[
2 1
1 2

]
, which has eigenvalues λ1 � 3 and

λ2 � 1. The dominant eigenvalue is λ1 � 3, and the associated eigenvectors are v1 �

[
1
1

]
and v2 �

[
−1

1

]
. Once again, begin with the vector x0 �

[
1
0

]
�

1
2v1 − 1

2v2 so that

x1 � Ax0 � 31
2v1 −

1
2v2

x2 � A2x0 � 32 1
3v1 −

1
2v2

x3 � A3x0 � 33 1
3v1 −

1
2v2

...

xk � Akx0 � 3k 1
3v1 −

1
2v2.
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As the figure shows, the vectors xk are stretched by a
factor of 3 in the v1 direction and not at all in the v2
direction. Consequently, the vectors xk become increas-
ingly long, but their direction becomes closer to the di-

rection of the eigenvector v1 �

[
1
1

]
associated to the

dominant eigenvalue.

x0

x1

x2

To find an eigenvector associated to the dominant eigenvalue, we will prevent the length
of the vectors xk from growing arbitrarily large by multiplying by an appropriate scaling
constant. Here is one way to do this. Given the vector xk , we identify its component having
the largest absolute value and call it mk . We then define xk �

1
mk

xk , which means that the
component of xk having the largest absolute value is 1.

For example, beginning with x0 �

[
1
0

]
, we find x1 � Ax0 �

[
2
1

]
. The component of x1

having the largest absolute value is m1 � 2 so we multiply by 1
m1

�
1
2 to obtain x1 �

[
1
1
2

]
.

Then x2 � Ax1 �

[ 5
2
2

]
. Now the component having the largest absolute value is m2 �

5
2 so

we multiply by 2
5 to obtain x2 �

[
1
4
5

]
.

The resulting sequence of vectors xk is shown in the fig-
ure. Notice how the vectors xk now approach the eigen-
vector v1, which gives us a way to find the eigenvector

v �

[
1
1

]
. This is the power method for finding an eigen-

vector associated to the dominant eigenvalue of a ma-
trix.

x0

x̄1

x̄2

x̄3

Activity 5.2.2. Let’s begin by considering the matrix A �

[
0.5 0.2
0.4 0.7

]
and the initial
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vector x0 �

[
1
0

]
.

a. Compute the vector x1 � Ax0.

b. Find m1, the component of x1 that has the largest absolute value. Then form
x1 �

1
m1

x1. Notice that the component having the largest absolute value of x1 is
1.

c. Find the vector x2 � Ax1. Identify the component m2 of x2 having the largest
absolute value. Then form x2 �

1
m2

x1 to obtain a vector in which the component
with the largest absolute value is 1.

d. The Sage cell below defines a function that implements the power method. De-
fine the matrix A and initial vector x0 below. The command power(A, x0, N)
will print out the multiplier m and the vectors xk for N steps of the power
method.

def power(A, x, N):
for i in range(N):

x = A*x
m = max([comp for comp in x],

key=abs).numerical_approx(digits =14)
x = 1/ float(m)*x
print (m, x)

### Define the matrix A and initial vector x0 below
A =
x0 =
power(A, x0 , 20)

How does this computation identify an eigenvector of the matrix A?

e. What is the corresponding eigenvalue of this eigenvector?

f. How do the values of the multipliers mk tell us the eigenvalue associated to the
eigenvector we have found?

g. Consider now the matrix A �

[
−5.1 5.7
−3.8 4.4

]
. Use the power method to find the

dominant eigenvalue of A and an associated eigenvector.

Notice that the power method gives us not only an eigenvector v but also its associated

eigenvalue. As in the activity, consider the matrix A �

[
−5.1 5.7
−3.8 4.4

]
, which has eigenvec-

tor v �

[
3
2

]
. The first component has the largest absolute value so we multiply by 1

3 to
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obtain v �

[
1
2
3

]
. When we multiply by A, we have Av �

[
−1.30
−0.86

]
. Notice that the first

component still has the largest absolute value so that the multiplier m � −1.3 is the eigen-
value λ corresponding to the eigenvector. This demonstrates the fact that the multipliers mk
approach the eigenvalue λ having the largest absolute value.

Notice that the powermethod requires us to choose an initial vector x0. Formost choices, this
method will find the eigenvalue having the largest absolute value. However, an unfortunate
choice of x0 may not. For instance, if we had chosen x0 � v2 in our example above, the
vectors in the sequence xk � Akx0 � λk

2v2 will not detect the eigenvector v1. However, it
usually happens that our initial guess x0 has some contribution from v1 that enables us to
find it.

The power method, as presented here, will fail for certain unlucky matrices. This is exam-
ined in Exercise 5.2.4.5 along with a means to improve the power method to work for all
matrices.

5.2.2 Finding other eigenvalues

The power method gives a technique for finding the dominant eigenvalue of a matrix. We
can modify the method to find the other eigenvalues as well.

Activity 5.2.3. The key to finding the eigenvalue of A having the smallest absolute
value is to note that the eigenvectors of A are the same as those of A−1.

a. If v is an eigenvector of A with associated eigenvector λ, explain why v is an
eigenvector of A−1 with associated eigenvalue λ−1.

b. Explain why the eigenvalue of A having the smallest absolute value is the reci-
procal of the dominant eigenvalue of A−1.

c. Explain how to use the power method applied to A−1 to find the eigenvalue of
A having the smallest absolute value.

d. If we apply the power method to A−1, we begin with an intial vector x0 and gen-
erate the sequence xk+1 � A−1xk . It is not computationally efficient to compute
A−1, however, so instead we solve the equation Axk+1 � xk . Explain why an LU
factorization of A is useful for implementing the power method applied to A−1.

e. The following Sage cell defines a command called inverse_power that applies
the power method to A−1. That is, inverse_power(A, x0, N) prints the vectors
xk , where xk+1 � A−1xk , and multipliers 1

mk
, which approximate the eigenvalue

of A. Use it to find the eigenvalue of A �

[
−5.1 5.7
−3.8 4.4

]
having the smallest

absolute value.
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def inverse_power(A, x, N):
for i in range(N):

x = A \ x
m = max([comp for comp in x],

key=abs).numerical_approx(digits =14)
x = 1/ float(m)*x
print (1/ float(m), x)

### define the matrix A and vector x0
A =
x0 =
inverse_power(A, x0, 20)

f. The inverse power method only works if A is invertible. If A is not invertible,
what is its eigenvalue having the smallest absolute value?

g. Use the power method and the inverse power method to find the eigenvalues

and associated eigenvectors of the matrix A �

[
−0.23 −2.33
−1.16 1.08

]
.

With the power method and the inverse power method, we can now find the eigenvalues of
a matrix A having the largest and smallest absolute values. With one more modification, we
can find all the eigenvalues of A.

Activity 5.2.4. Remember that the absolute value of a number tells us how far that
number is from 0 on the real number line. We may therefore think of the inverse
power method as telling us the eigenvalue closest to 0.

a. If v is an eigenvector of A with associated eigenvalue λ, explain why v is an
eigenvector of A − sI where s is some scalar.

b. What is the eigenvalue of A − sI associated to the eigenvector v?

c. Explain why the eigenvalue of A closest to s is the eigenvalue of A − sI closest
to 0.

d. Explain why applying the inverse power method to A − sI gives the eigenvalue
of A closest to s.

e. Consider the matrix A �


3.6 1.6 4.0 7.6
1.6 2.2 4.4 4.1
3.9 4.3 9.0 0.6
7.6 4.1 0.6 5.0

 . If we use the power method

and inverse power method, we find two eigenvalues, λ1 � 16.35 and λ2 � 0.75.
Viewing these eigenvalues on a number line, we know that the other eigenvalues
lie in the range between −λ1 and λ1, as shaded in Figure 5.2.3.
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Figure 5.2.3 The range of eigenvalues of A.

The Sage cell below has a function find_closest_eigenvalue(A, s, x, N) that
implements N steps of the inverse power method using the matrix A − sI and
an initial vector x. This function prints approximations to the eigenvalue of A
closest to s and its associated eigenvector. By trying different values of s in the
shaded regions of the number line shown in Figure 5.2.3, find the other two
eigenvalues of A.

def find_closest_eigenvalue(A, s, x, N):
B = A-s*identity_matrix(A.nrows())
for i in range(N):

x = B \ x
m = max([comp for comp in x],

key=abs).numerical_approx(digits =14)
x = 1/ float(m)*x
print (1/ float(m)+s, x)

### define the matrix A and vector x0
A =
x0 =
find_closest_eigenvalue(A, 2, x0, 20)

f. Write a list of the four eigenvalues of A in increasing order.

There are some restrictions on the matrices to which this technique applies as we have as-
sumed that the eigenvalues of A are real and distinct. If A has repeated or complex eigen-
values, this technique will need to be modified, as explored in some of the exercises.

5.2.3 Summary

Wehave explored the powermethod as a tool for numerically approximating the eigenvalues
and eigenvectors of a matrix.

• After choosing an initial vector x0, we define the sequence xk+1 � Axk . As k grows
larger, the direction of the vectors xk closely approximates the direction of the eigen-
space corresponding to the eigenvalue λ1 having the largest absolute value.

• We normalize the vectors xk by multiplying by 1
mk

, where mk is the component having
the largest absolute value. In this way, the vectors xk approach an eigenvector associ-
ated to λ1, and the multipliers mk approach the eigenvalue λ1.

• To find the eigenvalue having the smallest absolute value, we apply the powermethod
using the matrix A−1.
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• To find the eigenvalue closest to some number s, we apply the power method using
the matrix (A − sI)−1.

5.2.4 Exercises

This Sage cell has the commands power, inverse_power, and find_closest_eigenvalue that
we have developed in this section. After evaluating this cell, these commands will be avail-
able in any other cell on this page.

def power(A, x, N):
for i in range(N):

x = A*x
m = max([comp for comp in x],

key=abs).numerical_approx(digits =14)
x = 1/ float(m)*x
print (m, x)

def find_closest_eigenvalue(A, s, x, N):
B = A-s*identity_matrix(A.nrows())
for i in range(N):

x = B \ x
m = max([comp for comp in x],

key=abs).numerical_approx(digits =14)
x = 1/ float(m)*x
print (1/ float(m)+s, x)

def inverse_power(A, x, N):
find_closest_eigenvalue(A, 0, x, N)

1. Suppose that A is a matrix having eigenvalues −3, −0.2, 1, and 4.
a. What are the eigenvalues of A−1?

b. What are the eigenvalues of A + 7I?
2. Use the commands power, inverse_power, and find_closest_eigenvalue to approxi-

mate the eigenvalues and associated eigenvectors of the following matrices.

a. A �

[
−2 −2
−8 −2

]
.

b. A �

[
0.6 0.7
0.5 0.2

]
.

c. A �


1.9 −16.0 −13.0 27.0

−2.4 20.3 4.6 −17.7
−0.51 −11.7 −1.4 13.1
−2.1 15.3 6.9 −20.5

 .
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3. Use the techniques we have seen in this section to find the eigenvalues of the matrix

A �


−14.6 9.0 −14.1 5.8 13.0

27.8 −4.2 16.0 0.9 −21.3
−5.5 3.4 3.4 3.3 1.1
−25.4 11.3 −15.4 4.7 20.3
−33.7 14.8 −22.5 9.7 26.6


.

A = matrix(5,5, [-14.6, 9.0, -14.1, 5.8, 13.0,
27.8, -4.2, 16.0, 0.9, -21.3,
-5.5, 3.4, 3.4, 3.3, 1.1,

-25.4, 11.3, -15.4, 4.7, 20.3,
-33.7, 14.8, -22.5, 9.7, 26.6])

4. Consider the matrix A �

[
0 −1

−4 0

]
.

a. Describe what happens if we apply the power method and the inverse power

method using the initial vector x0 �

[
1
0

]
.

b. Find the eigenvalues of this matrix and explain this observed behavior.

c. How can we apply the techniques of this section to find the eigenvalues of A?

5. We have seen that the matrix A �

[
1 2
2 1

]
has eigenvalues λ1 � 3 and λ2 � −1 and

associated eigenvectors v1 �

[
1
1

]
and v2 �

[
−1

1

]
.

a. Describewhat happenswhenwe apply the inverse powermethodusing the initial

vector x0 �

[
1
0

]
.

b. Explainwhy this is happening andprovide a contrastwith how the powermethod
usually works.

c. How can we modify the power method to give the dominant eigenvalue in this
case?

6. Suppose that A is a 2×2matrixwith eigenvalues 4 and−3 and that B is a 2×2matrixwith
eigenvalues 4 and 1. If we apply the power method to find the dominant eigenvalue of
these matrices to the same degree of accuracy, which matrix will require more steps in
the algorithm? Explain your response.

7. Suppose that we apply the power method to the matrix A with an initial vector x0 and
find the eigenvalue λ � 3 and eigenvector v. Suppose that we then apply the power
method again with a different initial vector and find the same eigenvalue λ � 3 but a
different eigenvector w. What can we conclude about the matrix A in this case?



5.2. FINDING EIGENVECTORS NUMERICALLY 333

8. The power method we have developed only works if the matrix has real eigenvalues.
Suppose that A is a 2× 2 matrix that has a complex eigenvalue λ � 2+ 3i. What would
happen if we apply the power method to A?

9. Consider the matrix A �

[
1 1
0 1

]
.

a. Find the eigenvalues and associated eigenvectors of A.

b. Make a prediction about what happens if we apply the power method and the
inverse power method to find eigenvalues of A.

c. Verify your prediction using Sage.
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CHAPTER 6
Orthogonality and Least Squares

We introduced vectors as a means to develop visual intuition about our basic questions con-
cerning linear systems. For example, vectors allow us to reinterpret questions about the
existence of solutions to linear systems as questions about the span of a set of vectors. Ques-
tions about the uniqueness of solutions led to the concept of linear independence.

In this chapter, we will begin to think of vectors as geometric objects that have lengths and
that form angles. In some cases, this will simplify our search for solutions to a linear system.
Perhaps more importantly, we will be able to measure the distance between vectors. This
means that if a system Ax � b is inconsistent, we can look for x̂, the vector for which Ax̂ is as
close to b as possible. This leads to the method of least squares, which underpins regression,
a key tool in data science.

6.1 The dot product

In this section, we introduce a simple algebraic operation, known as the dot product, that
helps us measure the length of vectors and the angle formed by a pair of vectors. For two-
dimensional vectors v and w, their dot product v · w is the scalar defined to be

v · w �

[
v1
v2

]
·
[

w1
w2

]
� v1w1 + v2w2.

For instance, [
2

−3

]
·
[

4
1

]
� 2 · 4 + (−3) · 1 � 5.

Preview Activity 6.1.1.
a. Compute the dot product [

3
4

]
·
[

2
−2

]
.

b. Sketch the vector v �

[
3
4

]
below. Then use the Pythagorean theorem to find

the length of v.
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Figure 6.1.1 Sketch the vector v and find its length.

c. Compute the dot product v · v. How is the dot product related to the length of
v?

d. Remember that the matrix
[

0 −1
1 0

]
represents the matrix transformation that

rotates vectors counterclockwise by 90◦. Beginning with the vector v �

[
3
4

]
,

find w, the result of rotating v by 90◦, and sketch it above.

e. What is the dot product v · w?

f. Suppose that v �

[
a
b

]
. Find the vector w that results from rotating v by 90◦

and find the dot product v · w.

g. Suppose that v and w are two perpendicular vectors. What do you think their
dot product v · w is?

6.1.1 The geometry of the dot product

The dot product is defined, more generally, for any two m-dimensional vectors:

v · w �


v1
v2
...

vm


·


w1
w2
...

wm


� v1w1 + v2w2 + . . . + vm wm .

The important thing to remember is that the dot product will produce a scalar. In other
words, the two vectors are combined in such a way as to create a number, and, as we’ll see,
this number conveys useful geometric information.
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Example 6.1.2 We compute the dot product between two four-dimensional vectors as
2
0
−3
1

 ·

−1
3
1
2

 � 2(−1) + 0(3) + (−3)(1) + 1(2) � −3.

Properties of dot products.

Aswith ordinarymultiplication, the dot product enjoys some familiar algebraic prop-
erties, such as commutativity and distributivity. More specifically, it doesn’t matter
in which order we compute the dot product of two vectors:

v · w � w · v.

If s is a scalar, we have
(sv) · w � s(v · w).

We may also distribute the dot product across linear combinations:

(c1v1 + c2v2) · w � c1v1 · w + c2v2 · w.

Example 6.1.3 Suppose that v1 · w � 4 and v2 · w � −7. Then

(2v1) · w � 2(v1 · w) � 2(4) � 8
(−3v1 + 2v2) · w � − 3(v1 · w) + 2(v2 · w) � −3(4) + 2(−7) � −26.

The most important property of the dot product, and the real reason for our interest in it,
is that it gives us geometric information about vectors and their relationship to one another.

Let’s first think about the length of a vector by looking at the vector v �

[
3
2

]
as shown in

Figure 6.1.4
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Figure 6.1.4 The vector v �

[
3
2

]
.

We may find the length of this vector using the Pythagorean theorem since the vector forms
the hypotenuse of a right triangle having a horizontal leg of length 3 and a vertical leg of
length 2. The length of v, which we denote as |v|, is therefore |v| �

√
32 + 22 �

√
13. Now

notice that the dot product of v with itself is

v · v � 3(3) + 2(2) � 13 � |v|2 .

This is true in general; that is, we have

v · v � |v|2 .

More than that, the dot product of two vectors records information about the angle between
them. Consider Figure 6.1.5.
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v

w

w−v

θ

Figure 6.1.5 The dot product v · w measures the angle θ.

To see this, we will apply the Law of Cosines, which says that

|w − v|2 � |v|2 + |w|2 − 2 |v| |w| cos θ
(w − v) · (w − v) � v · v + w · w − 2 |v| |w| cos θ

w · w + v · v − 2v · w � v · v + w · w − 2 |v| |w| cos θ
−2v · w � −2 |v| |w| cos θ

v · w � |v| |w| cos θ

The upshot of this reasoning is that

v · w � |v| |w| cos θ.

To summarize:

Geometric properties of the dot product.

The dot product gives us the following geometric information:

v · v � |v|2

v · w � |v| |w| cos θ

where θ is the angle between v and w.

Activity 6.1.2.

a. Sketch the vectors v �

[
3
2

]
and w �

[
−1

3

]
using Figure 6.1.6.
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Figure 6.1.6 Sketch the vectors v and w here.

b. Find the lengths |v| and |w| using the dot product.

c. Find the dot product v · w and use it to find the angle between v and w.

d. Consider the vector x �

[
−2

3

]
. Include it in your sketch in Figure 6.1.6 and

find the angle between v and x.

e. If two vectors are perpendicular, what can you say about their dot product?
Explain your thinking.

f. For what value of k is the vector
[

6
k

]
perpendicular to w?

g. Sage can be used to find lengths of vectors and their dot products. For instance,
if v and w are vectors, then v.norm() gives the length of v and v * w gives v · w.
Suppose that

v �


2
0
3

−2

 , w �


1

−3
4
1

 .
Use the Sage cell below to find |v|, |w|, v · w, and the angle between v and w.
You may use arccos to find the angle’s measure expressed in radians.

Aswemove forward, it will be important for us to recognizewhen vectors are perpendicular
to one another. For instance, when vectors v and w are perpendicular, the angle between
them θ � 90◦ and we have

v · w � |v| |w| cos θ � |v| |w| cos 90◦ � 0.

Therefore, the dot product between perpendicular vectors must be zero. This leads to the
following definition.
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Definition 6.1.7 We say that vectors v and w are orthogonal if v · w � 0.

In practical terms, two perpendicular vectors are orthogonal. However, the concept of or-
thogonality is somewhat more general because it allows one or both of the vectors to be the
zero vector 0.

We’ve now seen that the dot product gives us geometric information about vectors. It also
provides a way to compare vectors. For example, consider the vectors u, v, and w, shown
in Figure 6.1.8. The vectors v and w seem somewhat similar as the directions they define
are nearly the same. By comparison, u appears rather dissimilar to both v and w. We will
measure the similarity of vectors by finding the angle between them; the smaller the angle,
the more similar the vectors.
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Figure 6.1.8 Which of the vectors are most similar?

Activity 6.1.3. This activity explores two further uses of the dot product beginning
with the similarity of vectors.

a. Our first task is to assess the similarity between various Wikipedia articles by
forming vectors from each of five articles. In particular, one may download
the text from a Wikipedia article, remove common words, such as “the” and
“and”, count the number of times the remaining words appear in the article,
and represent these counts in a vector.
For example, evaluate the following cell that loads some special commands
alongwith the vectors constructed from theWikipedia articles on Veteran’s Day,
Memorial Day, Labor Day, the Golden Globe Awards, and the Super Bowl. For
each of the five articles, youwill see a list of the number of times 10words appear
in these articles. For instance, the word “act” appears 3 times in the Veteran’s
Day article and 0 times in the Labor Day article.
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url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/dot_similarity.py '
sage.repl.load.load(url , globals ())
events.head(int (10))

For each of the five articles, we obtain 604-dimensional vectors, which are named
veterans, memorial, labor, golden, and super.

1. Suppose that two articles have no words in common. What is the value of
the dot product between their corresponding vectors? What does this say
about the angle between these vectors?

2. Suppose there are two articles on the same subject, yet one article is twice
as long. What approximate relationshipwould you expect to hold between
the two vectors? What does this say about the angle between them?

3. Use the Sage cell below to find the angle between the vector veterans and
the other four vectors. To express the angle in degrees, use the degrees(x)
command, which gives the number of degrees in x radians.

4. Compare the four angles you have found and discuss what they mean
about the similarity between the Veteran’s Day article and the other four.
How do your findings reflect the nature of these five events?

b. Vectors are often used to represent how a quantity changes over time. For in-

stance, the vector s �


78.3
81.2
82.1
79.0

 might represent the value of a company’s stock

on four consecutive days. When interpreted in this way, we call the vector a time
series. Evaluate the Sage cell below to see a representation of two time series s1,
in blue, and s2, in orange, which we imagine represent the value of two stocks
over a period of time. (This cell relies on some data loaded by the first cell in
this activity.)

series_plot(s1, ' blue ' ) + series_plot(s2, ' orange ' )

Even though one stock has a higher value than the other, the two appear to be
related since they seem to rise and fall at roughly similar ways. We often say
that they are correlated, and we would like to measure the degree to which they
are correlated.

1. In order to compare theways inwhich they rise and fall, wewill first demean
the time series; that is, for each time series, we will subtract its average
value to obtain a new time series. There is a command, demean(s), that
returns the demeaned time series of s. Use the Sage cell below to demean
the series s1 and s2 and plot.
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ds1 = demean(s1)
ds2 = demean(s2)
series_plot(ds1 , ' blue ' ) + series_plot(ds2 , ' orange ' )

2. If the demeaned series are s̃1 and s̃2, then the correlation between s1 and
s2 is defined to be

corr(s1 , s2) �
s̃1 · s̃2
|s̃1 | |s̃2 |

.

Given the geometric interpretation of the dot product, the correlation equals
the cosine of the angle between the demeaned time series, and therefore
corr(s1 , s2) is between -1 and 1.
Find the correlation between s1 and s2.

3. Suppose that two time series are such that their demeaned time series are
scalar multiples of one another, as in Figure 6.1.9

Figure 6.1.9 On the left, the demeaned time series are positive scalar mul-
tiples of one another. On the right, they are negative scalar multiples.
For instance, suppose we have time series t1 and t2 whose demeaned time
series t̃1 and t̃2 are positive scalar multiples of one another. What is the
angle between the demeaned vectors? What does this say about the corre-
lation corr(t1 , t2)?

4. Suppose the demeaned time series t̃1 and t̃2 are negative scalar multiples
of one another, what is the angle between the demeaned vectors? What
does this say about the correlation corr(t1 , t2)?

5. Use the Sage cell below to plot the time series s1 and s3 and find their cor-
relation.

series_plot(s1, ' blue ' ) + series_plot(s3, ' orange ' )

6. Use the Sage cell below to plot the time series s1 and s4 and find their cor-
relation.

series_plot(s1, ' blue ' ) + series_plot(s4, ' orange ' )
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6.1.2 k-means clustering

A typical problem in data science is to find some underlying patterns in a dataset. Suppose,
for instance, that we have the set of 177 data points plotted in Figure 6.1.10. Notice that the
points are not scattered around haphazardly; instead, they seem to form clusters. Our goal
here is to develop a strategy for detecting the clusters.
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Figure 6.1.10 A set of 177 data points.

To see how this could be useful, supposewehavemedical data describing a group of patients,
some of whom have been diagnosed with a specific condition, such as diabetes. Perhaps we
have a record of age, weight, blood sugar, cholesterol, and other attributes for each patient. It
could be that the data points for the group diagnosed as having the condition form a cluster
that is somewhat distinct from the rest of the data. Suppose that we are able to identify that
cluster and that we are then presented with a new patient that has not been tested for the
condition. If the attributes for that patient place them in that cluster, wemight identify them
as being at risk for the condition and prioritize them for appropriate screenings.

If there aremany attributes for each patient, the datamay be high-dimensional and not easily
visualized. We would therefore like to develop an algorithm that separates the data points
into clusters without human intervention. We call the result a clustering.

The next activity introduces a technique, called k-means clustering, that helps us find cluster-
ings. To do so, we will view the data points as vectors so that the distance between two data
points equals the length of the vector joining them. That is, if two points are represented by
the vectors v and w, then the distance between the points is |v − w|.

Activity 6.1.4. To begin, we identify the centroid, or the average, of a set of vectors
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v1 , v2 , . . . , vn as
1
n
(v1 + v2 + . . . + vn) .

a. Find the centroid of the vectors

v1 �

[
1
1

]
, v2 �

[
4
1

]
, v3 �

[
4
4

]
.

and sketch the vectors and the centroid using Figure 6.1.11. You may wish to
simply plot the points represented by the tips of the vectors rather than drawing
the vectors themselves.
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Figure 6.1.11 The vectors v1, v2, v3 and their centroid.

Notice that the centroid lies in the center of the points defined by the vectors.

b. Now we’ll illustrate an algorithm that forms clusterings. To begin, consider the
following points, represented as vectors,

v1 �

[
−2

1

]
, v2 �

[
1
1

]
, v3 �

[
1
2

]
, v4 �

[
3
2

]
,

which are shown in Figure 6.1.12.
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Figure 6.1.12 We will group this set of four points into two clusters.

Suppose that we would like to group these points into k � 2 clusters. (Later on,
we’ll see how to choose an appropriate value for k, the number of clusters.) We
begin by choosing two points c1 and c2 at random and declaring them to be the
“centers”’ of the two clusters.
For example, suppose we randomly choose c1 � v2 and c2 � v3 as the center of
two clusters. The cluster centered on c1 � v2 will be the set of points that are
closer to c1 � v2 than to c2 � v3. Determine which of the four data points are in
this cluster, which we denote by C1, and circle them in Figure 6.1.12.

c. The second cluster will consist of the data points that are closer to c2 � v3 than
c1 � v2. Determine which of the four points are in this cluster, which we denote
by C2, and circle them in Figure 6.1.12.

d. We nowhave a clusteringwith two clusters, butwewill try to improve upon it in
the following way. First, find the centroids of the two clusters; that is, redefine
c1 to be the centroid of cluster C1 and c2 to be the centroid of C2. Find those
centroids and indicate them in Figure 6.1.13
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v3 v4

Figure 6.1.13 Indicate the new centroids and clusters.

Now update the cluster C1 to be the set of points closer to c1 than c2. Update
the cluster C2 in a similar way and indicate the clusters in Figure 6.1.13.

e. Let’s perform this last step again. That is, update the centroids c1 and c2 from
the new clusters and then update the clusters C1 and C2. Indicate your centroids
and clusters in Figure 6.1.14.

-2 -1 1 2 3

-2

-1

1

2

3

v1 v2

v3 v4

Figure 6.1.14 Indicate the new centroids and clusters.

Notice that this last step produces the same set of clusters so there is no point
in repeating it. We declare this to be our final clustering.

This activity demonstrates our algorithm for finding a clustering. We first choose a value k
and seek to break the data points into k clusters. The algorithm proceeds in the following
way:

• Choose k points c1 , c2 , . . . , ck at random from our dataset.
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• Construct the cluster C1 as the set of data points closest to c1, C2 as the set of data
points closest to c2, and so forth.

• Repeat the following until the clusters no longer change:

◦ Find the centroids c1 , c2 , . . . , ck of the current clusters.
◦ Update the clusters C1 , C2 , . . . , Ck .

The clusterings we find depend on the initial random choice of points c1 , c2 , . . . , ck . For
instance, in the previous activity, we arrived, with the initial choice c1 � v2 and c2 � v3, at
the clustering:

C1 � {v1}
C2 � {v2 , v3 , v4}.

If we instead choose the initial points to be c1 � v3 and c2 � v4, we eventually find the
clustering:

C1 � {v1 , v2 , v3}
C2 � {v4}.

Is there a way that we can determine which clustering is the better of the two? It seems like
a better clustering will be one for which the points in a cluster are, on average, closer to the
centroid of their cluster. If we have a clustering, we therefore define a function, called the
objective, which measures the average of the square of the distance from each point to the
centroid of the cluster to which that point belongs. A clustering with a smaller objective will
have clusters more tightly centered around their centroids, which should result in a better
clustering.

For example, when we obtain the clustering:

C1 � {v1 , v2 , v3}
C2 � {v4}.

with centroids c1 �

[
0

4/3

]
and c2 � v4 �

[
3
2

]
, we find the objective to be

1
4

(
|v1 − c1 |2 + |v2 − c1 |2 + |v3 − c1 |2 + |v4 − c2 |2

)
�

5
3 .

Activity 6.1.5. We’ll now use the objective to compare clusterings and to choose an
appropriate value of k.

a. In the previous activity, one initial choice of c1 and c2 led to the clustering:

C1 � {v1}
C2 � {v2 , v3 , v4}

with centroids c1 � v1 and c2 �

[
5/3
5/3

]
. Find the objective of this clustering.

b. We have now seen two clusterings and computed their objectives. Recall that
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our dataset is shown in Figure 6.1.12. Which of the two clusterings feels like the
better fit? How is this fit reflected in the values of the objectives?

c. Evaluating the following cell will load and display a dataset consisting of 177
data points. This dataset has the name data.

url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/k_means.py '
sage.repl.load.load(url , globals ())
list_plot(data , color= ' blue ' , size=20, aspect_ratio =1)

Given this plot of the data, what would seem like a reasonable number of clus-
ters?

d. In the following cell, you may choose a value of k and then run the algorithm to
determine and display a clustering and its objective. If you run the algorithm a
few times with the same value of k, you will likely see different clusterings hav-
ing different objectives. This is natural since our algorithm starts by making a
random choice of points c1 , c2 , . . . , ck , and a different choices may lead to differ-
ent clusterings. Choose a value of k and run the algorithm a few times. Notice
that clusterings having lower objectives seem to fit the data better. Repeat this
experiment with a few different values of k.

k = 2 # you may change the value of k here
clusters , centroids , objective = kmeans(data , k)
print( ' Objective␣= ' , objective)
plotclusters(clusters , centroids)

e. For a given value of k, our strategy is to run the algorithm several times and
choose the clustering with the smallest objective. After choosing a value of k,
the following cell will run the algorithm 10 times and display the clustering
having the smallest objective.

k = 2 # you may change the value of k here
clusters , centroids , objective = minimalobjective(data , k)
print( ' Objective␣= ' , objective)
plotclusters(clusters , centroids)

For each value of k between 2 and 9, find the clustering having the smallest
objective and plot your findings in Figure 6.1.15.
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1 2 3 4 5 6 7 8 9

1

2

3

4

k

Objective

Figure 6.1.15 Construct a plot of the minimal objective as it depends on the
choice of k.
This plot is called an elbow plot due to its shape. Notice how the objective de-
creases sharply when k is small and then flattens out. This leads to a location,
called the elbow, where the objective transitions from being sharply decreas-
ing to relatively flat. This means that increasing k beyond the elbow does not
significantly decrease the objective, which makes the elbow a good choice for k.
Where does the elbow occur in your plot above? How does this compare to the
best value of k that you estimated by simply looking at the data in Item c.

Of course, we could increase k until each data point is its own cluster. However, this
defeats the point of the technique, which is to group together nearby data points in
the hope that they share common features, thus providing insight into the structure
of the data.

We have now seen how our algorithm and the objective identify a reasonable value for k,
the number of the clusters, and produce a good clustering having k clusters. Notice that we
don’t claim to have found the best clustering as the true test of any clustering will be in how
it helps us understand the dataset and helps us make predictions about any new data that
we may encounter.

6.1.3 Summary

This section introduced the dot product and the ability to investigate geometric relationships
between vectors.
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• The dot product of two vectors v and w satisfies these properties:

v · v � |v|2
v · w � |v| |w| cos θ

where θ is the angle between v and w.

• The vectors v and w are orthogonal when v · w � 0.

• We explored some applications of the dot product to the similarity of vectors, correla-
tion of time series, and k-means clustering.

6.1.4 Exercises

1. Consider the vectors

v �


2
0
3

−2

 , w �


1

−3
4
1

 .
a. Find the lengths of the vectors, |v| and |w|.

b. Find the dot product v · w and use it to find the angle θ between v and w.
2. Consider the three vectors

u �


1

−2
2

 , v �


1
1
1

 , w �


0
2

−1

 .
a. Find the dot products u · u, u · v, and u · w.

b. Use the dot products you just found to evaluate:

1. |u|.
2. (−5u) · v.
3. u · (−3v + 2w).

4.
��� 1
|u|u

���.
c. For what value of k is u orthogonal to kv + 5w?

3. Suppose that v and w are vectors where

v · v � 4, w · w � 20, v · w � 8.

a. What is |v|?

b. What is the angle between v and w?

c. Suppose that t is a scalar. Find the value of t for which v is orthogonal to w+ tv?
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4. Suppose that v � 3w.
a. What is the relationship between v · v and w · w?

b. What is the relationship between |v| and |w|?

c. If v � sw for some scalar s, what is the relationship between v ·v and w ·w? What
is the relationship between |v| and |w|?

d. Suppose that v �


3

−2
2

 . Find a scalar s so that sv has length 1.

5. Given vectors v and w, explain why

|v + w|2 + |v − w|2 � 2 |v|2 + 2 |w|2 .

Sketch two vectors v and w and explain why this fact is called the parallelogram law.
6. Consider the vectors

v1 �


2
0
4

 , v2 �


−1

2
−4

 .
and a general vector x �


x
y
z

 .
a. Write an equation in terms of x, y, and z that describes all the vectors x orthogonal

to v1.

b. Write a linear system that describes all the vectors x orthogonal to both v1 and v2.

c. Write the solution set to this linear system in parametric form. What type of geo-
metric object does this solution set represent? Indicate with a rough sketch why
this makes sense.

d. Give a parametric description of all vectors orthogonal to v1. What type of geo-
metric object does this represent? Indicate with a rough sketch why this makes
sense.

7. Explain your responses to these questions.
a. Suppose that v is orthogonal to both w1 and w2. Can you guarantee that v is also

orthogonal to any linear combination c1w1 + c2w2?

b. Suppose that v is orthogonal to itself. What can you say about v?

8. Suppose that v1, v2, and v3 form a basis for�3 and that each vector is orthogonal to the
other two. Suppose also that v is another vector in �3.

a. Explain why v � c1v1 + c2v2 + c3v3 for some scalars c1, c2, and c3.

b. Beginning with the expression

v · v1 � (c1v1 + c2v2 + c3v3) · v1 ,
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apply the distributive property of dot products to explain why

c1 �
v · v1
v1 · v1

.

Find similar expressions for c2 and c3.

c. Verify that

v1 �


1
2
1

 , v2 �


1

−1
1

 , v3 �


1
0

−1


form a basis for�3 and that each vector is orthogonal to the other two. Use what

you’ve discovered in this problem to write the vector v �


3
5

−1

 as a linear com-

bination of v1, v2, and v3.
9. Suppose that v1, v2, and v3 are three nonzero vectors that are pairwise orthogonal; that

is, each vector is orthogonal to the other two.
a. Explain why v3 cannot be a linear combination of v1 and v2.

b. Explain why this set of three vectors is linearly independent.
10. In the next chapter, we will consider certain n × n matrices A and define a function

q(x) � x · (Ax),

where x is a vector in �n .

a. Suppose that A �

[
1 2
2 1

]
and x �

[
2
1

]
. Evaluate q(x) � x · (Ax).

b. For a general vector x �

[
x
y

]
, evaluate q(x) � x · (Ax) as an expression involving

x and y.

c. Suppose that v is an eigenvector of a matrix A with associated eigenvalue λ and
that v has length 1. What is the value of the function q(v)?

11. Back in Section 1.1, we saw that equations of the form Ax + By � C represent lines in
the plane. In this exercise, we will see how this expression arises geometrically.
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x

Figure 6.1.16 A line, a point p on the line, and a vector n perpendicular to the line.

a. Find the slope and vertical intercept of the line shown in Figure 6.1.16. Thenwrite
an equation for the line in the form y � mx + b.

b. Suppose that p is a point on the line, that n is a vector perpendicular to the line,

and that x �

[
x
y

]
is a general point on the line. Sketch the vector x − p and

describe the angle between this vector and the vector n.

c. What is the value of the dot product n · (x − p)?

d. Explain why the equation of the line can be written in the form n · x � n · p.

e. Identify the vectors p and n for the line illustrated in Figure 6.1.16 and use them
to write the equation of the line in terms of x and y. Verify that this expression
is algebraically equivalent to the equation y � mx + b that you earlier found for
this line.

f. Explain why any line in the plane can be described by an equation having the

form Ax + By � C. What is the significance of the vector
[

A
B

]
?
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6.2 Orthogonal complements and the matrix transpose

We’ve now seen how the dot product enables us to determine the angle between two vectors
and, more specifically, when two vectors are orthogonal. Moving forward, we will explore
how the orthogonality condition simplifiesmany common tasks, such as expressing a vector
as a linear combination of a given set of vectors.

This section introduces the notion of an orthogonal complement, the set of vectors each of
which is orthogonal to a prescribed subspace. We’ll also find a way to describe dot products
using matrix products, which allows us to study orthogonality using many of the tools for
understanding linear systems that we developed earlier.

Preview Activity 6.2.1.

a. Sketch the vector v �

[
−1

2

]
on Figure 6.2.1 and one vector that is orthogonal

to it.

-4 -2 2 4

-4

-2

2

4

x

y

Figure 6.2.1 Sketch the vector v and one vector orthogonal to it.

b. If a vector x is orthogonal to v, what do we know about the dot product v · x?

c. If we write x �

[
x
y

]
, use the dot product to write an equation for the vectors

orthogonal to v in terms of x and y.

d. Use this equation to sketch the set of all vectors orthogonal to v in Figure 6.2.1.

e. Section 3.5 introduced the column space Col(A) and null space Nul(A) of a ma-
trix A. If A is a matrix, what is the meaning of the null space Nul(A)?

f. What is the meaning of the column space Col(A)?
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6.2.1 Orthogonal complements

The preview activity presented us with a vector v and led us through the process of describ-
ing all the vectors orthogonal to v. Notice that the set of scalar multiples of v describes a
line L, a 1-dimensional subspace of�2. We then described a second line consisting of all the
vectors orthogonal to v. Notice that every vector on this line is orthogonal to every vector
on the line L. We call this new line the orthogonal complement of L and denote it by L⊥. The
lines L and L⊥ are illustrated on the left of Figure 6.2.2.

-4 -2 2 4

-4

-2

2

4

L

L
⊥

v

x

y

W

W
⊥

Figure 6.2.2 On the left is a line L and its orthogonal complement L⊥. On the right is a plane
W and its orthogonal complement W⊥ in �3.

The next definition places this example into a more general context.

Definition 6.2.3 Given a subspace W of �m , the orthogonal complement of W is the set of
vectors in �m each of which is orthogonal to every vector in W . We denote the orthogonal
complement by W⊥.

A typical example appears on the right of Figure 6.2.2. Here we see a plane W , a two-
dimensional subspace of �3, and its orthogonal complement W⊥, which is a line in �3.

As the next activity demonstrates, the orthogonal complement of a subspace W is itself a
subspace of �m .

Activity 6.2.2. Suppose that w1 �


1
0

−2

 and w2 �


1
1

−1

 form a basis for W , a two-

dimensional subspace of�3. Wewill find a description of the orthogonal complement
W⊥.

a. Suppose that the vector x is orthogonal to w1. If we write x �


x1
x2
x3

 , use the
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fact that w1 · x � 0 to write a linear equation for x1, x2, and x3.

b. Suppose that x is also orthogonal to w2. In the sameway, write a linear equation
for x1, x2, and x3 that arises from the fact that w2 · x � 0.

c. If x is orthogonal to both w1 and w2, these two equations give us a linear sys-
tem Bx � 0 for some matrix B. Identify the matrix B and write a parametric
description of the solution space to the equation Bx � 0.

d. Since w1 and w2 form a basis for the two-dimensional subspace W , any vector
w in W can be written as a linear combination

w � c1w1 + c2w2.

If x is orthogonal to both w1 and w2, use the distributive property of dot prod-
ucts to explain why x is orthogonal to w.

e. Give a basis for the orthogonal complementW⊥ and state the dimensiondim W⊥.

f. Describe (W⊥)⊥, the orthogonal complement of W⊥.

Example 6.2.4 If L is the line defined by v �


1

−2
3

 in �3, we will describe the orthogonal

complement L⊥, the set of vectors orthogonal to L.

If x is orthogonal to L, it must be orthogonal to v so we have

v · x � x1 − 2x2 + 3x3 � 0.

We can describe the solutions to this equation parametrically as

x �


x1
x2
x3

 �


2x2 − 3x3
x2
x3

 � x2


2
1
0

 + x3


−3

0
1

 .
Therefore, the orthogonal complement L⊥ is a plane, a two-dimensional subspace of �3,

spanned by the vectors


2
1
0

 and

−3

0
1

 .
Example 6.2.5 Suppose that W is the 2-dimensional subspace of �5 with basis

w1 �


−1
−2

2
3

−4


, w2 �


2
4
2
0
2


.

We will give a description of the orthogonal complement W⊥.
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If x is in W⊥, we know that x is orthogonal to both w1 and w2. Therefore,

w1 · x � − x1 − 2x2 + 2x3 + 3x4 − 4x5 � 0
w2 · x � 2x1 + 4x2 + 2x3 + 0x4 + 2x5 � 0

In other words, Bx � 0 where

B �

[
−1 −2 2 3 −4
2 4 2 0 2

]
∼
[
1 2 0 −1 2
0 0 1 1 −1

]
.

The solutions may be described parametrically as

x �


x1
x2
x3
x4
x5


� x2


−2

1
0
0
0


+ x4


1
0

−1
1
0


+ x5


−2

0
1
0
1


.

The distributive property of dot products implies that any vector that is orthogonal to both
w1 and w2 is also orthogonal to any linear combination of w1 and w2 since

(c1w1 + c2w2) · x � c1w1 · x + c2w2 · x � 0.

Therefore, W⊥ is a 3-dimensional subspace of �5 with basis

v1 �


−2

1
0
0
0


, v2 �


1
0

−1
1
0


, v3 �


−2

0
1
0
1


.

One may check that the vectors v1, v2, and v3 are each orthogonal to both w1 and w2.

6.2.2 The matrix transpose

The previous activity and examples show how we can describe the orthogonal complement
of a subspace as the solution set of a particular linear system. We will make this connection
more explicit by defining a new matrix operation called the transpose.

Definition 6.2.6 The transpose of the m × n matrix A is the n × m matrix AT whose rows are
the columns of A.

Example 6.2.7 If A �

[
4 −3 0 5
−1 2 1 3

]
, then AT �


4 −1
−3 2
0 1
5 3





6.2. ORTHOGONAL COMPLEMENTS AND THE MATRIX TRANSPOSE 359

Activity 6.2.3. This activity illustrates how multiplying a vector by AT is related to
computing dot products with the columns of A. You’ll develop a better understand-
ing of this relationship if you compute the dot products and matrix products in this
activity without using technology.

a. If B �


3 4
−1 2
0 −2

 , write the matrix BT .

b. Suppose that

v1 �


2
0

−2

 , v2 �


1
1
2

 , w �


−2

2
3

 .
Find the dot products v1 · w and v2 · w.

c. Nowwrite thematrix A �
[
v1 v2

]
and its transpose AT . Find the product ATw

and describe how this product computes both dot products v1 · w and v2 · w.

d. Suppose that x is a vector that is orthogonal to both v1 and v2. What does this
say about the dot products v1 ·x and v2 ·x? What does this say about the product
ATx?

e. Use the matrix AT to give a parametric description of all the vectors x that are
orthogonal to v1 and v2.

f. Remember that Nul(AT), the null space of AT , is the solution set of the equation
ATx � 0. If x is a vector in Nul(AT), explain why x must be orthogonal to both
v1 and v2.

g. Remember that Col(A), the column space of A, is the set of linear combinations
of the columns of A. Therefore, any vector in Col(A) can bewritten as c1v1+c2v2.
If x is a vector in Nul(AT), explain why x is orthogonal to every vector in Col(A).

The previous activity demonstrates an important connection between the matrix transpose
and dot products. More specifically, the components of the product ATx are simply the dot
products of the columns of A with x. We will make frequent use of this observation so let’s
record it as a proposition.

Proposition 6.2.8 If A is the matrix whose columns are v1 , v2 , . . . , vn , then

ATx �


v1 · x
v2 · x
...

vn · x


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Example 6.2.9 Suppose that W is a subspace of �4 having basis

w1 �


1
0
2
1

 , w2 �


2
1
3
4

 ,
and that we wish to describe the orthogonal complement W⊥.

If A is the matrix A �
[
w1 w2

]
and x is in W⊥, we have

ATx �

[
w1 · x
w2 · x

]
�

[
0
0

]
.

Describing vectors x that are orthogonal to both w1 and w2 is therefore equivalent to the
more familiar task of describing the solution set ATx � 0. To do so, we find the reduced row
echelon form of AT and write the solution set parametrically as

x � x3


−2

1
1
0

 + x4


−1
−2

0
1

 .
Once again, the distributive property of dot products tells us that such a vector is also orthog-
onal to any linear combination of w1 and w2 so this solution set is, in fact, the orthogonal
complement W⊥. Indeed, we see that the vectors

v1 �


−2

1
1
0

 , v2 �


−1
−2

0
1


form a basis for W⊥, which is a two-dimensional subspace of �4.

To place this example in a slightly more general context, note that w1 and w2, the columns
of A, form a basis of W . Since Col(A), the column space of A is the subspace of linear com-
binations of the columns of A, we have W � Col(A).
This example also shows that the orthogonal complement W⊥ � Col(A)⊥ is described by the
solution set of ATx � 0. This solution set iswhatwe have calledNul(AT), the null space of AT .
In this way, we see the following proposition, which is visually represented in Figure 6.2.11.

Proposition 6.2.10 For any matrix A, the orthogonal complement of Col(A) is Nul(AT); that is,

Col(A)⊥ � Nul(AT).
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Col(A)

Nul(AT )

Figure 6.2.11 The orthogonal complement of the column space of A is the null space of AT .

6.2.3 Properties of the matrix transpose

The transpose is a simple algebraic operation performed on a matrix. The next activity ex-
plores some of its properties.

Activity 6.2.4. In Sage, the transpose of a matrix A is given by A.T. Define the matrices

A �

[
1 0 −3
2 −2 1

]
, B �

[
3 −4 1
0 1 2

]
, C �


1 0 −3
2 −2 1
3 2 0

 .

a. Evaluate (A + B)T and AT + BT . What do you notice about the relationship
between these two matrices?

b. What happens if you transpose a matrix twice; that is, what is (AT)T?

c. Find det(C) and det(CT). What do you notice about the relationship between
these determinants?

d. 1. Find the product AC and its transpose (AC)T .
2. Is it possible to compute the product AT CT? Explain why or why not.
3. Find the product CTAT and compare it to (AC)T . What do you notice about

the relationship between these two matrices?

e. What is the transpose of the identity matrix I?

f. If a square matrix D is invertible, explain why you can guarantee that DT is
invertible and why (DT)−1 � (D−1)T .

In spite of the fact that we are looking at some specific examples, this activity demonstrates



362 CHAPTER 6. ORTHOGONALITY AND LEAST SQUARES

the following general properties of the transpose, which may be verified with a little effort.

Properties of the transpose.

Here are some properties of the matrix transpose, expressed in terms of general ma-
trices A, B, and C. We assume that C is a square matrix.

• If A + B is defined, then (A + B)T � AT + BT .

• (sA)T � sAT .

• (AT)T � A.

• det(C) � det(CT).

• If AB is defined, then (AB)T � BTAT . Notice that the order of themultiplication
is reversed.

• (CT)−1 � (C−1)T .

There is one final property wewish to record thoughwewill wait until Section 7.4 to explain
why it is true.

Proposition 6.2.12 For any matrix A, we have

rank(A) � rank(AT).

This proposition is important because it implies a relationship between the dimensions of a
subspace and its orthogonal complement. For instance, if A is an m × n matrix, we saw in
Section 3.5 that dimCol(A) � rank(A) and dimNul(A) � n − rank(A).
Now suppose that W is an n-dimensional subspace of �m with basis w1 ,w2 , . . . ,wn . If we
form the m × n matrix A �

[
w1 w2 . . . wn

]
, then Col(A) � W so that

rank(A) � dimCol(A) � dim W � n.

The transpose AT is an n × m matrix having rank(AT) � rank(A) � n. Since W⊥ � Nul(AT),
we have

dim W⊥
� dimNul(AT) � m − rank(AT) � m − n � m − dim W .

This explains the following proposition.

Proposition 6.2.13 If W is a subspace of �m , then

dim W + dim W⊥
� m.

Example 6.2.14 In Example 6.2.4, we constructed the orthogonal complement of a line in�3.
The dimension of the orthogonal complement should be 3 − 1 � 2, which explains why we
found the orthogonal complement to be a plane.

Example 6.2.15 In Example 6.2.5, we looked at W , a 2-dimensional subspace of�5 and found
its orthogonal complement W⊥ to be a 5 − 2 � 3-dimensional subspace of �5.
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Activity 6.2.5.
a. Suppose that W is a 5-dimensional subspace of�9 and that A is a matrix whose

columns form a basis for W ; that is, Col(A) � W .

1. What is the shape of A?
2. What is the rank of A?
3. What is the shape of AT?
4. What is the rank of AT?
5. What is dimNul(AT)?
6. What is dim W⊥?
7. How are the dimensions of W and W⊥ related?

b. Suppose that W is a subspace of �4 having basis

w1 �


1
0
2

−1

 , w2 �


−1

2
−6

3

 .
1. Find the dimensions dim W and dim W⊥.
2. Find a basis for W⊥. It may be helpful to know that the Sage command

A.right_kernel() produces a basis for Nul(A).

3. Verify that each of the basis vectors you found for W⊥ are orthogonal to
the basis vectors for W .

6.2.4 Summary

This section introduced the matrix transpose, its connection to dot products, and its use in
describing the orthogonal complement of a subspace.

• The columns of the matrix A are the rows of the matrix transpose AT .

• The components of the product ATx are the dot products of x with the columns of A.

• The orthogonal complement of the column space of A equals the null space of AT ; that
is, Col(A)⊥ � Nul(AT).

• If W is a subspace of �p , then

dim W + dim W⊥
� p.
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6.2.5 Exercises

1. Suppose that W is a subspace of �4 with basis

w1 �


−2

2
2

−4

 , w2 �


−2

3
5

−5

 .
a. What are the dimensions dim W and dim W⊥?

b. Find a basis for W⊥.

c. Verify that each of the basis vectors for W⊥ are orthogonal to w1 and w2.

2. Consider the matrix A �


−1 −2 −2
1 3 4
2 1 −2

 .
a. Find rank(A) and a basis for Col(A).

b. Determine the dimension of Col(A)⊥ and find a basis for it.
3. Suppose that W is the subspace of �4 defined as the solution set of the equation

x1 − 3x2 + 5x3 − 2x4 � 0.

a. What are the dimensions dim W and dim W⊥?

b. Find a basis for W .

c. Find a basis for W⊥.

d. In general, how can you easily find a basis for W⊥ when W is defined by

Ax1 + Bx2 + Cx3 + Dx4 � 0?
4. Determine whether the following statements are true or false and explain your reason-

ing.

a. If A �


2 1
1 1
−3 1

 , then x �


4

−5
1

 is in Col(A)⊥.

b. If A is a 2 × 3 matrix and B is a 3 × 4 matrix, then (AB)T � AT BT is a 4 × 2 matrix.

c. If the columns of A are v1, v2, and v3 and ATx �


2
0
1

 , then x is orthogonal to v2.

d. If A is a 4 × 4 matrix with rank(A) � 3, then Col(A)⊥ is a line in �4.

e. If A is a 5 × 7 matrix with rank(A) � 5, then rank(AT) � 7.
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5. Apply properties of matrix operations to simplify the following expressions.
a. AT(BAT)−1

b. (A + B)T(A + B)

c. [A(A + B)T]T

d. (A + 2I)T

6. A symmetric matrix A is one for which A � AT .
a. Explain why a symmetric matrix must be square.

b. If A and B are general matrices and D is a square diagonal matrix, which of the
following matrices can you guarantee are symmetric?

1. D

2. BAB−1

3. AAT .
4. BDBT

7. If A is a square matrix, remember that the characteristic polynomial of A is det(A − λI)
and that the roots of the characteristic polynomial are the eigenvalues of A.

a. Explain why A and AT have the same characteristic polynomial.

b. Explain why A and AT have the same set of eigenvalues.

c. Suppose that A is diagonalizable with diagonalization A � PDP−1. Explain why
AT is diagonalizable and find a diagonalization.

8. This exercise introduces a version of the Pythagorean theorem that we’ll use later.
a. Suppose that v and w are orthogonal to one another. Use the dot product to

explain why
|v + w|2 � |v|2 + |w|2 .

b. Suppose that W is a subspace of �m and that z is a vector in �m for which

z � x + y,

where x is in W and y is in W⊥. Explain why

|z|2 � |x|2 + |y|2 ,

which is an expression of the Pythagorean theorem.

9. In the next chapter, symmetric matrices---that is, matrices for which A � AT---play an
important role. It turns out that eigenvectors of a symmetric matrix that are associated
to different eigenvalues are orthogonal. We will explain this fact in this exercise.

a. Viewing a vector as a matrix having one column, we may write x · y � xTy. If A
is a matrix, explain why x · (Ay) � (ATx) · y.
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b. We have seen that the matrix A �

[
1 2
2 1

]
has eigenvectors v1 �

[
1
1

]
, with asso-

ciated eigenvalue λ1 � 3, and v2 �

[
1

−1

]
, with associated eigenvalue λ2 � −1.

Verify that A is symmetric and that v1 and v2 are orthogonal.

c. Suppose that A is a general symmetric matrix and that v1 is an eigenvector as-
sociated to eigenvalue λ1 and that v2 is an eigenvector associated to a different
eigenvalue λ2. Beginning with v1 · (Av2), apply the identity from the first part of
this exercise to explain why v1 and v2 are orthogonal.

10. Given an m×n matrix A, the row space of A is the column space of AT ; that is, Row(A) �
Col(AT).

a. Suppose that A is a 7 × 15 matrix. For what p is Row(A) a subspace of �p?

b. How can Proposition 6.2.10 help us describe Row(A)⊥?

c. Suppose that A �


−1 −2 2 1
2 4 −1 5
1 2 0 3

 . Find bases for Row(A) and Row(A)⊥.
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6.3 Orthogonal bases and projections

We know that a linear system Ax � b is inconsistent when b is not in Col(A), the column
space of A. Later in this chapter, we’ll develop a strategy for dealing with inconsistent sys-
tems by finding b̂, the vector in Col(A) thatminimizes the distance tob. The equation Ax � b̂
is therefore consistent and its solution set can provide us with useful information about the
original system Ax � b.

In this section and the next, we’ll develop some techniques that enable us to find b̂, the vector
in a given subspace W that is closest to a given vector b.

Preview Activity 6.3.1. For this activity, it will be helpful to recall the distributive
property of dot products:

v · (c1w1 + c2w2) � c1v · w1 + c2v · w2.

We’ll work with the basis of �2 formed by the vectors

w1 �

[
1
2

]
, w2 �

[
−2

1

]
.

a. Verify that the vectors w1 and w2 are orthogonal.

b. Suppose that b �

[
7
4

]
and find the dot products w1 · b and w2 · b.

c. We would like to express b as a linear combination of w1 and w2, which means
that we need to find weights c1 and c2 such that

b � c1w1 + c2w2.

To find the weight c1, dot both sides of this expression with w1:

b · w1 � (c1w1 + c2w2) · w1,

and apply the distributive property.

d. In a similar fashion, find the weight c2.

e. Verify that b � c1w1 + c2w2 using the weights you have found.

We frequently ask to write a given vector as a linear combination of given basis vectors. In
the past, we have done this by solving a linear system. The preview activity illustrates how
this task can be simplifiedwhen the basis vectors are orthogonal to each other. We’ll explore
this and other uses of orthogonal bases in this section.
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6.3.1 Orthogonal sets

The preview activity dealt with a basis of �2 formed by two orthogonal vectors. More gen-
erally, we will consider a set of orthogonal vectors, as described in the next definition.

Definition 6.3.1 By an orthogonal set of vectors, we mean a set of nonzero vectors each of
which is orthogonal to the others.

Example 6.3.2 The 3-dimensional vectors

w1 �


1

−1
1

 , w2 �


1
1
0

 , w3 �


1

−1
−2

 .
form an orthogonal set, which can be verified by computing

w1 · w2 � 0
w1 · w3 � 0
w2 · w3 � 0.

Notice that this set of vectors forms a basis for �3.
Example 6.3.3 The vectors

w1 �


1
1
1
1

 , w2 �


1
1

−1
−1

 , w3 �


1

−1
1

−1


form an orthogonal set of 4-dimensional vectors. Since there are only three vectors, this set
does not form a basis for�4. It does, however, form a basis for a 3-dimensional subspace W
of �4.

Suppose that a vectorb is a linear combination of an orthogonal set of vectorsw1 ,w2 , . . . ,wn ;
that is, suppose that

c1w1 + c2w2 + · · · + cnwn � b.

Just as in the preview activity, we can find the weight c1 by dotting both sides with w1 and
applying the distributive property of dot products:

(c1w1 + c2w2 + · · · + cnwn) · w1 � b · w1

c1w1 · w1 + c2w2 · w1 + · · · + cnwn · w1 � b · w1

c1w1 · w1 � b · w1

c1 �
b · w1

w1 · w1
.

Notice how the presence of an orthogonal set causes most of the terms in the sum to vanish.
In the same way, we find that

ci �
b · wi

wi · wi



6.3. ORTHOGONAL BASES AND PROJECTIONS 369

so that
b �

b · w1
w1 · w1

w1 +
b · w2

w2 · w2
w2 + · · · + b · wn

wn · wn
wn .

We’ll record this fact in the following proposition.

Proposition 6.3.4 If a vectorb is a linear combination of an orthogonal set of vectorsw1 ,w2 , . . . ,wn ,
then

b �
b · w1

w1 · w1
w1 +

b · w2
w2 · w2

w2 + · · · + b · wn

wn · wn
wn .

Using this proposition, we can see that an orthogonal set of vectors must be linearly inde-
pendent. Suppose, for instance, that w1 ,w2 , . . . ,wn is a set of nonzero orthogonal vectors
and that one of the vectors is a linear combination of the others, say,

w3 � c1w1 + c2w2.

We therefore know that
w3 �

w3 · w1
w1 · w1

w1 +
w3 · w2
w2 · w1

w2 � 0,

which cannot happen since we know that w3 is nonzero. This tells us that

Proposition 6.3.5 An orthogonal set of vectors w1 ,w2 , . . . ,wn is linearly independent.

If the vectors in an orthogonal set have dimension m, they form a linearly independent set
in �m and are therefore a basis for the subspace W � Span{w1 ,w2 , . . . ,wn}. If there are m
vectors in the orthogonal set, they form a basis for �m .

Activity 6.3.2. Consider the vectors

w1 �


1

−1
1

 , w2 �


1
1
0

 , w3 �


1

−1
−2

 .
a. Verify that this set forms an orthogonal set of 3-dimensional vectors.

b. Explain why we know that this set of vectors forms a basis for �3.

c. Suppose that b �


2
4

−4

 . Find the weights c1, c2, and c3 that express b as a

linear combination b � c1w1 + c2w2 + c3w3 using Proposition 6.3.4.

d. If we multiply a vector v by a positive scalar s, the length of v is also multiplied
by s; that is, |sv| � s |v|.
Using this observation, find a vector u1 that is parallel to w1 and has length 1.
Such vectors are called unit vectors.

e. Similarly, find a unit vector u2 that is parallel to w2 and a unit vector u3 that is
parallel to w3.
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f. Construct the matrix Q �
[
u1 u2 u3

]
and find the product QTQ. Use Propo-

sition 6.2.8 to explain your result.

This activity introduces an important way of modifying an orthogonal set so that the vectors
in the set have unit length. Recall that we may multiply any nonzero vector w by a scalar
so that the new vector has length 1. For instance, we know that if s is a positive scalar, then
|sw| � s |w|. To obtain a vector u having unit length, we want

|u| � |sw| � s |w| � 1

so that s � 1/|w|. Therefore,
u �

1
|w|w

becomes a unit vector parallel to w.

Orthogonal sets in which the vectors have unit length are called orthonormal and are espe-
cially convenient.

Definition 6.3.6 An orthonormal set is an orthogonal set of vectors each of which has unit
length.

Example 6.3.7 The vectors

u1 �

[
1/
√

2
1/
√

2

]
, u2 �

[
−1/

√
2

1/
√

2

]
are an orthonormal set of vectors in �2 and form an orthonormal basis for �2.

If we form the matrix

Q �
[
u1 u2

]
�

[
1/
√

2 −1/
√

2
1/
√

2 1/
√

2

]
,

we find that QTQ � I since Proposition 6.2.8 tells us that

QTQ �

[
u1 · u1 u1 · u2
u2 · u1 u2 · u2

]
�

[
1 0
0 1

]
The previous activity and example illustrate the next proposition.

Proposition 6.3.8 If the columns of the m × n matrix Q form an orthonormal set, then QTQ � In ,
the n × n identity matrix.

6.3.2 Orthogonal projections

We now turn to an important problem that will appear in many forms in the rest of our
explorations. Suppose, as shown in Figure 6.3.9, that we have a subspace W of �m and a
vector b that is not in that subspace. We would like to find the vector b̂ in W that is closest
to b, meaning the distance between b̂ and b is as small as possible.
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w1

w2

b

̂

b

Figure 6.3.9 Given a plane in �3 and a vector b not in the plane, we wish to find the vector
b̂ in the plane that is closest to b.

To get started, let’s consider a simpler problem where we have a line L in�2, defined by the
vector w, and another vector b that is not on the line, as shown on the left of Figure 6.3.10.
We wish to find b̂, the vector on the line that is closest to b, as illustrated in the right of
Figure 6.3.10.

2 4

2

4

w

b

L

2 4

2

4

w

̂

b

b−
̂

b

b

L

Figure 6.3.10 Given a line L and a vector b, we seek the vector b̂ on L that is closest to b.

To find b̂, we require that b− b̂ be orthogonal to L. For instance, if y is another vector on the
line, as shown in Figure 6.3.11, then the Pythagorean theorem implies that

|b − y|2 � |b − b̂|2 + |b̂ − y|2

which means that |b − y| ≥ |b − b̂|. Therefore, b̂ is closer to b than any other vector on the
line L.
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2 4

2

4

̂b

y

b

L

b−
̂b

Figure 6.3.11 The vector b̂ is closer to b than y because b − b̂ is orthogonal to L.

Definition 6.3.12 Given a vector b in �m and a subspace W of �m , the orthogonal projection
of b onto W is the vector b̂ in W that is closest to b. It is characterized by the property that
b − b̂ is orthogonal to W .

Activity 6.3.3. This activity demonstrates how to determine the orthogonal projection
of a vector onto a subspace of �m .

a. Let’s begin by considering a line L, defined by the vector w �

[
2
1

]
, and a vector

b �

[
2
4

]
not on L, as illustrated in Figure 6.3.13.

2 4

2

4

w

̂

b

b−
̂

b

b

L

2 4

2

4

w

sw

b− sw

b

L

Figure 6.3.13 Finding the orthogonal projection of b onto the line defined by w.

1. To find b̂, first notice that b̂ � sw for some scalar s. Since b− b̂ � b− sw is
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orthogonal to w, what do we know about the dot product

(b − sw) · w?

2. Apply the distributive property of dot products to find the scalar s. What
is the vector b̂, the orthogonal projection of b onto L?

3. More generally, explain why the orthogonal projection of b onto the line
defined by w is

b̂ �
b · w
w · w

w.

b. The same ideas apply more generally. Suppose we have an orthogonal set of

vectors w1 �


2
2

−1

 and w2 �


1
0
2

 that define a plane W in �3. If b �


3
9
6


another vector in�3, we seek the vector b̂ on the plane W closest to b. As before,
the vector b − b̂ will be orthogonal to W , as illustrated in Figure 6.3.14.

w1

w2

b

̂

b

Figure 6.3.14 Given a plane W defined by the orthogonal vectors w1 and w2 and
another vector b, we seek the vector b̂ on W closest to b.

1. The vector b − b̂ is orthogonal to W . What does this say about the dot
products: (b − b̂) · w1 and (b − b̂) · w2?

2. Since b̂ is in the plane W , we canwrite it as a linear combination b̂ � c1w1+
c2w2. Then

b − b̂ � b − (c1w1 + c2w2).

Find the weight c1 by dotting b − b̂ with w1 and applying the distributive
property of dot products. Similarly, find the weight c2.

3. What is the vector b̂, the orthogonal projection of b onto the plane W?

c. Suppose that W is a subspace of �m with orthogonal basis w1 ,w2 , . . . ,wn and
that b is a vector in �m . Explain why the orthogonal projection of b onto W is
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the vector
b̂ �

b · w1
w1 · w1

w1 +
b · w2

w2 · w2
w2 + · · · + b · wn

wn · wn
wn .

d. Suppose that u1 , u2 , . . . , un is an orthonormal basis for W ; that is, the vectors are
orthogonal to one another and have unit length. Explain why the orthogonal
projection is

b̂ � (b · u1) u1 + (b · u2) u2 + · · · + (b · un) un .

e. If Q �
[
u1 u2 . . . un

]
is thematrixwhose columns are an orthonormal basis

of W , use Proposition 6.2.8 to explain why b̂ � QQTb.

In all the cases considered in the activity, we are looking for b̂, the vector in a subspace W
closest to a vector b, which is found by requiring that b− b̂ be orthogonal to W . This means
that (b − b̂) · w � 0 for any vector w in W .

If we have an orthogonal basis w1 ,w2 , . . . ,wn for W , then b̂ � c1w1 + cww2 + · · · + cnwn .
Therefore,

(b − b̂) · wi � 0

b · wi � b̂ · wi

b · wi � (c1w1 + c2w2 + · · · + cnwn) · wi

b · wi � ciwi · wi

ci �
b · wi

wi · wi
.

This leads to the projection formula:

Proposition 6.3.15 Projection formula. If W is a subspace of �m having an orthogonal basis
w1 ,w2 , . . . ,wn and b is a vector in �m , then the orthogonal projection of b onto W is

b̂ �
b · w1

w1 · w1
w1 +

b · w2
w2 · w2

w2 + · · · + b · wn

wn · wn
wn .

Caution.
Remember that the projection formula given in Proposition 6.3.15 applies only when
the basis w1 ,w2 , · · · ,wn of W is orthogonal.

If we have an orthonormal basis u1 , u2 , . . . , un for W , the projection formula simplifies to

b̂ � (b · u1) u1 + (b · u2) u2 + · · · + (b · un) un .

If we then form the matrix
Q �

[
u1 u2 . . . un

]
,

this expression may be succintly written

b̂ � (b · u1) u1 + (b · u2) u2 + · · · + (b · un) un
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�
[
u1 u2 . . . un

] 
u1 · b
u2 · b
...

un · b


� QQTb

This leads to the following proposition.

Proposition 6.3.16 If u1 , u2 , . . . , un is an orthonormal basis for a subspaceW of�m , then the matrix
transformation that projects vectors in �m orthogonally onto W is represented by the matrix QQT

where
Q �

[
u1 u2 . . . un

]
.

Example 6.3.17 In the previous activity, we looked at the plane W defined by the two orthog-
onal vectors

w1 �


2
2

−1

 , w2 �


1
0
2

 .
We can form an orthonormal basis by scalar multiplying these vectors to have unit length:

u1 �
1
3


2
2

−1

 �


2/3
2/3

−1/3

 , u2 �
1√
5


1
0
2

 �


1/
√

5
0

2/
√

5

 .
Using these vectors, we form the matrix

Q �


2/3 1/

√
5

2/3 0
−1/3 2/

√
5

 .
The projection onto the plane W is then given by the matrix

QQT
�


2/3 1/

√
5

2/3 0
−1/3 2/

√
5


[

2/3 2/3 −1/3
1/
√

5 0 2/
√

5

]
�


29/45 4/9 8/45
4/9 4/9 −2/9
8/45 −2/9 41/45

 .
Let’s check that this works by considering the vector b �


1
0
0

 and finding b̂, its orthogonal

projection onto the plane W . In terms of the original basis w1 and w2, the projection formula
from Proposition 6.3.15 tells us that

b̂ �
b · w1

w1 · w1
w1 +

b · w2
w2 · w2

w2 �


29/45
4/9
8/45


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Alternatively, we use the matrix QQT , as in Proposition 6.3.16, to find that

b̂ � QQTb �


29/45 4/9 8/45
4/9 4/9 −2/9
8/45 −2/9 41/45




1
0
0

 �


29/45
4/9
8/45

 .
Activity 6.3.4.

a. Suppose that L is the line in �3 defined by the vector w �


1
2

−2

 .
1. Find an orthonormal basis u for L.
2. Construct the matrix Q �

[
u
]
and use it to construct the matrix P that

projects vectors orthogonally onto L.

3. Use your matrix to find b̂, the orthogonal projection of b �


1
1
1

 onto L.

4. Find rank(P) and explain its geometric significance.

b. The vectors

w1 �


1
1
1
1

 , w2 �


0
1
1

−2


form an orthogonal basis of W , a two-dimensional subspace of �4.

1. Use the projection formula from Proposition 6.3.15 to find b̂, the orthogo-

nal projection of b �


9
2

−2
3

 onto W .

2. Find an orthonormal basis u1 and u2 for W and use it to construct the ma-
trix P that projects vectors orthogonally onto W . Check that Pb � b̂, the
orthogonal projection you found in the previous part of this activity.

3. Find rank(P) and explain its geometric significance.
4. Find a basis for W⊥.
5. Find a vector b⊥ in W⊥ such that

b � b̂ + b⊥.

6. If Q is the matrix whose columns are u1 and u2, find the product QTQ and
explain your result.
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This activity demonstrates one issue of note. We found b̂, the orthogonal projection of b
onto W , by requiring that b − b̂ be orthogonal to W . In other words, b − b̂ is a vector in
the orthogonal complement W⊥, which we may denote b⊥. This explains the following
proposition, which is illustrated in Figure 6.3.19

Proposition 6.3.18 IfW is a subspace of�n with orthogonal complementW⊥, then any n-dimensional
vector b can be uniquely written as

b � b̂ + b⊥

where b̂ is in W and b⊥ is in W⊥. The vector b̂ is the orthogonal projection of b onto W and b⊥ is
the orthogonal projection of b onto W⊥.

-4 -2 2 4

-4

-2

2

4

̂

b

b
⊥

b

L

L
⊥

Figure 6.3.19 A vector b along with b̂, its orthogonal projection onto the line L, and b⊥, its
orthogonal projection onto the orthogonal complement L⊥.

Let’s summarize what we’ve found. If Q is a matrix whose columns u1 , u2 , . . . , un form an
orthonormal set in �m , then

• QTQ � In , the n × n identity matrix, because this product computes the dot products
between the columns of Q.

• QQT is thematrix the projects vectors orthogonally ontoW , the subspace of�m spanned
by u1 , . . . , un .

As we’ve said before, matrix multiplication depends on the order in which we multiply the
matrices, and we see this clearly here.

Because QTQ � I, there is a temptation to say that Q is invertible. This is usually not the
case, however. Remember that an invertible matrix must be a square matrix, and the matrix
Q will only be square if n � m. In this case, there are m vectors in the orthonormal set so
the subspace W spanned by the vectors u1 , u2 , . . . , um is �m . If b is a vector in �m , then
b̂ � QQTb is the orthogonal projection of b onto �m . In other words, QQTb is the closest
vector in �m to b, and this closest vector must be b itself. Therefore, QQTb � b, which
means that QQT � I. In this case, Q is an invertible matrix.
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Example 6.3.20 Consider the orthonormal set of vectors

u1 �


1/
√

3
−1/

√
3

1/
√

3

 , u2 �


1/
√

2
1/
√

2
0


and the matrix they define

Q �


1/
√

3 1/
√

2
−1/

√
3 1/

√
2

1/
√

3 0

 .
In this case, u1 and u2 span a plane, a 2-dimensional subspace of�3. We know that QTQ � I2
and QQT projects vectors orthogonally onto the plane. However, Q is not a square matrix
so it cannot be invertible.
Example 6.3.21 Now consider the orthonormal set of vectors

u1 �


1/
√

3
−1/

√
3

1/
√

3

 , u2 �


1/
√

2
1/
√

2
0

 , u3 �


1/
√

6
−1/

√
6

−2/
√

6


and the matrix they define

Q �


1/
√

3 1/
√

2 1/
√

6
−1/

√
3 1/

√
2 −1/

√
6

1/
√

3 0 −2/
√

6

 .
Here, u1, u2, and u3 form a basis for �3 so that both QTQ � I3 and QQT � I3. Therefore, Q
is a square matrix and is invertible.

Moreover, since QTQ � I, we see that Q−1 � QT so finding the inverse of Q is as simple as
writing its transpose. Matriceswith this property are very special andwill play an important
role in our upcoming work. We will therefore give them a special name.

Definition 6.3.22 A square m × m matrix Q whose columns form an orthonormal basis for
�m is called orthogonal.

This terminology can be a little confusing. We call a basis orthogonal if the basis vectors are
orthogonal to one another. However, a matrix is orthogonal if the columns are orthogonal
to one another and have unit length. It pays to keep this in mind when reading statements
about orthogonal bases and orthogonal matrices. In the meantime, we record the following
proposition.

Proposition 6.3.23 An orthogonal matrix Q is invertible and its inverse Q−1 � QT .

6.3.3 Summary

This section introduced orthogonal sets and the projection formula that allows us to project
vectors orthogonally onto a subspace.
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• Given an orthogonal set w1 ,w2 , . . . ,wn that spans an n-dimensional subspace W of
�m , the orthogonal projection of b onto W is the vector in W closest to b and may be
written as

b̂ �
b · w1

w1 · w1
w1 +

b · w2
w2 · w2

w2 + · · · + b · wn

wn · wn
wn .

• If u1 , u2 , . . . , un is an orthonormal basis of W and Q is the matrix whose columns are
ui , then the matrix P � QQT projects vectors orthogonally onto W .

• If the columns of Q form an orthonormal basis for an n-dimensional subspace of �m ,
then QTQ � In .

• An orthogonal matrix Q is a square matrix whose columns form an orthonormal basis.
In this case, QQT � QTQ � I so that Q−1 � QT .

6.3.4 Exercises

1. Suppose that

w1 �


1
1
1

 , w2 �


1

−2
1

 .
a. Verify that w1 and w2 form an orthogonal basis for a plane W in �3.

b. Use Proposition 6.3.15 to find b̂, the orthogonal projection of b �


2
1

−1

 onto W .

c. Find an orthonormal basis u1, u2 for W .

d. Find the matrix P representing the matrix transformation that projects vectors in
�3 orthogonally onto W . Verify that b̂ � Pb.

e. Determine rank(P) and explain its geometric significance.
2. Consider the vectors

w1 �


1
1
1

 , w2 �


−1

0
1

 , w3 �


1

−2
1

 .
a. Explain why these vectors form an orthogonal basis for �3.

b. Suppose that A �
[
w1 w2 w3

]
and evaluate the product ATA. Why is this

product a diagonal matrix and what is the significance of the diagonal entries?

c. Express the vector b �


−3
−6

3

 as a linear combination of w1, w2, and w3.

d. Multiply the vectors w1, w2, w3 by appropriate scalars to find an orthonormal
basis u1, u2, u3 of �3.
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e. If Q �
[
u1 u2 u3

]
, find the matrix product QQT and explain the result.

3. Suppose that

w1 �


1
1
0

−1

 , w2 �


1
0
1
1


form an orthogonal basis for a subspace W of �4.

a. Find b̂, the orthogonal projection of b �


2

−1
−6

7

 onto W .

b. Find the vector b⊥ in W⊥ such that b � b̂ + b⊥.

c. Find a basis for W⊥. and express b⊥ as a linear combination of the basis vectors.
4. Consider the vectors

w1 �


1
1
0
0

 , w2 �


0
0
1
1

 , b �


2

−4
1
3

 .
a. If L is the line defined by the vector w1, find the vector in L closest to b. Call this

vector b̂1.

b. If W is the subspace spanned by w1 and w2, find the vector in W closest to b. Call
this vector b̂2.

c. Determine whether b̂1 or b̂2 is closer to b and explain why.

5. Suppose that w �


2

−1
2

 defines a line L in �3.

a. Find the orthogonal projections of the vectors


1
0
0

 ,


0
1
0

 ,


0
0
1

 onto L.

b. Find the matrix P �
1

|w|2 wwT .

c. Use Proposition 2.5.6 to explain why the columns of P are related to the orthogo-
nal projections you found in the first part of this exericse.

6. Suppose that

v1 �


1
0
3

 , v2 �


2
2
2


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form the basis for a plane W in �3.
a. Find a basis for the line that is the orthogonal complement W⊥.

b. Given the vector b �


6

−6
2

 , find y, the orthogonal projection of b onto the line

W⊥.

c. Explain why the vector z � b−y must be in W andwrite z as a linear combination
of v1 and v2.

7. Determine whether the following statements are true or false and explain your think-
ing.

a. If the columns of Q form an orthonormal basis for a subspace W and w is a vector
in W , then QQTw � w.

b. An orthogonal set of vectors in �8 can have no more than 8 vectors.

c. If Q is a 7 × 5 matrix whose columns are orthonormal, then QQT � I7.

d. If Q is a 7 × 5 matrix whose columns are orthonormal, then QTQ � I5.

e. If the orthogonal projection of b onto a subspace W satisfies b̂ � 0, then b is in
W⊥.

8. Suppose that Q is an orthogonal matrix.
a. Remembering that v · w � vTw, explain why

Qx · (Qy) � x · y.

b. Explain why |Qx| � |x|.
This means that the length of a vector is unchanged after multiplying by an or-
thogonal matrix.

c. If λ is a real eigenvalue of Q, explain why λ � ±1.
9. Explain why the following statements are true.

a. If Q is an orthogonal matrix, then det Q � ±1.

b. If Q is a 8×4 matrix whose columns are orthonormal, then QQT is an 8×8 matrix
whose rank is 4.

c. If b̂ is the orthogonal projection of b onto a subspace W , then b− b̂ is the orthog-
onal projection of b onto W⊥.

10. This exercise is about 2 × 2 orthogonal matrices.

a. In Section 2.6, we saw that the matrix
[
cos θ − sin θ
sin θ cos θ

]
represents a rotation by an

angle θ. Explain why this matrix is an orthogonal matrix.

b. We also saw that the matrix
[
cos θ sin θ
sin θ − cos θ

]
represents a reflection in a line. Ex-
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plain why this matrix is an orthogonal matrix.

c. Suppose that u1 �

[
cos θ
sin θ

]
is a 2-dimensional unit vector. Use a sketch to indi-

cate all the possible vectors u2 such that u1 and u2 form an orthonormal basis of
�2.

d. Explain why every 2 × 2 orthogonal matrix is either a rotation or a reflection.
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6.4 Finding orthogonal bases

The last section demonstrated the value of working with orthogonal, and especially ortho-
normal, sets. If we have an orthogonal basis w1 ,w2 , . . . ,wn for a subspace W , the Projection
Formula 6.3.15 tells us that the orthogonal projection of a vector b onto W is

b̂ �
b · w1

w1 · w1
w1 +

b · w2
w2 · w2

w2 + · · · + b · wn

wn · wn
wn .

An orthonormal basis u1 , u2 , . . . , un is even more convenient: after forming the matrix Q �[
u1 u2 . . . un

]
, we have b̂ � QQTb.

In the examples we’ve seen so far, however, orthogonal bases were given to us. What we
need now is a way to form orthogonal bases. In this section, we’ll explore an algorithm
that begins with a basis for a subspace and creates an orthogonal basis. Once we have an
orthogonal basis, we can scale each of the vectors appropriately to produce an orthonormal
basis.

Preview Activity 6.4.1. Suppose we have a basis for �2 consisting of the vectors

v1 �

[
1
1

]
, v2 �

[
0
2

]
as shown in Figure 6.4.1. Notice that this basis is not orthogonal.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

v1

v2

Figure 6.4.1 A basis for �2.

a. Find the vector v̂2 that is the orthogonal projection of v2 onto the line defined
by v1.

b. Explain why v2 − v̂2 is orthogonal to v1.

c. Define the new vectors w1 � v1 and w2 � v2− v̂2 and sketch them in Figure 6.4.2.
Explain why w1 and w2 define an orthogonal basis for �2.
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-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 6.4.2 Sketch the new basis w1 and w2.

d. Write the vector b �

[
8

−10

]
as a linear combination of w1 and w2.

e. Scale the vectors w1 and w2 to produce an orthonormal basis u1 and u2 for �2.

6.4.1 Gram-Schmidt orthogonalization

The preview activity illustrates the main idea behind an algorithm, known as Gram-Schmidt
orthogonalization, that begins with a basis for some subspace of �m and produces an orthog-
onal or orthonormal basis. The algorithm relies on our construction of the orthogonal pro-
jection. Remember that we formed the orthogonal projection b̂ of b onto a subspace W by
requiring that b − b̂ is orthogonal to W as shown in Figure 6.4.3.

w1

w2

b

̂

b

Figure 6.4.3 If b̂ is the orthogonal projection of b onto W , then b − b̂ is orthogonal to W .
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This observation guides our construction of an orthogonal basis for it allows us to create a
vector that is orthogonal to a given subspace. Let’s see how the Gram-Schmidt algorithm
works.

Activity 6.4.2. Suppose that W is a three-dimensional subspace of �4 with basis:

v1 �


1
1
1
1

 , v2 �


1
3
2
2

 , v3 �


1

−3
−3
−3

 .
We can see that this basis is not orthogonal by noting that v1 · v2 � 8. Our goal is to
create an orthogonal basis w1, w2, and w3 for W .

To begin, we declare that w1 � v1, and we call W1 the line defined by w1.

a. Find the vector v̂2 that is the orthogonal projection of v2 ontoW1, the line defined
by w1.

b. Form the vector w2 � v2 − v̂2 and verify that it is orthogonal to w1.

c. Explain why Span{w1 ,w2} � Span{v1 , v2} by showing that any linear combina-
tion of v1 and v2 can be written as a linear combination of w1 and w2 and vice
versa.

d. The vectors w1 and w2 are an orthogonal basis for a two-dimensional subspace
W2 of �4. Find the vector v̂3 that is the orthogonal projection of v3 onto W2.

e. Verify that w3 � v3 − v̂3 is orthogonal to both w1 and w2.

f. Explain why w1, w2, and w3 form an orthogonal basis for W .

g. Now find an orthonormal basis for W .

As this activity illustrates, Gram-Schmidt orthogonalization begins with a basis v1v2 , . . . , vn
for a subspace W of�m and creates an orthogonal basis for W . Let’s work through a second
example.

Example 6.4.4 Let’s start with the basis

v1 �


2

−1
2

 , v2 �


−3

3
0

 , v3 �


−2

7
1

 ,
which is a basis for �3.
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To get started, we’ll simply set w1 � v1 �


2

−1
2

 . We construct w2 from v2 by subtracting

its orthogonal projection onto W1, the line defined by w1. This gives

w2 � v2 −
v2 · w1
w1 · w1

w1 � v2 + w1 �


−1

2
2

 .
Notice that we found v2 � −w1 + w2. Therefore, we can rewrite any linear combination of
v1 and v2 as

c1v1 + c2v2 � c1w1 + c2(−w1 + w2) � (c1 − c2)w1 + c2w2,

a linear combination of w1 and w2. This tells us that

W2 � Span{w1 ,w2} � Span{v1 , v2}.

In other words, w1 and w2 is a orthogonal basis for W2, the 2-dimensional subspace that is
the span of v1 and v2.

Finally, we form w3 from v3 by subtracting its orthogonal projection onto W2:

w3 � v3 −
v3 · w1
w1 · w1

w1 −
v3 · w2
w2 · w2

w2 � v3 + w1 − 2w2 �


2
2

−1

 .
We can now check that

w1 �


2

−1
2

 , w2 �


−1

2
2

 , w3 �


2
2

−1

 ,
is an orthogonal set. Furthermore, we have, as before, Span{w1 ,w2 ,w3} � Span{v1 , v2 , v3},
which says that we have found a new orthogonal basis for �3.

To create an orthonormal basis, we form unit vectors parallel to each of the vectors in the
orthogonal basis:

u1 �


2/3

−1/3
2/3

 , u2 �


−1/3

2/3
2/3

 , u3 �


2/3
2/3

−1/3

 .
More generally, if we have a basis v1 , v2 , . . . , vn for a subspace W of �m , the Gram-Schmidt
algorithm creates an orthogonal basis for W in the following way:

w1 � v1

w2 � v2 −
v2 · w1
w1 · w1

w1

w3 � v3 −
v3 · w1
w1 · w1

w1 −
v3 · w2
w2 · w2

w2
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...

wn � vn − vn · w1
w1 · w1

w1 −
vn · w2
w2 · w2

w2 − . . . −
vn · wn−1

wn−1 · wn−1
wn−1.

From here, we may form an orthonormal basis by constructing a unit vector parallel to each
vector in the orthogonal basis: u j � 1/

��w j
�� w j .

Activity 6.4.3. Sage can automate these computations for us. Before we begin, how-
ever, it will be helpful to understand how we can combine things using a list in
Python. For instance, if the vectors v1, v2, and v3 form a basis for a subspace, we can
bundle them together using square brackets: [v1, v2, v3]. Furthermore, we could
assign this to a variable, such as basis = [v1, v2, v3].

Evaluating the following cell will load in some special commands.

url= ' https :// raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/orthogonality.py '
sage.repl.load.load(url , globals ())

• There is a command to apply the projection formula: projection(b, basis) re-
turns the orthogonal projection of b onto the subspace spanned by basis, which
is a list of vectors.

• The command unit(w) returns a unit vector parallel to w.

• Given a collection of vectors, say, v1 and v2, we can form the matrix whose
columns are v1 and v2 using matrix([v1, v2]).T. When given a list of vec-
tors, Sage constructs a matrix whose rows are the given vectors. For this reason,
we need to apply the transpose.

Let’s now consider W , the subspace of �5 having basis

v1 �


14
−6

8
2

−6


, v2 �


5

−3
4
3

−7


, v3 �


2
3
0

−2
1


.

a. Apply the Gram-Schmidt algorithm to find an orthogonal basis w1, w2, and w3
for W .

b. Find b̂, the orthogonal projection of b �


−5
11
0

−1
5


onto W .
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c. Explain why we know that b̂ is a linear combination of the original vectors v1,
v2, and v3 and then find weights so that

b̂ � c1v1 + c2v2 + c3v3.

d. Find an orthonormal basis u1, u2, for u3 for W and form the matrix Q whose
columns are these vectors.

e. Find the product QTQ and explain the result.

f. Find the matrix P that projects vectors orthogonally onto W and verify that Pb
gives b̂, the orthogonal projection that you found earlier.

6.4.2 QR factorizations

Now that we’ve seen how the Gram-Schmidt algorithm forms an orthonormal basis for a
given subspace, we will explore how the algorithm leads to an important matrix factoriza-
tion known as the QR factorization.

Activity 6.4.4. Suppose that A is the 4 × 3 matrix whose columns are

v1 �


1
1
1
1

 , v2 �


1
3
2
2

 , v3 �


1

−3
−3
−3

 .
These vectors form a basis for W , the subspace of �4 that we encountered in Activ-
ity 6.4.2. Since these vectors are the columns of A, we have Col(A) � W .

a. When we implemented Gram-Schmidt, we first found an orthogonal basis w1,
w2, and w3 using

w1 � v1

w2 � v2 −
v2 · w1
w1 · w1

w1

w3 � v3 −
v3 · w1
w1 · w1

w1 −
v3 · w2
w2 · w2

w2.

Use these expressions to write v1, v1, and v3 as linear combinations of w1, w2,
and w3.

b. We next normalized the orthogonal basis w1, w2, and w3 to obtain an orthonor-
mal basis u1, u2, and u3.
Write the vectors wi as scalar multiples of ui . Then use these expressions to
write v1, v1, and v3 as linear combinations of u1, u2, and u3.
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c. Suppose that Q �
[

u1 u2 u3
]
. Use the result of the previous part to find a

vector r1 so that Qr1 � v1.

d. Then find vectors r2 and r3 such that Qr2 � v2 and Qr3 � v3.

e. Construct thematrix R �
[

r1 r2 r3
]
. Remembering that A �

[
v1 v2 v3

]
,

explain why A � QR.

f. What is special about the shape of R?

g. Suppose that A is a 10×6 matrix whose columns are linearly independent. This
means that the columns of A form a basis for W � Col(A), a 6-dimensional
subspace of �10. Suppose that we apply Gram-Schmidt orthogonalization to
create an orthonormal basis whose vectors form the columns of Q and that we
write A � QR. What are the shape of Q and what the shape of R?

When the columns of amatrix A are linearly independent, they formabasis forCol(A) so that
we can perform the Gram-Schmidt algorithm. The previous activity shows how this leads
to a factorization of A as the product of a matrix Q whose columns are an orthonormal basis
for Col(A) and an upper triangular matrix R.

Proposition 6.4.5 QR factorization. If A is an m × n matrix whose columns are linearly indepen-
dent, we may write A � QR where Q is an m × n matrix whose columns form an orthonormal basis
for Col(A) and R is an n × n upper triangular matrix.

Example 6.4.6 We’ll consider the matrix A �


2 −3 −2
−1 3 7
2 0 1

 whose columns, which we’ll

denote v1, v2, and v3, are the basis of �3 that we considered in Example 6.4.4. There we
found an orthogonal basis w1, w2, and w3 that satisfied

v1 � w1

v2 � − w1 + w2

v3 � − w1 + 2w2 + w3.

In terms of the resulting orthonormal basis u1, u2, and u3, we had

w1 � 3u1 , w2 � 3u2 , w3 � 3u3

so that

v1 � 3u1

v2 � − 3u1 + 3u2

v3 � − 3u1 + 6u2 + 3u3.

Therefore, if Q �
[
u1 u2 u3

]
, we have the QR factorization

A � Q

3 −3 −3
0 3 6
0 0 3

 � QR.
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The value of the QR factorization will become clear in the next section where we use it to
solve least-squares problems.

Activity 6.4.5. As before, wewould like to use Sage to automate the process of finding
and using the QR factorization of a matrix A. Evaluating the following cell provides
a command QR(A) that returns the factorization, which may be stored using, for ex-
ample, Q, R = QR(A).

url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/orthogonality.py '
sage.repl.load.load(url , globals ())

Suppose that A is the following matrix whose columns are linearly independent.

A �


1 0 −3
0 2 −1
1 0 1
1 3 5

 .
a. If A � QR, what is the shape of Q and R? What is special about the form of R?

b. Find the QR factorization using Q, R = QR(A) and verify that R has the pre-
dicted shape and that A � QR.

c. Find the matrix P that orthogonally projects vectors onto Col(A).

d. Find b̂, the orthogonal projection of b �


4

−17
−14

22

 onto Col(A).

e. Explain why the equation Ax � b̂ must be consistent and then find x.

In fact, Sage provides its own version of the QR factorization that is a bit different than the
way we’ve developed the factorization here. For this reason, we have provided our own
version of the factorization.

6.4.3 Summary

This section explored the Gram-Schmidt orthogonalization algorithm and how it leads to
the matrix factorization A � QR when the columns of A are linearly independent.

• Beginning with a basis v1 , v2 , . . . , vn for a subspace W of �m , the vectors

w1 � v1
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w2 � v2 −
v2 · w1
w1 · w1

w1

w3 � v3 −
v3 · w1
w1 · w1

w1 −
v3 · w2
w2 · w2

w2

...

wn � vn − vn · w1
w1 · w1

w1 −
vn · w2
w2 · w2

w2 − . . . −
vn · wn−1

wn−1 · wn−1
wn−1

form an orthogonal basis for W .

• Wemay scale each vectorwi appropriately to obtain an orthonormal basisu1 , u2 , . . . , un .

• Expressing the Gram-Schmidt algorithm in matrix form shows that, if the columns of
A are linearly independent, then we can write A � QR, where the columns of Q form
an orthonormal basis for Col(A) and R is upper triangular.

6.4.4 Exercises

1. Suppose that a subspace W of �3 has a basis formed by

v1 �


1
1
1

 , v2 �


1

−2
−2

 .
a. Find an orthogonal basis for W .

b. Find an orthonormal basis for W .

c. Find the matrix P that projects vectors orthogonally onto W .

d. Find the orthogonal projection of


3
4

−2

 onto W .

2. Find the QR factorization of A �


4 7
−2 4
4 4

 .
3. Consider the basis of �3 given by the vectors

v1 �


2

−2
2

 , v2 �


−1
−3

1

 , v3 �


2
0

−5

 .

a. Apply the Gram-Schmit orthogonalization algorithm to find an orthonormal ba-
sis u1, u2, u3 for �3.

b. If A is the 3 × 3 whose columns are v1, v2, and v3, find the QR factorization of A.
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c. Suppose that we want to solve the equation Ax � b �


−9

1
7

 , which we can

rewrite as QRx � b.

1. If we set y � Rx, the equation QRx � b becomes Qy � b. Explain how to
solve the equation Qy � b in a computationally efficient manner.

2. Explain how to solve the equation Rx � y in a computationally efficient man-
ner.

3. Find the solution x by first solving Qy � b and then Rx � y.
4. Consider the vectors

v1 �


1

−1
−1

1
1


, v2 �


2
1
4

−4
2


, v3 �


5

−4
−3

7
1


and the subspace W of �5 that they span.

a. Find an orthonormal basis for W .

b. Find the 5 × 5 matrix that projects vectors orthogonally onto W .

c. Find b̂, the orthogonal projection of b �


−8

3
−12

8
−4


onto W .

d. Express b̂ as a linear combination of v1, v2, and v3.
5. Consider the set of vectors

v1 �


2
1
1

 , v2 �


1
2
2

 , v3 �


3
0
0

 .
a. What happens when we apply the Gram-Schmit orthogonalization algorithm?

b. Why does the algorithm fail to produce an orthogonal basis for �3?
6. Suppose that A is a matrix with linearly independent columns and having the factoriza-

tion A � QR. Determinewhether the following statements are true or false and explain
your thinking.

a. It follows that R � QTA.

b. The matrix R is invertible.
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c. The product QTQ projects vectors orthogonally onto Col(A).

d. The columns of Q are an orthogonal basis for Col(A).

e. The orthogonal complement Col(A)⊥ � Nul(QT).
7. Suppose we have the QR factorization A � QR, where A is a 7 × 4 matrix.

a. What is the shape of the product QQT? Explain the significance of this product.

b. What is the shape of the product QTQ? Explain the significance of this product.

c. What is the shape of the matrix R?

d. If R is a diagonal matrix, what can you say about the columns of A?
8. Supposewehave the QR factorization A � QR where the columns of A are a1 , a2 , . . . , an

and the columns of R are r1 , r2 , . . . , rn .
a. How can the matrix product ATA be expressed in terms of dot products?

b. How can the matrix product RT R be expressed in terms of dot products?

c. Explain why ATA � RT R.

d. Explain why the dot products ai · a j � ri · r j .
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6.5 Orthogonal least squares

Suppose we collect some data when performing an experiment and plot it as shown on the
left of Figure 6.5.1. Notice that there is no line on which all the points lie; in fact, it would be
surprising if therewere sincewe can expect some uncertainty in themeasurements recorded.
There does, however, appear to be a line, as shown on the right, on which the points almost
lie.

-1 1 2 3 4

-1

1

2

3

4

x

y

-1 1 2 3 4

-1

1

2

3

4

x

y

Figure 6.5.1 A collection of points and a line approximating the linear relationship implied
by them.

In this section, we’ll explore how the techniques developed in this chapter enable us to find
the line that best approximates the data. More specifically, we’ll see how the search for a
line passing through the data points leads to an inconsistent system Ax � b. Since we are
unable to find a solution, we instead seek the vector x where Ax is as close as possible to b.
Orthogonal projection gives us just the right tool for doing this.

Preview Activity 6.5.1.
a. Is there a solution to the equation Ax � b where A and b are such that

1 2
2 5
−1 0

 x �


5

−3
−1

 .

b. We know that


1
2

−1

 and


2
5
0

 form a basis for Col(A). Find an orthogonal

basis for Col(A).

c. Find the orthogonal projection b̂ of b onto Col(A).
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d. Explain why the equation Ax � b̂ must be consistent and then find its solution.

6.5.1 A first example

When we’ve encountered inconsistent systems in the past, we’ve simply said there is no
solution andmoved on. The preview activity, however, shows howwe can find approximate
solutions to an inconsistent system: if there are no solutions to Ax � b, we instead solve the
consistent system Ax � b̂, the orthogonal projection of b onto Col(A). As we’ll see, this
solution is, in a specific sense, the best possible.

Activity 6.5.2. Suppose we have three data points (1, 1), (2, 1), and (3, 3) and that we
would like to find a line passing through them.

a. Plot these three points in Figure 6.5.2. Are you able to draw a line that passes
through all three points?
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Figure 6.5.2 Plot the three data points here.

b. Remember that the equation of a line can be written as b + mx � y where m is
the slope and b is the y-intercept. We will try to find b and m so that the three
points lie on the line.
The first data point (1, 1) gives an equation for b and m. In particular, we know
that when x � 1, then y � 1 so we have b + m(1) � 1 or b + m � 1. Use the other
two data points to create a linear system describing m and b.

c. We have obtained a linear system having three equations, one from each data
point, for the two unknowns b and m. Identify a matrix A and vector b so that

the system has the form Ax � b, where x �

[
b
m

]
.
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Notice that the unknown vector x �

[
b
m

]
describes the line that we seek.

d. Is there a solution to this linear system? How does this question relate to your
attempt to draw a line through the three points above?

e. Since this system is inconsistent, we know that b is not in the column space
Col(A). Find an orthogonal basis for Col(A) and use it to find the orthogonal
projection b̂ of b onto Col(A).

f. Since b̂ is in Col(A), the equation Ax � b̂ is consistent. Find its solution x �[
b
m

]
and sketch the line y � b + mx in Figure 6.5.2. We say that this is the line

of best fit.

This activity illustrates the idea behind a technique known as orthogonal least squares, which
we have been working toward throughout this chapter. If the data points are denoted as
(xi , yi), we construct the matrix A and vector b as

A �


1 x1
1 x2
1 x3

 , b �


y1
y2
y3

 .
With the vector x �

[
b
m

]
representing the line b+mx � y, we see that the equation Ax � b

describes a line passing through all the data points. In our activity, it is visually apparent
that there is no such line, which agrees with the fact that the equation Ax � b is inconsistent.

Remember that b̂, the orthogonal projection of b onto Col(A), is the closest vector in Col(A)
to b. Therefore, when we solve the equation Ax � b̂, we are finding the vector x so that

Ax �


b + mx1
b + mx2
b + mx3

 is as close to b �


y1
y2
y3

 as possible. Let’s think about what this means

within the context of this problem.

The difference b − Ax �


y1 − (b + mx1)
y2 − (b + mx2)
y3 − (b + mx3)

 so that the square of the distance between Ax

and b is

|b − Ax|2 �(
y1 − (b + mx1)

)2
+
(
y2 − (b + mx2)

)2
+
(
y3 − (b + mx3)

)2 .

Our approach finds the values for b and m thatmake this sumof squares as small as possible,
which is why we call this a least-squares problem.

Drawing the line defined by the vector x �

[
b
m

]
, the quantity yi − (b + mxi) reflects the
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vertical distance between the line and the data point (xi , yi), as shown in Figure 6.5.3. Seen
in this way, the square of the distance |b − Ax|2 is a measure of how much the line defined
by the vector x misses the data points. The solution to the least-squares problem is the line
that misses the data points by the smallest amount possible.
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Figure 6.5.3 The solution of the least-squares problem and the vertical distances between the
line and the data points.

6.5.2 Solving least-squares problems

Now that we’ve seen an example of what we’re trying to accomplish, let’s put this technique
into a more general framework.

Given an inconsistent system Ax � b, we seek the vector x that minimizes the distance from
Ax to b. In other words, x satisfies Ax � b̂, where b̂ is the orthogonal projection of b onto
the column space Col(A). We know the equation Ax � b̂ is consistent since b̂ is in Col(A),
and we know there is only one solution if we assume that the columns of A are linearly
independent.

We will usually denote the solution of Ax � b̂ by x̂ and call this vector the least-squares
approximate solution of Ax � b to distinguish it from a (possibly non-existent) solution of
Ax � b.

There is an alternativemethod for finding x̂ that does not involve first finding the orthogonal
projection b̂. Remember that b̂ is defined by the fact that b̂ − b is orthogonal to Col(A). In
other words, b̂ − b is in the orthogonal complement Col(A)⊥, which Proposition 6.2.10 tells
us is the same as Nul(AT). Since b̂ − b is in Nul(AT), it follows that

AT(b̂ − b) � 0.

Because the least-squares approximate solution is the vector x̂ such that Ax̂ � b̂, we can
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rearrange this equation to see that
AT(Ax̂ − b) � 0

ATAx̂ − ATb � 0
ATAx̂ � ATb.

This equation is called the normal equation, and we have the following proposition.

Proposition 6.5.4 If the columns of A are linearly independent, then there is a unique least-squares
approximate solution x̂ to the equation Ax � b given by the normal equation

ATAx̂ � ATb.
Example 6.5.5 Consider the equation

2 1
2 0
−1 3

 x �


16
−1

7


withmatrix A and vector b. Since this equation is inconsistent, wewill find the least-squares
approximate solution x̂ by solving the normal equation ATAx̂ � ATb, which has the form

ATAx̂ �

[
9 −1
−1 10

]
�

[
23
37

]
� ATb

and the solution x̂ �

[
3
4

]
.

Activity 6.5.3. The rate at which a cricket chirps is related to the outdoor temperature,
as reflected in some experimental data that we’ll study in this activity. The chirp rate
C is expressed in chirps per second while the temperature T is in degrees Fahrenheit.
Evaluate the following cell to load the data:

base= ' https ://raw.githubusercontent.com/davidaustinm/ '
url=base+ ' ula_modules/master/orthogonality.py '
sage.repl.load.load(url , globals ())
url=base+ ' ula_modules/master/data/crickets.csv '
df = pd.read_csv(url)
data = [vector(row) for row in df.values]
chirps = vector(df[ ' Chirps ' ])
temps = vector(df[ ' Temperature ' ])
print(df)
list_plot(data , color= ' blue ' , size=40, xmin=12, xmax=22, ymin=60,

ymax =100)

Evaluating this cell also provides:

• the vectors chirps and temps formed from the columns of the dataset.

• the command onesvec(n), which creates an n-dimensional vector whose entries
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are all one.

• Remember that you can form a matrix whose columns are the vectors v1 and v2
with matrix([v1, v2]).T.

We would like to represent this relationship by a linear function

β0 + β1C � T.

a. Use the first data point (C1 , T1) � (20.0, 88.6) to write an equation involving β0
and β1.

b. Suppose that we represent the unknowns using a vector x �

[
β0
β1

]
. Use the 15

data points to create the matrix A and vector b so that the linear system Ax � b
describes the unknown vector x.

c. Write the normal equations ATAx̂ � ATb; that is, find the matrix ATA and the
vector ATb.

d. Solve the normal equations to find x̂, the least-squares approximate solution to
the equation Ax � b. Call your solution xhat since x has another meaning in
Sage.

What are the values of β0 and β1 that you found?

e. If the chirp rate is 22 chirps per second, what is your prediction for the temper-
ature?
You can plot the data and your line, assuming you called the solution xhat, using
the cell below.

plot_model(xhat , data , domain =(12, 22))

This example demonstrates an approach, called linear regression, in which a collection of data
is modeled using a linear function found by solving a least-squares problem. Once we have
the linear function that best fits the data, we can make predictions about situations that we
haven’t encountered in the data.

If we’re going to use our function to make predictions, it’s natural to ask how much con-
fidence we have in these predictions. This is a statistical question that leads to a rich and
well-developed theory¹, which we won’t explore in much detail here. However, there is one
simple measure of how well our linear function fits the data that is known as the coefficient
of determination and denoted by R2.

We have seen that the square of the distance |b − Ax|2 measures the amount by which the

¹For example, see Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani. An Introduction to Statistical
Learning: with Applications in R. Springer, 2013.
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line fails to pass through the data points. When the line is close to the data points, we expect
this number to be small. However, the size of this measure depends on the scale of the data.
For instance, the two lines shown in Figure 6.5.6 seem to fit the data equallywell, but |b−Ax̂|2
is 100 times larger on the right.
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Figure 6.5.6 The lines appear to fit equally well in spite of the fact that |b − Ax̂|2 differs by a
factor of 100.

The coefficient of determination R2 is defined by normalizing |b− Ax̂|2 so that it is indepen-
dent of the scale. Recall that we described how to demean a vector in Section 6.1: given a
vector v, we obtain ṽ by subtracting the average of the components from each component.

Definition 6.5.7 Coefficient of determination. The coefficient of determination is

R2
� 1 − |b − Ax̂|2

|b̃|2
,

where b̃ is the vector obtained by demeaning b.

A more complete explanation of this definition relies on the concept of variance, which we
explore in Exercise 6.5.6.12 and the next chapter. For the time being, it’s enough to know
that 0 ≤ R2 ≤ 1 and that the closer R2 is to 1, the better the line fits the data. In our original
example, illustrated in Figure 6.5.6, we find that R2 � 0.75, and in our study of cricket chirp
rates, we have R2 � 0.69. However, assessing the confidence we have in predictions made
by solving a least-squares problem can require considerable thought, and it would be naive
to rely only on the value of R2.

6.5.3 Using QR factorizations

As we’ve seen, the least-squares approximate solution x̂ to Ax � b may be found by solving
the normal equation ATAx̂ � ATb, and this can be a practical strategy for some problems.
However, this approach can be problematic as small rounding errors can accumulate and
lead to inaccurate final results.
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As the next activity demonstrates, there is an alternate method for finding the least-squares
approximate solution x̂ using a QR factorization of the matrix A, and this method is prefer-
able as it is numerically more reliable.

Activity 6.5.4.
a. Suppose we are interested in finding the least-squares approximate solution to

the equation Ax � b and that we have the QR factorization A � QR. Explain
why the least-squares approximate solution is given by solving

Ax̂ � QQTb

QRx̂ � QQTb

b. Multiply both sides of the second expression by QT and explain why

Rx̂ � QTb.

Since R is upper triangular, this is a relatively simple equation to solve using
back substitution, as we saw in Section 5.1. We will therefore write the least-
squares approximate solution as

x̂ � R−1QTb,

and put this to use in the following context.

c. Brozak’s formula, which is used to calculate a person’s body fat index BFI, is

BFI � 100
(
4.57
ρ

− 4.142
)

where ρ denotes a person’s body density in grams per cubic centimeter. Ob-
taining an accurate measure of ρ is difficult, however, because it requires sub-
merging the person in water and measuring the volume of water displaced. In-
stead, we will gather several other body measurements, which are more easily
obtained, and use it to predict BFI.
For instance, supposewe take 10 patients andmeasure theirweight w in pounds,
height h in inches, abdomen a in centimeters, wrist circumference r in centime-
ters, neck circumference n in centimeters, and BFI. Evaluating the following
cell loads and displays the data.
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base= ' https ://raw.githubusercontent.com/davidaustinm/ '
url=base+ ' ula_modules/master/orthogonality.py '
sage.repl.load.load(url , globals ())
url=base+ ' /ula_modules/master/data/bfi.csv '
df = pd.read_csv(url)
weight = vector(df[ ' Weight ' ])
height = vector(df[ ' Height ' ])
abdomen = vector(df[ ' Abdomen ' ])
wrist = vector(df[ ' Wrist ' ])
neck = vector(df[ ' Neck ' ])
BFI = vector(df[ ' BFI ' ])
print(df)

In addition, that cell provides:

(a) vectors weight, height, abdomen, wrist, neck, and BFI formed from the
columns of the dataset.

(b) the command onesvec(n), which returns an n-dimensional vector whose
entries are all one.

(c) the command QR(A) that returns the QR factorization of A as Q, R = QR(A).
(d) the command demean(v), which returns the demeaned vector ṽ.

We would like to find the linear function

β0 + β1w + β2h + β3a + β4r + β5n � BFI

that best fits the data.
Use the first data point to write an equation for the parameters β0 , β1 , . . . , β5.

d. Describe the linear system Ax � b for these parameters. More specifically, de-
scribe how the matrix A and the vector b are formed.

e. Construct the matrix A and find its QR factorization in the cell below.

f. Find the least-squares approximate solution x̂ by solving the equation Rx̂ � QTb.
You may want to use N(xhat) to display a decimal approximation of the vector.
What are the parameters β0 , β1 , . . . , β5 that best fit the data?

g. Find the coefficient of determination R2 for your parameters. What does this
imply about the quality of the fit?

h. Suppose a person’smeasurements are: weight 190, height 70, abdomen 90, wrist
18, and neck 35. Estimate this person’s BFI.

To summarize, we have seen that
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Proposition 6.5.8 If the columns of A are linearly independent and we have the QR factorization
A � QR, then the least-squares approximate solution x̂ to the equation Ax � b is given by

x̂ � R−1QTb.

6.5.4 Polynomial Regression

In the examples we’ve seen so far, we have fit a linear function to a dataset. Sometimes,
however, a polynomial, such as a quadratic function, may be more appropriate. It turns
out that the techniques we’ve developed in this section are still useful as the next activity
demonstrates.

Activity 6.5.5.
a. Suppose that we have a small dataset containing the points (0, 2), (1, 1), (2, 3),

and (3, 3), such as appear when the following cell is evaluated.

url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/orthogonality.py '
sage.repl.load.load(url , globals ())
data = [[0, 2], [1, 1], [2, 3], [3, 3]]
list_plot(data , color= ' blue ' , size =40)

In addition to loading and plotting the data, evaluating that cell provides the
following commands:

• Q, R = QR(A) returns the QR factorization of A.
• demean(v) returns the demeaned vector ṽ.

Let’s fit a quadratic function of the form

β0 + β1x + β2x2
� y

to this dataset.
Write four equations, one for each data point, that describe the coefficients β0,
β1, and β2.

b. Express these four equations as a linear system Ax � b where x �


β0
β1
β2

 .
Find the QR factorization of A and use it to find the least-squares approximate
solution x̂.

c. Use the parameters β0, β1, and β2 that you found to write the quadratic function
that fits the data. You can plot this function, along with the data, by entering
your function in the place indicated below.
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list_plot(data , color= ' blue ' , size =40) + plot( **your
function here**,

0, 3, color= ' red ' )

d. What is your predicted y value when x � 1.5?

e. Find the coefficient of determination R2 for the quadratic function. What does
this say about the quality of the fit?

f. Now fit a cubic polynomial of the form

β0 + β1x + β2x2
+ β3x3

� y

to this dataset.

g. Find the coefficient of determination R2 for the cubic function. What does this
say about the quality of the fit?

h. What do you notice when you plot the cubic function along with the data? How
does this reflect the value of R2 that you found?

list_plot(data , color= ' blue ' , size =40) + plot( **your
function here**,

0, 3, color= ' red ' )

The matrices A that you created in the last activity when fitting a quadratic and cubic func-
tion to a dataset have a special form. In particular, if the data points are labeled (xi , yi) and
we seek a degree k polynomial, then

A �


1 x1 x2

1 . . . xk
1

1 x2 x2
2 . . . xk

2
...
...

...
. . .

...
1 xm x2

m . . . xk
m


.

This is called a Vandermonde matrix of degree k.

Activity 6.5.6. This activity explores a dataset describingArctic sea ice and that comes
from Sustainability Math.²

Evaluating the cell below will plot the extent of Arctic sea ice, in millions of square
kilometers, during the twelve months of 2012.

http://sustainabilitymath.org/
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base= ' https :// raw.githubusercontent.com/davidaustinm/ '
url=base+ ' ula_modules/master/orthogonality.py '
sage.repl.load.load(url , globals ())
url=base+ ' /ula_modules/master/data/sea_ice.csv '
df = pd.read_csv(url)
data = [vector ([row[0], row [2]]) for row in df.values]
month = vector(df[ ' Month ' ])
ice = vector(df[ ' 2012 ' ])
print(df[[ ' Month ' , ' 2012 ' ]])
list_plot(data , color= ' blue ' , size =40)

In addition, you have access to a few special variables and commands:

• month is the vector of month values and ice is the vector of sea ice values from
the table above.

• vandermonde(x, k) constructs the Vandermonde matrix of degree k using the
points in the vector x.

• Q, R = QR(A) provides the QR factorization of A.

• demean(v) returns the demeaned vector ṽ.

a. Find the vector x̂, the least-squares approximate solution to the linear system
that results from fitting a degree 5 polynomial to the data.

b. If your result is stored in the variable xhat, you may plot the polynomial and
the data together using the following cell.

plot_model(xhat , data)

c. Find the coefficient of determination R2 for this polynomial fit.

d. Repeat these steps to fit a degree 8 polynomial to the data, plot the polynomial
with the data, and find R2.

e. Repeat one more time by fitting a degree 11 polynomial to the data, creating a
plot, and finding R2.

It’s certainly true that higher degree polynomials fit the data better, as seen by
the increasing values of R2, but that’s not always a good thing. For instance,
when k � 11, you may notice that the graph of the polynomial wiggles a little
more than we would expect. In this case, the polynomial is trying too hard to
fit the data, which usually contains some uncertainty, especially if it’s obtained
frommeasurements. The error built in to the data is called noise, and its presence
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means that we shouldn’t expect our polynomial to fit the data perfectly. When
we choose a polynomial whose degree is too high, we give the noise too much
weight in themodel, which leads to some undesirable behavior, like the wiggles
in the graph.
Fitting the data with a polynomial whose degree is too high is called overfitting,
a phenomenon that can appear in many machine learning applications. Gener-
ally speaking, we would like to choose k large enough to capture the essential
features of the data but not so large that we overfit and build the noise into the
model. There are ways to determine the optimal value of k, but wewon’t pursue
that here.

f. Choosing a reasonable value of k, estimate the extent of Arctic sea ice at month
6.5, roughly at the Summer Solstice.

6.5.5 Summary

This section introduced some types of least-squares problems and a framework for working
with them.

• Given an inconsistent system Ax � b, we find x̂, the least-squares approximate solu-
tion, by requiring that Ax̂ be as possible to b as possible. In other words, Ax̂ � b̂ where
b̂ is the orthogonal projection of b onto Col(A).

• One way to find x̂ is by solving the normal equations ATAx̂ � ATb. This is not our
preferred method since numerical problems can arise.

• A second way to find x̂ uses a QR factorization of A. If A � QR, then x̂ � R−1QTb and
finding R−1 is computationally feasible since R is upper triangular.

• This technique may be applied widely and is useful for modeling data. We saw exam-
ples in this section where linear functions of several input variables and polynomials
provided effective models for different datasets.

• A simple measure of the quality of the fit is the coefficient of determination R2 though
some additional thought should be given in real applications.

6.5.6 Exercises

Evaluating the following cell loads in some commands that will be helpful in the following
exercises. In particular, there are commands:

• QR(A) that returns the QR factorization of A as Q, R = QR(A),

• onesvec(n) that returns the n-dimensional vector whose entries are all 1,

²sustainabilitymath.org
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• demean(v) that demeans the vector v,

• vandermonde(x, k) that returns the Vandermondematrix of degree k formed from the
components of the vector x, and

• plot_model(xhat, data) that plots the data and the model xhat.

url= ' https :// raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/orthogonality.py '
sage.repl.load.load(url , globals ())

1. Suppose we write the linear system
1 −1
2 −1
−1 3

 x �


−8

5
−10


as Ax � b.

a. Find an orthogonal basis for Col(A).

b. Find b̂, the orthogonal projection of b onto Col(A).

c. Find a solution to the linear system Ax � b̂.
2. Consider the data in Table 6.5.9.

Table 6.5.9 A dataset with four points.

x y
1 1
2 1
3 1
4 2

a. Set up the linear system Ax � b that describes the line b+mx � y passing through
these points.

b. Write the normal equations that describe the least-squares approximate solution
to Ax � b.

c. Find the least-squares approximate solution x̂ and plot the data and the resulting
line.

d. What is your predicted y-value when x � 3.5?

e. Find the coefficient of determination R2.
3. Consider the four points in Table 6.5.9.
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a. Set up a linear system Ax � b that describes a quadratic function

β0 + β1x + β2x2
� y

passing through the points.

b. Use a QR factorization to find the least-squares approximate solution x̂ and plot
the data and the graph of the resulting quadratic function.

c. What is your predicted y-value when x � 3.5?

d. Find the coefficient of determination R2.
4. Consider the data in Table 6.5.10.

Table 6.5.10 A simple dataset

x1 x2 y
1 1 4.2
1 2 3.3
2 1 5.9
2 2 5.1
3 2 7.5
3 3 6.3

a. Set up a linear system Ax � b that describes the relationship

β0 + β1x1 + β2x2 � y.

b. Find the least-squares approximate solution x̂.

c. What is your predicted y-value when x1 � 2.4 and x2 � 2.9?

d. Find the coefficient of determination R2.
5. Determine whether the following statements are true or false and explain your think-

ing.
a. If Ax � b is consistent, then x̂ is a solution to Ax � b.

b. If R2 � 1, then the least-squares approximate solution x̂ is also a solution to the
original equation Ax � b.

c. Given the QR factorization A � QR, we have Ax̂ � QTQb.

d. A QR factorization provides a method for finding the least-squares approximate
solution to Ax � b that is more reliable than solving the normal equations.

e. A solution to AATx � Ab is the least-squares approximate solution to Ax � b.
6. Explain your response to the following questions.

a. If x̂ � 0, what does this say about the vector b?
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b. If the columns of A are orthonormal, how can you easily find the least-squares
approximate solution to Ax � b?

7. The following cell loads in some data showing the number of people in Bangladesh
living without electricity over 27 years. It also defines vectors year, which records the
years in the dataset, and people, which records the number of people.

base= ' https :// raw.githubusercontent.com/davidaustinm/ '
url=base+ ' ula_modules/master/orthogonality.py '
sage.repl.load.load(url , globals ())
url=base+ ' ula_modules/master/data/bangladesh.csv '
df = pd.read_csv(url)
data = [vector(row) for row in df.values]
year = vector(df[ ' Year ' ])
people = vector(df[ ' People ' ])
print(df)
list_plot(data , size=40, color= ' blue ' )

a. Suppose we want to write
N � β0 + β1t

where t is the year and N is the number of people. Construct the matrix A and

vector b so that the linear system Ax � b describes the vector x �

[
β0
β1

]
.

b. Using a QR factorization of A, find the values of β0 and β1 in the least-squares
approximate solution x̂.

c. What is the coefficient of determination R2 and what does this tell us about the
quality of the approximation?

d. What is your prediction for the number of people living without electricity in
1985?

e. Estimate the year in which there will be no people living without electricity.
8. This problem concerns a dataset describing planets in our Solar system. For each planet,

we have the length L of the semi-major axis, essentially the distance from the planet
to the Sun in AU (astronomical units), and the period P, the length of time in years
required to complete one orbit around the Sun.

We would like to model this data using the function P � CLr where C and r are para-
meters we need to determine. Since this isn’t a linear function, we will transform this
relationship by taking the natural logarithm of both sides to obtain

ln(P) � ln(C) + r ln(L).

Evaluating the following cell loads the dataset and defines two vectors logaxis, whose
components are ln(L), and logperiod, whose components are ln(P).
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import numpy as np
base= ' https ://raw.githubusercontent.com/davidaustinm/ '
url=base+ ' ula_modules/master/orthogonality.py '
sage.repl.load.load(url , globals ())
url=base+ ' ula_modules/master/data/planets.csv '
df = pd.read_csv(url ,index_col =0)
logaxis = vector(np.log(df[ ' Semi -major␣axis ' ]))
logperiod = vector(np.log(df[ ' Period ' ]))
print(df)

a. Construct the matrix A and vector b so that the solution to Ax � b is the vector
x �

[
ln(C)

r

]
.

b. Find the least-squares approximate solution x̂. What does this give for the values
of C and r?

c. Find the coefficient of determination R2. What does this tell us about the quality
of the approximation?

d. Suppose that the orbit of an asteroid has a semi-major axiswhose length is L � 4.0
AU. Estimate the period P of the asteroid’s orbit.

e. Halley’s Comet has a period of P � 75 years. Estimate the length of its semi-major
axis.

9. Evaluating the following cell loads a dataset describing the temperature in the Earth’s
atmosphere at various altitudes. There are also two vectors altitude, expressed in
kilometers, and temperature, in degrees Celsius.

base= ' https ://raw.githubusercontent.com/davidaustinm/ '
url=base+ ' ula_modules/master/orthogonality.py '
sage.repl.load.load(url , globals ())
url=base+ ' ula_modules/master/data/altitude -temps.csv '
df = pd.read_csv(url)
data = [vector(row) for row in df.values]
altitude = vector(df[ ' Altitude ' ])
temperature = vector(df[ ' Temperature ' ])
print(df)
list_plot(data , size=40, color= ' blue ' )

a. Describe how to form the matrix A and vector b so that the linear system Ax � b
describes a degree k polynomial fitting the data.

b. After choosing a value of k, construct the matrix A and vector b, and find the
least-squares approximate solution x̂.

c. Plot the polynomial and data using plot_model(xhat, data).

d. Now examine what happens as you vary the degree of the polynomial k. Choose
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an appropriate value of k that seems to capture the most important features of
the data while avoiding overfitting, and explain your choice.

e. Use your value of k to estimate the temperature at an altitude of 55 kilometers.
10. The following cell loads some data describing 1057 houses in a particular real estate

market. For each house, we record the living area in square feet, the lot size in acres,
the age in years, and the price in dollars. The cell also defines variables area, size, age,
and price.

base= ' https :// raw.githubusercontent.com/davidaustinm/ '
url=base+ ' ula_modules/master/orthogonality.py '
sage.repl.load.load(url , globals ())
url=base+ ' ula_modules/master/data/housing.csv '
df = pd.read_csv(url ,index_col =0)
df = df.fillna(df.mean())
area = vector(df[ ' Living.Area ' ])
size = vector(df[ ' Lot.Size ' ])
age = vector(df[ ' Age ' ])
price = vector(df[ ' Price ' ])
df

We will use linear regression to predict the price of a house given its living area, lot
size, and age:

β0 + β1 Living Area + β2 Lot Size + β3 Age � Price.

a. Use a QR factorization to find the least-squares approximate solution x̂.

b. Discuss the significance of the signs of β1, β2, and β3.

c. If two houses are identical except for differing in age by one year, howwould you
predict that their prices compare to each another?

d. Find the coefficient of determination R2. What does this say about the quality of
the fit?

e. Predict the price of a house whose living area is 2000 square feet, lot size is 1.5
acres, and age is 50 years.

11. We observed that if the columns of A are linearly independent, then there is a unique
least-squares approximate solution to the equation Ax � b because the equation Ax̂ � b̂
has a unique solution. We also said that x̂ is the unique solution to the normal equation
ATAx̂ � ATb without explainingwhy this equation has a unique solution. This exercise
offers an explanation.

Assuming that the columns of A are linearly independent, we would like to conclude
that the equation ATAx̂ � ATb has a unique solution.

a. Suppose that x is a vector for which ATAx � 0. Explain why the following argu-
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ment is valid and allows us to conclude that Ax � 0.

ATAx � 0
x · ATAx � x · 0 � 0

(Ax) · (Ax) � 0

|Ax|2 � 0.

In other words, if ATAx � 0, we know that Ax � 0.

b. If the columns of A are linearly independent and Ax � 0, what do we know about
the vector x?

c. Explain why ATAx � 0 can only happen when x � 0.

d. Assuming that the columns of A are linearly independent, explain why ATAx̂ �

ATb has a unique solution.

12. This problem is about themeaning of the coefficient of determination R2 and its connec-
tion to variance, a topic that appears in the next section. Throughout this problem, we
consider the linear system Ax � b and the approximate least-squares solution x̂, where
Ax̂ � b̂. We suppose that A is an m × n matrix, and we will denote the m-dimensional

vector 1 �


1
1
...
1


.

a. Explain why b, the mean of the components of b, can be found as the dot product

b �
1
m

b · 1.

b. In the examples we have seen in this section, explain why 1 is in Col(A).

c. If we write b � b̂ + b⊥, explain why

b⊥ · 1 � 0

and hence why the mean of the components of b⊥ is zero.

d. The variance of an m-dimensional vector v is Var(v) � 1
m |̃v|2, where ṽ is the vector

obtained by demeaning v.
Explain why

Var(b) � Var(b̂) + Var(b⊥).

e. Explain why
|b − Ax̂|2���̃b���2 �

Var(b⊥)
Var(b)
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and hence

R2
�

Var(b̂)
Var(b) �

Var(Ax̂)
Var(b) .

These expressions indicate why it is sometimes said that R2 measures the “frac-
tion of variance explained” by the function we are using to fit the data. As seen
in the previous exercise, there may be other features that are not recorded in the
dataset that influence the quantity we wish to predict.

f. Explain why 0 ≤ R2 ≤ 1.
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CHAPTER 7
Singular value decompositions

Chapter 4 demonstrated several important uses for the theory of eigenvalues and eigenvec-
tors. For example, knowing the eigenvalues and eigenvectors of a matrix A enabled us to
make predictions about the long-term behavior of dynamical systems in which some initial
state x0 evolves according to the rule xk+1 � Axk .

We can’t, however, apply this theory to every problem we might meet. First, eigenvectors
only exist when thematrix A is square, andwe have seen situations, such as the least-squares
problems in Section 6.5, where the matrices we’re interested in are not square. Second, even
when A is square, there may not be a basis for�m consisting of eigenvectors of A, an impor-
tant condition we required for some of our work.

This chapter introduces singular value decompositions, whose singular values and singular
vectors may be viewed as a generalization of eigenvalues and eigenvectors. In fact, we will
see that every matrix, whether square or not, has a singular value decomposition and that
knowing it gives us a great deal of insight into the matrix. It’s been said that having a singu-
lar value decomposition is like looking at a matrix with X-ray vision as the decomposition
reveals essential features of the matrix.

7.1 Symmetric matrices and variance

In this section, wewill revisit the theory of eigenvalues and eigenvectors for the special class
of matrices that are symmetric, meaning that the matrix equals its transpose. This under-
standing of symmetric matrices will enable us to form singular value decompositions later
in the chapter. We’ll also begin studying variance in this section as it provides an important
context that motivates some of our later work.

To begin, remember that if A is a square matrix, we say that v is an eigenvector of A with
associated eigenvalue λ if Av � λv. In other words, for these special vectors, the operation
of matrix multiplication simplifies to scalar multiplication.

Preview Activity 7.1.1. This preview activity reminds us how a basis of eigenvectors
can be used to relate a square matrix to a diagonal one.
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Figure 7.1.1 Use these plots to sketch the vectors requested in the preview activity.

a. Suppose that D �

[
3 0
0 −1

]
and that e1 �

[
1
0

]
and e2 �

[
0
1

]
.

1. Sketch the vectors e1 and De1 on the left side of Figure 7.1.1.
2. Sketch the vectors e2 and De2 on the left side of Figure 7.1.1.
3. Sketch the vectors e1 + 2e2 and D(e1 + 2e2) on the left side.
4. Give a geometric description of the matrix transformation defined by D.

b. Now suppose we have vectors v1 �

[
1
1

]
and v2 �

[
−1

1

]
and that A is a 2 × 2

matrix such that
Av1 � 3v1 , Av2 � −v2.

That is, v1 and v2 are eigenvectors of A with associated eigenvalues 3 and −1.

1. Sketch the vectors v1 and Av1 on the right side of Figure 7.1.1.
2. Sketch the vectors v2 and Av2 on the right side of Figure 7.1.1.
3. Sketch the vectors v1 + 2v2 and A(v1 + 2v2) on the right side.
4. Give a geometric description of the matrix transformation defined by A.

c. In what ways are the matrix transformations defined by D and A related to one
another?

The preview activity asks us to compare thematrix transformations defined by twomatrices,
a diagonal matrix D and a matrix A whose eigenvectors are given to us. The transformation
defined by D stretches horizontally by a factor of 3 and reflects in the horizontal axis, as
shown in Figure 7.1.2
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Figure 7.1.2 The matrix transformation defined by D.

By contrast, the transformation defined by A stretches the plane by a factor of 3 in the direc-
tion of v1 and reflects in the line defined by v1, as seen in Figure 7.1.3.
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2

Figure 7.1.3 The matrix transformation defined by A.

In this way, we see that the matrix transformations defined by these twomatrices are equiva-
lent after a 45◦ rotation. This notion of equivalence is what we called similarity in Section 4.3.
There we considered a square m × m matrix A that provided enough eigenvectors to form
a basis of �m . For example, suppose we can construct a basis for �m using eigenvectors
v1 , v2 , . . . , vm having associated eigenvalues λ1 , λ2 , . . . , λm . Forming the matrices,

P �
[
v1 v2 . . . vm

]
, D �


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λm


,

enables us to write A � PDP−1. This is what it means for A to be diagonalizable.

For the example in the preview activity, we are led to form

P �

[
1 −1
1 1

]
, D �

[
3 0
0 −1

]
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which tells us that A � PDP−1 �

[
1 2
2 1

]
.

Notice that the matrix A has eigenvectors v1 and v2 that not only form a basis for �2 but, in
fact, form an orthogonal basis for�2. Given the prominent role played by orthogonal bases
in the last chapter, we would like to understand what conditions on a matrix enable us to
form an orthogonal basis of eigenvectors.

7.1.1 Symmetric matrices and orthogonal diagonalization

Let’s begin by looking at some examples in the next activity.

Activity 7.1.2. Remember that the Sage command A.right_eigenmatrix() attempts
to find a basis for �m consisting of eigenvectors of A. In particular, the assignment
D, P = A.right_eigenmatrix() provides a diagonal matrix D constructed from the
eigenvalues of A with the columns of P containing the associated eigenvectors.

a. For each of the following matrices, determine whether there is a basis for �2

consisting of eigenvectors of that matrix. When there is such a basis, form the
matrices P and D and verify that the matrix equals PDP−1.

1.
[
3 −4
4 3

]
.

2.
[

1 1
−1 3

]
.

3.
[

1 0
−1 2

]
.

4.
[
9 2
2 6

]
.

b. For which of these examples is it possible to form an orthogonal basis for �2

consisting of eigenvectors?

c. For any such matrix A, find an orthonormal basis of eigenvectors and explain
why A � QDQ−1 where Q is an orthogonal matrix.

d. Finally, explain why A � QDQT in this case.

e. When A � QDQT , what is the relationship between A and AT?

The examples in this activity illustrate a range of possibilities. First, a matrix may have
complex eigenvalues, in which case it will not be diagonalizable. Second, even if all the
eigenvalues are real, there may not be a basis of eigenvalues if the dimension of one of the
eigenspaces is less than the algebraic multiplicity of the associated eigenvalue.
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We are interested in matrices for which there is an orthogonal basis of eigenvectors. When
this happens, we can create an orthonormal basis of eigenvectors by scaling each eigenvector
in the basis so that its length is 1. Putting these orthonormal vectors into amatrix Q produces
an orthogonal matrix, which means that QT � Q−1. We then have

A � QDQ−1
� QDQT .

In this case, we say that A is orthogonally diagonalizable.

Definition 7.1.4 If there is an orthonormal basis of�n consisting of eigenvectors of thematrix
A, we say that A is orthogonally diagonalizable. In particular, we can write A � QDQT where
Q is an orthogonal matrix.

When A is orthogonally diagonalizable, notice that

AT
� (QDQT)T � (QT)T DTQT

� QDQT
� A.

That is, when A is orthogonally diagonalizable, A � AT and we say that A is symmetric.

Definition 7.1.5 A symmetric matrix A is one for which A � AT .

Example 7.1.6 Consider the matrix A �

[
−2 36
36 −23

]
, which has eigenvectors v1 �

[
4
3

]
,

with associated eigenvalue λ1 � 25, and v2 �

[
3

−4

]
, with associated eigenvalue λ2 � −50.

Notice that v1 and v2 are orthogonal so we can form an orthonormal basis of eigenvectors:

u1 �

[
4/5
3/5

]
, u1 �

[
3/5

−4/5

]
.

In this way, we construct the matrices

Q �

[
4/5 3/5
3/5 −4/5

]
, D �

[
25 0
0 −50

]
and note that A � QDQT .

Notice also that, as expected, A is symmetric; that is, A � AT .

Example 7.1.7 If A �

[
1 2
2 1

]
, then there is an orthogonal basis of eigenvectors v1 �

[
1
1

]
and v2 �

[
−1

1

]
with eigenvalues λ1 � 3 and λ2 � −1. Using these eigenvectors, we form

the orthogonal matrix Q consisting of eigenvectors and the diagonal matrix D, where

Q �

[
1/
√

2 −1/
√

2
1/
√

2 1/
√

2

]
, D �

[
3 0
0 −1

]
.

Then we have A � QDQT .

Notice that the matrix transformation represented by Q is a 45◦ rotation while that repre-
sented by QT � Q−1 is a −45◦ rotation. Therefore, if we multiply a vector x by A, we can
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decompose the multiplication as

Ax � Q(D(QTx)).

That is, we first rotate x by −45◦, then apply the diagonal matrix D, which stretches and
reflects, and finally rotate by 45◦. We may visualize this factorization as in Figure 7.1.8.
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Figure 7.1.8 The transformation defined by A � QDQT can be interpreted as a sequence of
geometric transformations: QT rotates by −45◦, D stretches and reflects, and Q rotates by
45◦.

In fact, a similar picture holds any time the matrix A is orthogonally diagonalizable.

We have seen that a matrix that is orthogonally diagonalizable must be symmetric. In fact,
it turns out that any symmetric matrix is orthogonally diagonalizable. We record this fact
in the next theorem.
Theorem 7.1.9 The Spectral Theorem. The matrix A is orthogonally diagonalizable if and only
if A is symmetric.
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Activity 7.1.3. Each of the following matrices is symmetric so the Spectral Theorem
tells us that each is orthogonally diagonalizable. The point of this activity is to find
an orthogonal diagonalization for each matrix.

To begin, find a basis for each eigenspace. Use this basis to find an orthogonal basis
for each eigenspace and put these bases together to find an orthogonal basis for �m

consisting of eigenvectors. Use this basis to write an orthogonal diagonalization of
the matrix.

a.
[
0 2
2 3

]
.

b.


4 −2 14
−2 19 −16
14 −16 13

 .
c.


5 4 2
4 5 2
2 2 2

 .
d. Consider the matrix A � BT B where B �

[
0 1 2
2 0 1

]
. Explain howwe know that

A is symmetric and then find an orthogonal diagonalization of A.

As the examples in Activity 7.1.3 illustrate, the Spectral Theorem implies a number of things.
Namely, if A is a symmetric m × m matrix, then

• the eigenvalues of A are real.

• there is a basis of �m consisting of eigenvectors.

• two eigenvectors that are associated to different eigenvalues are orthogonal.

We won’t justify the first two facts here since that would take us rather far afield. However,
it will be helpful to explain the third fact. To begin, notice the following:

v · (Aw) � vTAw � (ATv)Tw � (ATv) · w.

This is a useful fact that we’ll employ quite a bit in the future so let’s summarize it in the
following proposition.

Proposition 7.1.10 For any matrix A, we have

v · (Aw) � (ATv) · w.

In particular, if A is symmetric, then

v · (Aw) � (Av) · w.
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Example 7.1.11 Suppose a symmetric matrix A has eigenvectors v1, with associated eigen-
value λ1 � 3, and v2, with associated eigenvalue λ2 � 10. Notice that

(Av1) · v2 � 3v1 · v2

v1 · (Av2) � 10v1 · v2.

Since (Av1) · v2 � v1 · (Av2) by Proposition 7.1.10, we have

3v1 · v2 � 10v1 · v2 ,

which can only happen if v1 · v2 � 0. Therefore, v1 and v2 are orthogonal.

More generally, the same argument shows that two eigenvectors of a symmetric matrix as-
sociated to distinct eigenvalues are orthogonal.

7.1.2 Variance

Many of the ideas we’ll encounter in this chapter, such as orthogonal diagonalizations, can
be applied to the study of data. In fact, it can be useful to understand these applications be-
cause they provide an important context in which mathematical ideas have a more concrete
meaning and their motivation appears more clearly. For that reason, we will now introduce
the statistical concept of variance as a way to gain insight into the significance of orthogonal
diagonalizations.

Given a set of data points, their variance measures how spread out the points are. The next
activity looks at some examples.

Activity 7.1.4. We’ll begin with a set of three data points

d1 �

[
1
1

]
, d2 �

[
2
1

]
, d3 �

[
3
4

]
.

a. Find the centroid, or mean, d �
1
N
∑

j d j . Then plot the data points and their
centroid in Figure 7.1.12.
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Figure 7.1.12 Plot the data points and their centroid here.

b. Notice that the centroid lies in the center of the data so the spread of the data
will be measured by how far away the points are from the centroid. To simplify
our calculations, find the demeaned data points

d̃ j � d j − d

and plot them in Figure 7.1.13.
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Figure 7.1.13 Plot the demeaned data points d̃ j here.

c. Now that the data has been demeaned, we will define the total variance as the
average of the squares of the distances from the origin; that is, the total variance
is

V �
1
N

∑
j

|d̃ j |2.

Find the total variance V for our set of three points.
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d. Now plot the projections of the demeaned data onto the x and y axes using
Figure 7.1.14 and find the variances Vx and Vy of the projected points.
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Figure 7.1.14 Plot the projections of the demeaned data onto the x and y axes.

e. Which of the variances, Vx and Vy , is larger and how does the plot of the pro-
jected points explain your response?

f. What do you notice about the relationship between V , Vx , and Vy? How does
the Pythagorean theorem explain this relationship?

g. Plot the projections of the demeaned data points onto the lines defined by vec-

tors v1 �

[
1
1

]
and v2 �

[
−1

1

]
using Figure 7.1.15 and find the variances Vv1

and Vv2 of these projected points.
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Figure 7.1.15 Plot the projections of the deameaned data onto the lines defined
by v1 and v2.
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h. What is the relationship between the total variance V and Vv1 and Vv2? How
does the Pythagorean theorem explain your response?

Notice that variance enjoys an additivity property. Consider, for instance, the situation
where our data points are two-dimensional and suppose that the demeaned points are d̃ j �[

x̃ j

ỹ j

]
. We have

|d̃ j |2 � x̃2
j + ỹ2

j .

If we take the average over all data points, we find that the total variance V is the sum of the
variances in the x and y directions:

1
N

∑
j

|d̃ j |2 �
1
N

∑
j

x̃2
j +

1
N

∑
j

ỹ2
j

V � Vx + Vy .

More generally, suppose that we have an orthonormal basis u1 and u2. If we project the
demeaned points onto the line defined by u1, we obtain the points (d̃ j · u1)u1 so that

Vu1 �
1
N

∑
j

|(d̃ j · u1) u1 |2 �
1
N

∑
j

(d̃ j · u1)2.

For each of our demeaned data points, the Projection Formula tells us that

d̃ j � (d̃ j · u1) u1 + (d̃ j · u2) u2.

We then have
|d̃ j |2 � d̃ j · d̃ j � (d̃ j · u1)2 + (d̃ j · u2)2

since u1 ·u2 � 0. Whenwe average over all the data points, we find that the total variance V is
the sum of the variances in the u1 and u2 directions. This leads to the following proposition,
in which this observation is expressed more generally.

Proposition 7.1.16 Additivity of Variance. IfW is a subspacewith orthonormal basisu1,u2,. . .,un ,
then the variance of the points projected onto W is the sum of the variances in the u j directions:

VW � Vu1 + Vu2 + . . . + Vun .

The next activity demonstrates a more efficient way to find the variance Vu in a particular
direction and connects our discussion of variance with symmetric matrices.

Activity 7.1.5. Let’s return to the dataset from the previous activity in which we have
demeaned data points:

d̃1 �

[
−1
−1

]
, d̃2 �

[
0

−1

]
, d̃3 �

[
1
2

]
.

Our goal is to compute the variance Vu in the direction defined by a unit vector u.
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To begin, form the demeaned data matrix

A �
[
d̃1 d̃2 d̃3

]
and suppose that u is a unit vector.

a. Write the vector ATu in terms of the dot products d̃ j · u.

b. Explain why Vu �
1
3 |ATu|2.

c. Apply Proposition 7.1.10 to explain why

Vu �
1
3 |A

Tu|2 �
1
3 (A

Tu) · (ATu) � uT
(
1
3AAT

)
u � u ·

(
1
3AAT

)
u �

d. In general, the matrix C �
1
N AAT is called the covariance matrix of the dataset,

and it is useful because the variance Vu � u · (Cu), as we have just seen. Find
the matrix C for our dataset with three points.

e. Use the covariance matrix to find the variance Vu1 when u1 �

[
1/
√

5
2/
√

5

]
.

f. Use the covariance matrix to find the variance Vu2 when u2 �

[
−2/

√
5

1/
√

5

]
. Since

u1 and u2 are orthogonal, verify that the sum of Vu1 and Vu2 gives the total
variance.

g. Explain why the covariance matrix C is a symmetric matrix.

This activity introduced the covariancematrix of a dataset, which is defined to be C �
1
N AAT

where A is the matrix of demeaned data points. Notice that

CT
�

1
N

(AAT)T �
1
N

AAT
� C,

which tells us that C is symmetric. In particular, we know that it is orthogonally diagonal-
izable, an observation that will play an important role in the future.

This activity also demonstrates the significance of the covariance matrix, which is recorded
in the following proposition.

Proposition 7.1.17 If C is the covariance matrix associated to a demeaned dataset and u is a unit
vector, then the variance of the demeaned points projected onto the line defined by u is

Vu � u · Cu.

Our goal in the future will be to find directions u where the variance is as large as possible
and directions where it is as small as possible. The next activity demonstrates why this is
useful.
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Activity 7.1.6.
a. Evaluating the following Sage cell loads a dataset consisting of 100 demeaned

data points and provides a plot of them. It also provides the demeaned data
matrix A.

import pandas as pd
url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/data/variance -data.csv '
df=pd.read_csv(url , header=None)
data=[ vector(row) for row in df.values]
A=matrix(data).T
list_plot(data , size=20, color= ' blue ' , aspect_ratio =1)

What is the shape of the covariance matrix C? Find C and verify your response.

b. By visually inspecting the data, determine which is larger, Vx or Vy . Then com-
pute both of these quantities to verify your response.

c. What is the total variance V?

d. In approximately what direction is the variance greatest? Choose a reasonable
vector u that points in approximately that direction and find Vu.

e. In approximately what direction is the variance smallest? Choose a reasonable
vector w that points in approximately that direction and find Vw.

f. How are the directions u and w in the last two parts of this problem related to
one another? Why does this relationship hold?

This activity illustrates how variance can identify a line along which the data are concen-
trated. When the data primarily lie along a line defined by a vector u1, then the variance in
that direction will be large while the variance in an orthogonal direction u2 will be small.

Remember that variance is additive, according to Proposition 7.1.16, so that if u1 and u2 are
orthogonal unit vectors, then the total variance is

V � Vu1 + Vu2 .

Therefore, if we choose u1 to be the direction where Vu1 is a maximum, then Vu2 will be a
minimum.

In the next section, we will use an orthogonal diagonalization of the covariance matrix C to
find the directions having the greatest and smallest variances. In this way, we will be able
to determine when data are concentrated along a line or subspace.

7.1.3 Summary

This section explored both symmetric matrices and variance. In particular, we saw that
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• A matrix A is orthogonally diagonalizable if there is an orthonormal basis of eigen-
vectors. In particular, we can write A � QDQT , where D is a diagonal matrix of
eigenvalues and Q is an orthogonal matrix of eigenvectors.

• The Spectral Theorem tells us that a matrix A is orthogonally diagonalizable if and
only if it is symmetric; that is, A � AT .

• The variance of a dataset can be computed using the covariance matrix C �
1
N AAT ,

where A is the matrix of demeaned data points. In particular, the variance of the de-
meaned data points projected onto the line defined by the unit vector u is Vu � u · Cu.

• Variance is additive so that if W is a subspace with orthonormal basis u1 , u2 , . . . , un ,
then

VW � Vu1 + Vu2 + . . . + Vun .

7.1.4 Exercises

1. For each of the followingmatrices, find the eigenvalues and a basis for each eigenspace.
Determine whether the matrix is diagonalizable and, if so, find a diagonalization. De-
termine whether the matrix is orthogonally diagonalizable and, if so, find an orthogo-
nal diagonalization.

a.
[

5 1
−1 3

]
b.

[
0 1
1 0

]
c.


1 0 0
2 −2 0
0 1 4


d.


2 5 −4
5 −7 5
−4 5 2


2. Consider the matrix A �


1 2 2
2 1 2
2 2 1

 whose eigenvalues are λ1 � 5, λ2 � −1, and λ3 �

−1.

a. Explain why A is orthogonally diagonalizable.

b. Find an orthonormal basis for the eigenspace E5.

c. Find a basis for the eigenspace E−1.
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d. Now find an orthonormal basis for E−1.

e. Find matrices D and Q such that A � QDQT .
3. Find an orthogonal diagonalization, if one exists, for the following matrices.

a.

11 4 12
4 −3 −16
12 −16 1

 .
b.


1 0 2
0 1 2
−2 −2 1

 .
c.


9 3 3 3
3 9 3 3
3 3 9 3
3 3 3 9

 .
4. Suppose that A is an m × n matrix and that B � ATA.

a. Explain why B is orthogonally diagonalizable.

b. Explain why v · (Bv) � |Av|2.

c. Suppose that u is an eigenvector of B with associated eigenvalue λ and that u has
unit length. Explain why λ � |Au|2.

d. Explain why the eigenvalues of B are nonnegative.

e. If C is the covariance matrix associated to a demeaned dataset, explain why the
eigenvalues of C are nonnegative.

5. Suppose that you have the data points

(2, 0), (2, 3), (4, 1), (3, 2), (4, 4).

a. Find the demeaned data points.

b. Find the total variance V of the dataset.

c. Find the variance in the direction e1 �

[
1
0

]
and the variance in the direction

e2 �

[
0
1

]
.

d. Project the demeaned data points onto the line defined by v1 �

[
2
1

]
and find

the variance of these projected points.
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e. Project the demeaned data points onto the line defined by v2 �

[
1

−2

]
and find

the variance of these projected points.

f. How and why are the results of from the last two parts related to the total vari-
ance?

6. Suppose you have six 2-dimensional data points arranged in the matrix[
2 0 4 4 5 3
1 0 3 5 4 5

]
.

a. Find the matrix A of demeaned data points and plot the points in Figure 7.1.18.

-4 -2 2 4

-4

-2

2

4

x

y

Figure 7.1.18 A plot for the demeaned data points.

b. Construct the covariance matrix C and explain why you know that it is orthogo-
nally diagonalizable.

c. Find an orthogonal diagonalization of C.

d. Sketch the lines corresponding to the two eigenvectors on the plot above.

e. Find the variances in the directions of the eigenvectors.
7. Suppose that C is the covariance matrix of a demeaned dataset.

a. Suppose that u is an eigenvector of C with associated eigenvalue λ and that u has
unit length. Explain why Vu � λ.

b. Suppose that the covariance matrix of a demeaned dataset can be written as C �

QDQT where

Q �
[
u1 u2

]
, D �

[
10 0
0 0

]
.

What is Vu2? What does this tell you about the demeaned data?

c. Explain why the total variance of a dataset equals the sum of the eigenvalues of
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the covariance matrix.
8. Determine whether the following statements are true or false and explain your think-

ing.
a. If A is an invertible, orthogonally diagonalizable matrix, then so is A−1.

b. If λ � 2 + i is an eigenvalue of A, then A cannot be orthogonally diagonalizable.

c. If there is a basis for �m consisting of eigenvectors of A, then A is orthogonally
diagonalizable.

d. If u and v are eigenvectors of a symmetric matrix associated to eigenvalues -2 and
3, then u · v � 0.

e. If A is a square matrix, then u · (Av) � (Au) · v.
9. Suppose that A is a noninvertible, symmetric 3 × 3 matrix having eigenvectors

v1 �


2

−1
2

 , v2 �


1
4
1


and associated eigenvalues λ1 � 20 and λ2 � −4. Find matrices Q and D such that
A � QDQT .

10. Suppose that W is a plane in �3 and that P is the 3 × 3 matrix that projects vectors
orthogonally onto W .

a. Explain why P is orthogonally diagonalizable.

b. What are the eigenvalues of P?

c. Explain the relationship between the eigenvectors of P and the plane W .
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7.2 Quadratic forms

With our understanding of symmetric matrices and variance in hand, we’ll now explore
how to determine the directions in which the variance of a dataset is as large as possible
and where it is as small as possible. This is part of a much larger story involving a type of
function, called a quadratic form, that we’ll introduce here.

Preview Activity 7.2.1. Let’s begin by looking at an example. Suppose we have three
data points that form the demeaned data matrix

A �

[
2 1 −3
1 2 −3

]
a. Plot the demeaned data points in Figure 7.2.1. In which direction does the vari-

ance appear to be largest and in which does it appear to be smallest?

-4 -2 2 4

-4

-2

2

4

x

y

Figure 7.2.1 Use this coordinate grid to plot the demeaned data points.

b. Construct the covariance matrix C and determine the variance in the direction
of

[
1
1

]
and the variance in the direction of

[
−1

1

]
.

c. What is the total variance of this dataset?

d. Generally speaking, if C is the covariance matrix of a dataset and u is an eigen-
vector of C having unit length and with associated eigenvalue λ, what is Vu?
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7.2.1 Quadratic forms

Given a matrix A of N demeaned data points, the symmetric covariance matrix C �
1
N AAT

determines the variance in a particular direction

Vu � u · (Cu),

where u is a unit vector defining the direction.

More generally, a symmetric m × m matrix A defines a function q : �m → � by

q(x) � x · (Ax).

Notice that this expression is similar to the one we use to find the variance Vu in terms of
the covariance matrix C. The only difference is that we allow x to be any vector rather than
requiring it to be a unit vector.

Example 7.2.2 Suppose that A �

[
1 2
2 1

]
. If we write x �

[
x1
x2

]
, then we have

q
( [

x1
x2

] )
�

[
x1
x2

]
·
( [

1 2
2 1

] [
x1
x2

] )
�

[
x1
x2

]
·
[

x1 + 2x2
2x1 + x2

]
� x2

1 + 2x1x2 + 2x1x2 + x2
2

� x2
1 + 4x1x2 + x2

2 .

We may evaluate the quadratic form using some input vectors:

q
( [

1
0

] )
� 1, q

( [
1
1

] )
� 6, q

( [
2
4

] )
� 52.

Notice that the value of the quadratic form is a scalar.

Definition 7.2.3 If A is a symmetric m × m matrix, the quadratic form defined by A is the
function qA(x) � x · (Ax).

Activity 7.2.2. Let’s look at some more examples of quadratic forms.

a. Consider the symmetric matrix D �

[
3 0
0 −1

]
. Write the quadratic form qD(x)

defined by D in terms of the components of x �

[
x1
x2

]
. What is the value of

qD

( [
2

−4

] )
?

b. Given the symmetric matrix A �

[
2 5
5 −3

]
, write the quadratic form qA(x) de-



434 CHAPTER 7. SINGULAR VALUE DECOMPOSITIONS

fined by A and evaluate qA

( [
2

−1

] )
.

c. Suppose that q
( [

x1
x2

] )
� 3x2

1 − 4x1x2 + 4x2
2. Find a symmetric matrix A such

that q is the quadratic form defined by A.

d. Suppose that q is a quadratic form and that q(x) � 3. What is q(2x)? q(−x)?
q(10x)?

e. Suppose that A is a symmetric matrix and qA(x) is the quadratic form defined
by A. Suppose that x is an eigenvector of A with associated eigenvalue -4 and
with length 7. What is qA(x)?

Linear algebra is principally about things that are linear. However, quadratic forms, as the

name implies, have a distinctly non-linear character. First, if A �

[
a b
b c

]
, is a symmetric

matrix, then the associated quadratic form is

qA

( [
x1
x2

] )
� ax2

1 + 2bx1x2 + cx2
2 .

Notice how the variables x1 and x2 are multiplied together, which tells us this isn’t a linear
function.

This expression assumes an especially simple form when D is a diagonal matrix. In par-

ticular, if D �

[
a 0
0 c

]
, then qD

( [
x1
x2

] )
� ax2

1 + cx2
2. This is special because there is no

cross-term involving x1x2.

Remember that matrix transformations have the property that T(sx) � sT(x). Quadratic
forms behave differently:

qA(sx) � (sx) · (A(sx)) � s2x · (Ax) � s2qA(x).

For instance, when we multiply x by the scalar 2, then qA(2x) � 4qA(x). Also, notice that
qA(−x) � qA(x) since the scalar is squared.

Finally, evaluating a quadratic form on an eigenvector has a particularly simple form. Sup-
pose that x is an eigenvector of A with associated eigenvalue λ. We then have

qA(x) � x · (Ax) � λx · x � λ |x|2 .

Let’s now return to ourmotivating question: inwhich directionu is the variance Vu � u·(Cu)
of a dataset as large as possible and in which is it as small as possible. Remembering that the
vector u is a unit vector, we can now state a more general form of this question: If qA(x) is a
quadratic form, for which unit vectors u is qA(u) � u · (Au) as large as possible and for which is it as
small as possible? Since a unit vector specifies a direction, we will often ask for the directions
in which the quadratic form q(x) is at its maximum or minimum value.
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Activity 7.2.3. We can gain some intuition about this problem by graphing the qua-
dratic form and paying particular attention to the unit vectors.

a. Evaluating the following cell defines the matrix D �

[
3 0
0 −1

]
and displays

the graph of the associated quadratic form qD(x). In addition, the points cor-
responding to vectors u with unit length are displayed as a curve.

url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/quad_plot.py '
sage.repl.load.load(url , globals ())

## We define our matrix here
A = matrix(2, 2, [3, 0, 0, -1])

quad_plot(A)

Notice that the matrix D is diagonal. In which directions does the quadratic
form have its maximum and minimum values?

b. Write the quadratic form qD associated to D. What is the value of qD

( [
1
0

] )
?

What is the value of qD

( [
0
1

] )
?

c. Consider a unit vector u �

[
u1
u2

]
so that u2

1 + u2
2 � 1, an expression we can

rewrite as u2
1 � 1 − u2

2. Write the quadratic form qD(u) and replace u2
1 by 1 − u2

2.
Now explain why the maximum of qD(u) is 3. In which direction does the max-
imum occur? Does this agree with what you observed from the graph above?

d. Write the quadratic form qD(u) and replace u2
2 by 1− u2

1. What is the minimum
value of qD(u) and in which direction does the minimum occur?

e. Use the previous Sage cell to change the matrix to A �

[
1 2
2 1

]
and display the

graph of the quadratic form qA(x) � x · (Ax). Determine the directions in which
the maximum and minimum occur?

f. Remember that A �

[
1 2
2 1

]
is symmetric so that A � QDQT where D is the

diagonal matrix above and Q is the orthogonal matrix that rotates vectors by
45◦. Notice that

qA(u) � u · (Au) � u · (QDQTu) � (QTu) · (DQTu) � qD(v)

where v � QTu. That is, we have qA(u) � qD(v).
Explain why v � QTu is also a unit vector; that is, explain why

|v|2 � |QTu|2 � (QTu) · (QTu) � 1.
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g. Using the fact that qA(u) � qD(v), explain how we now know the maximum
value of qA(u) is 3 and determine the direction in which it occurs. Also, de-
termine the minimum value of qA(u) and determine the direction in which it
occurs.

This activity demonstrates how the eigenvalues of A determine themaximumandminimum
values of the quadratic form qA(u) when evaluated on unit vectors and how the associated
eigenvectors determine the directions in which the maximum and minimum values occur.
Let’s look at another example so that this connection is clear.

Example 7.2.4 Consider the symmetric matrix A �

[
−7 −6
−6 2

]
. Because A is symmetric, we

know that it can be orthogonally diagonalized. In fact, we have A � QDQT where

D �

[
5 0
0 −10

]
, Q �

[
1/
√

5 2/
√

5
−2/

√
5 1/

√
5

]
.

From this diagonalization, we know that λ1 � 5 is the largest eigenvalue of A with associated

eigenvector u1 �

[
1/
√

5
−2/

√
5

]
and that λ2 � −10 is the smallest eigenvalue with associated

eigenvector u2 �

[
2/
√

5
1/
√

5

]
.

Let’s first study the quadratic form qD(u) � 5u2
1 −10u2

2 because the absence of the cross-term
makes it comparatively simple. Remembering that u is a unit vector, we have u2

1 + u2
2 � 1,

which means that u2
1 � 1 − u2

2. Therefore,

qD(u) � 5u2
1 − 10u2

2 � 5(1 − u2
2) − 10u2

2 � 5 − 15u2
2.

This tells us that qD(u) has a maximum value of 5, which occurs when u2 � 0 or in the

direction
[

1
0

]
.

In the same way, rewriting u2
2 � 1 − u2

1 allows us to conclude that the minimum value of

qD(u) is −10, which occurs in the direction
[

0
1

]
.

Let’s now return to the matrix A whose quadratic form qA is related to qD because A �

QDQT . In particular, we have

qA(u) � u · (Au) � u · (QDQTu) � (QTu) · (DQTu) � v · (Dv) � qD(v).
In other words, we have qA(u) � qD(v)where v � QTu. This is quite useful because it allows
us to relate the values of qA to those of qD , which we already understand quite well.

Now it turns out that v is also a unit vector because

|v|2 � v · v � (QTu) · (QTu) � u · (QQTu) � u · u � |u|2 � 1.

Therefore, the maximum value of qA(u) is the same as qD(v), which we know to be 5 and

which occurs in the direction v �

[
1
0

]
. This means that the maximum value of qA(u) is
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also 5 and that this occurs in the direction u � Qv � Q
[

1
0

]
�

[
1/
√

5
−2/

√
5

]
. We now know

that the maximum value of qA(u) is the largest eigenvalue λ1 � 5 and that this maximum
value occurs in the direction of an associated eigenvector.

In the sameway, we see that theminimumvalue of qA(u) is the smallest eigenvalue λ2 � −10

and that this minimum occurs in the direction of u � Q
[

0
1

]
�

[
2/
√

5
1/
√

5

]
, an associated

eigenvector.

More generally, we have

Proposition 7.2.5 Suppose that A is a symmetric matrix, that we list its eigenvalues in decreasing
order λ1 ≥ λ2 . . . ≥ λm , and that u1 , u2 , . . . , um is a basis of associated eigenvectors. The maxi-
mum value of qA(u) among all unit vectors u is λ1, which occurs in the direction u1. Similarly, the
minimum value of qA(u) is λm , which occurs in the direction um .

Example 7.2.6 Suppose that A is the symmetric matrix A �


0 6 3
6 3 6
0 6 6

 , whichmay be orthog-

onally diagonalized as A � QDQT where

D �


12 0 0
0 3 0
0 0 −6

 , Q �


1/3 2/3 2/3
2/3 1/3 −2/3
2/3 −2/3 1/3

 .
We see that the maximum value of qA(u) is 12, which occurs in the direction


1/3
2/3
2/3

 , and
the minimum value is -6, which occurs in the direction


2/3

−2/3
1/3

 .
Example 7.2.7 Suppose we have the matrix of demeaned data points A �

[
2 1 −3
1 2 −3

]
that

we considered in Preview Activity 7.2.1. The data points are shown in Figure 7.2.8.
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Figure 7.2.8 The set of demeaned data points from Preview Activity 7.2.1.

Constructing the covariance matrix C �
1
3 AAT gives C �

[
14/3 13/3
13/3 14/3

]
, which has eigenval-

ues λ1 � 9, with associated eigenvector
[

1/
√

2
1/
√

2

]
, and λ2 � 1/3, with associated eigenvector[

−1/
√

2
1/
√

2

]
.

Remember that the variance in a direction u is Vu � u · (Cu) � qC(u). Therefore, the variance

attains a maximum value of 9 in the direction
[

1/
√

2
1/
√

2

]
and a minimum value of 1/3 in the

direction
[
−1/

√
2

1/
√

2

]
. Figure 7.2.9 shows the data projected onto the lines defined by these

vectors.
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Figure 7.2.9 The demeaned data from Preview Activity 7.2.1 is shown projected onto the
lines of maximal and minimal variance.

Remember that variance is additive, as stated in Proposition 7.1.16, which tells us that the
total variance is V � 9 + 1/3 � 28/3.

We’ve been focused on finding the directions inwhich a quadratic form attains its maximum
and minimum values, but there’s another important observation to make after this activity.
Recall how we used the fact that a symmetric matrix is orthogonally diagonalizable: if A �

QDQT , then qA(u) � qD(v) where v � QTu.

More generally, if we define y � QTx, we have

qA(x) � x · (Ax) � x · (QDQTx) � (QTx) · (DQTx) � y · (Dy) � qD(y)
Remembering that the quadratic form associated to a diagonal form has no cross terms, we
obtain

qA(x) � qD(y) � λ1 y2
1 + λ2 y2

2 + . . . + λm y2
m .

In other words, after a change of coordinates, the quadratic form qA can be written without
cross terms. This is known as the Principle Axes Theorem.

Theorem 7.2.10 Principle Axes Theorem. If A is a symmetric m × m matrix with eigenvalues
λ1 , λ2 , . . . , λm , then the quadratic form qA can be written, after an orthogonal change of coordinates
y � QTx, as

qA(x) � λ1 y2
1 + λ2 y2

2 + . . . + λm y2
m .

We will put this to use in the next section.

7.2.2 Definite symmetric matrices

While our questions about variance provide somemotivation for exploring quadratic forms,
these functions appear in a variety of other contexts so it’s worth spending some more time
with them. For example, quadratic forms appear in multivariable calculus when describ-
ing the behavior of a function of several variables near a critical point and in physics when
describing the kinetic energy of a rigid body.
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The following definition will be important in this section.

Definition 7.2.11 A symmetric matrix A is called positive definite if its associated quadratic
form satisfies qA(x) > 0 for any nonzero vector x. If qA(x) ≥ 0 for all nonzero vectors x, we
say that A is positive semidefinite.

Likewise, we say that A is negative definite if qA(x) < 0 for all nonzero vectors x.

Finally, A is called indefinite if qA(x) > 0 for some x and qA(x) < 0 for others.

Activity 7.2.4. This activity explores the relationship between the eigenvalues of a
symmetric matrix and its definiteness.

a. Consider the diagonal matrix D �

[
4 0
0 2

]
and write its quadratic form qD(x) in

terms of the components of x �

[
x1
x2

]
. How does this help you decide whether

D is positive definite or not?

b. Now consider D �

[
4 0
0 0

]
and write its quadratic form qD(x) in terms of x1 and

x2. What can you say about the definiteness of D?

c. If D is a diagonal matrix, what condition on the diagonal entries guarantee that
D is

1. positive definite?
2. positive semidefinite?
3. negative definite?
4. negative semidefinite?
5. indefinite?

d. Suppose that A is a symmetric matrix with eigenvalues 4 and 2 so that A �

QDQT where D �

[
4 0
0 2

]
. If y � QTx, then we have qA(x) � qD(y). Explain

why this tells us that A is positive definite.

e. Suppose that A is a symmetric matrix with eigenvalues 4 and 0. What can you
say about the definiteness of A in this case?

f. What condition on the eigenvalues of a symmetric matrix A guarantees that A
is

1. positive definite?
2. positive semidefinite?
3. negative definite?
4. negative semidefinite?
5. indefinite?
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As seen in this activity, it is straightforward to determine the definiteness of a diagonal ma-

trix. For instance, if D �

[
7 0
0 5

]
, then

qD(x) � 7x2
1 + 5x2

2 .

This shows that qD(x) > 0 when either x1 or x2 is not zero so we conclude that D is positive
definite. In the same way, we see that D is positive semidefinite if all the diagonal entries
are nonnegative.

Understanding this behavior for diagonal matrices enables us to understand more general
symmetric matrices. As we saw previously, the quadratic form for a symmetric matrix
A � QDQT agrees with the quadratic form for the diagonal matrix D after a change of
coordinates. In particular,

qA(x) � qD(y)
where y � QTx. Now the diagonal entries of D are the eigenvalues of A from which we
conclude that qA(x) > 0 if all the eigenvalues of A are positive. Likewise, qA(x) ≥ 0 if all the
eigenvalues are nonnegative.

Proposition 7.2.12 A symmetric matrix is positive definite if all its eigenvalues are positive. It is
positive semidefinite if all its eigenvalues are nonnegative.

Likewise, a symmetric matrix is indefinite if some eigenvalues are positive and some are negative.

We will now apply what we’ve learned about quadratic forms to study the nature of critical
points in multivariable calculus. The rest of this section assumes that the reader is familiar
with ideas from multivariable calculus and can be skipped by others.

First, suppose that f (x , y) is a differentiable function. We will use fx and fy to denote the
partial derivatives of f with respect to x and y. Similarly, fxx , fx y , fyx and fy y denote the
second partial derivatives. You may recall that the mixed partials, fx y and fyx are equal
under a mild assumption on the function f . A typical question in calculus is to determine
where this function has its maximum and minimum values.

Any local maximum or minimum of f appears at a critical point (x0 , y0) where

fx(x0 , y0) � 0, fy(x0 , y0) � 0.

Near a critical point, the quadratic approximation of f tells us that

f (x , y) ≈ f (x0 , y0) +
1
2 fxx(x0 , y0)(x − x0)2

+ fx y(x0 , y0)(x − x0)(y − y0) +
1
2 fy y(x0 , y0)(y − y0)2.

Activity 7.2.5. Let’s explore how our understanding of quadratic forms helps us de-
termine the behavior of a function f near a critical point.

a. Consider the function f (x , y) � 2x3 − 6x y + 3y2. Find the partial derivatives fx
and fy and use these expressions to determine the critical points of f .

b. Evaluate the second partial derivatives fxx , fx y , and fy y .
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c. Let’s first consider the critical point (1, 1). Use the quadratic approximation as
written above to find an expression approximating f near the critical point.

d. Using the vector w �

[
x − 1
y − 1

]
, rewrite your approximation as

f (x , y) ≈ f (1, 1) + qA(w)

for some matrix A. What is the matrix A in this case?

e. Find the eigenvalues of A. What can you conclude about the definiteness of A?

f. Recall that (x0 , y0) is a local minimum for f if f (x , y) > f (x0 , y0) for nearby
points (x , y). Explain why our understanding of the eigenvalues of A shows
that (1, 1) is a local minimum for f .

x, y = var( ' x ' , ' y ' )
plot3d (2*x^3 - 6*x*y + 3*y^2, (x, 0.75 ,1.25), (y ,0.75 ,1.25))

Near a critical point (x0 , y0) of a function f (x , y), we can write

f (x , y) ≈ f (x0 , y0) + qA(w)

where w �

[
x − x0
y − y0

]
and A �

1
2

[
fxx(x0 , y0) fx y(x0 , y0)
fyx(x0 , y0) fy y(x0 , y0)

]
. If A is positive definite, then

qA(w) > 0, which tells us that

f (x , y) ≈ f (x0 , y0) + qA(w) > f (x0 , y0)

and that the critical point (x0 , y0) is therefore a local minimum.

The matrix
H �

[
fxx(x0 , y0) fx y(x0 , y0)
fyx(x0 , y0) fy y(x0 , y0)

]
is called the Hessian of f , and we see now that the eigenvalues of this symmetric matrix
determine the nature of the critical point (x0 , y0). In particular, if the eigenvalues are both
positive, then qH is positive definite, and the critical point is a local minimum.

This observation leads to the Second Derivative Test for multivariable functions.
Proposition 7.2.13 Second Derivative Test. The nature of a critical point of a multivariable
function is determined by the Hessian H of the function at the critical point. If

• H has all positive eigenvalues, the critical point is a local minimum.

• H has all negative eigenvalues, the critical point is a local maximum.

• H has both positive and negative eigenvalues, the critical point is neither a local maximum nor
minimum.

Most multivariable calculus texts assume that the reader is not familiar with linear algebra
and so write the second derivative test for functions of two variables in terms of D � det(H).
If
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• D > 0 and fxx(x0 , y0)) > 0, then (x0 , y0) is a local minimum.

• D > 0 and fxx(x0 , y0)) < 0, then (x0 , y0) is a local maximum.

• D < 0, then (x0 , y0) is neither a local maximum nor minimum.

The conditions in this version of the second derivative test are simply algebraic criteria that
tell us about the definiteness of the Hessian matrix H.

7.2.3 Summary

This section explored quadratic forms, functions that are defined by symmetric matrices.

• If A is a symmetricmatrix, then the quadratic formdefined by A is the function qA(x) �
x · (Ax). Quadratic forms appear when studying the variance of a dataset. If C is
the covariance matrix, then the variance in the direction defined by a unit vector u is
qC(u) � u · (Cu) � Vu.
Similarly, quadratic forms appear in multivariable calculus when analyzing the behav-
ior of a function of several variables near a critical point.

• If λ1 is the largest eigenvalue of a symmetric matrix A and λm the smallest, then the
maximum value of qA(u) among unit vectors u, is λ1, and this maximum value occurs
in the direction of u1, a unit eigenvector associated to λ1.
Similarly, the minimum value of qA(u) is λm , which appears in the direction of um , an
eigenvector associated to λm .

• A symmetric matrix is positive definite if its eigenvalues are all positive, positive semi-
definite if its eigenvalues are all nonnegative, and indefinite if it has both positive and
negative eigenvalues.

• If the Hessian H of a multivariable function f is positive definite at a critical point,
then the critical point is a local minimum. Likewise, if the Hessian is negative definite,
the critical point is a local maximum.

7.2.4 Exercises

1. Suppose that A �

[
4 2
2 7

]
.

a. Find an orthogonal diagonalization of A.

b. Evaluate the quadratic form qA

( [
1
1

] )
.

c. Find the unit vector u for which qA(u) is as large as possible. What is the value of
qA(u) in this direction?

d. Find the unit vector u for which qA(u) is as small as possible. What is the value
of qA(u) in this direction?
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2. Consider the quadratic form

q
( [

x1
x2

] )
� 3x2

1 − 4x1x2 + 6x2
2 .

a. Find a matrix A such that q(x) � xTAx.

b. Find the maximum and minimum values of q(u) among all unit vectors u and
describe the directions in which they occur.

3. Suppose that A is a demeaned data matrix:

A �

[
1 −2 0 1
1 −1 −1 1

]
.

a. Find the covariance matrix C.

b. What is the variance of the data projected onto the line defined by u �

[
1/
√

2
1/
√

2

]
.

c. What is the total variance?

d. In which direction is the variance greatest and what is the variance in this direc-
tion?

4. Consider the matrix A �


4 −3 −3
−3 4 −3
−3 −3 4

 .
a. Find Q and D such that A � QDQT .

b. Find the maximum and minimum values of q(u) � xTAx among all unit vectors
u.

c. Describe the direction in which the minimum value occurs. What can you say
about the direction in which the maximum occurs?

5. Consider the matrix B �


−2 1
4 −2
2 −1

 .
a. Find the matrix A so that q

( [
x1
x2

] )
� |Bx|2 � qA(x).

b. Find the maximum and minimum values of q(u) among all unit vectors u and
describe the directions in which they occur.

c. What does the minimum value of q(u) tell you about the matrix B?
6. Consider the quadratic form

q ©­«


x1
x2
x3

ª®¬ � 7x2
1 + 4x2

2 + 7x2
3 − 2x1x2 − 4x1x3 − 2x2x3.
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a. What can you say about the definiteness of thematrix A that defines the quadratic
form?

b. Find a matrix Q so that the change of coordinates y � QTx transforms the qua-
dratic form into one that has no cross terms. Write the quadratic form in terms of
y.

c. What are the maximum and minimum values for q(u) among all unit vectors u?
7. Explain why the following statements are true.

a. Given any matrix B, the matrix BT B is a symmetric, positive semidefinite matrix.

b. If both A and B are symmetric, positive definite matrices, then A+B is a symmet-
ric, positive definite matrix.

c. If A is a symmetric, invertible, positive definite matrix, then A−1 is also.
8. Determine whether the following statements are true or false and explain your reason-

ing.
a. If A is an indefinite matrix, we can’t know whether it is positive definite or not.

b. If the smallest eigenvalue of A is 3, then A is positive definite.

c. If C is the covariance matrix associated with a dataset, then C is positive semidef-
inite.

d. If A is a symmetric 2× 2 matrix and the maximum and minimum values of qA(u)

occur at
[

1
0

]
and

[
0
1

]
, then A is diagonal.

e. If A is negative definite and Q is an orthogonal matrix with B � QAQT , then B is
negative definite.

9. Determine the critical points for each of the following functions. At each critical point,
determine the Hessian H, describe the definiteness of H, and determine whether the
critical point is a local maximum or minimum.

a. f (x , y) � x y +
2
x +

2
y .

b. f (x , y) � x4 + y4 − 4x y.

10. Consider the function f (x , y , z) � x4 + y4 + z4 − 4x yz.
a. Show that f has a critical point at (−1, 1,−1) and construct the Hessian H at that

point.

b. Find the eigenvalues of H. Is this a definite matrix of some kind?

c. What does this imply about whether (−1, 1,−1) is a local maximum orminimum?
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7.3 Principal Component Analysis

We are sometimes presented with a dataset having many data points that live in a high
dimensional space. For instance, we looked at a dataset describing body fat index (BFI) in
Activity 6.5.4 where each data point is six-dimensional. Developing an intuitive understand-
ing of the data is hampered by the fact that it cannot be visualized.

This section explores a technique called principal component analysis, which enables us to re-
duce the dimension of a dataset so that it may be visualized or studied in a way so that
interesting features more readily stand out. Our previous work with variance and the or-
thogonal diagonalization of symmetric matrices provides the key ideas.

Preview Activity 7.3.1. We will begin by recalling our earlier discussion of variance.
Suppose we have a dataset that leads to the covariance matrix

C �

[
7 −4
−4 13

]
.

a. Suppose that u is a unit eigenvector of C with eigenvalue λ. What is the variance
Vu in the u direction?

b. Find an orthogonal diagonalization of C.

c. What is the total variance?

d. In which direction is the variance greatest and what is the variance in this direc-
tion? If we project the data onto this line, how much variance is lost?

e. In which direction is the variance smallest and how is this direction related to
the direction of maximum variance?

Here are some ideas we’ve seen previously that will be particularly useful for us in this
section. Remember that the covariance matrix of a dataset is C �

1
N AAT where A is the

matrix of N demeaned data points.

• When u is a unit vector, the variance of the demeaned data after projecting onto the
line defined by u is given by the quadratic form Vu � u · (Cu).

• In particular, if u is a unit eigenvector of C with associated eigenvalue λ, then Vu � λ.

• Moreover, variance is additive, as we recorded in Proposition 7.1.16: if W is a subspace
having an orthonormal basis u1 , u2 , . . . , un , then the variance

VW � Vu1 + Vu2 + . . . + Vun .
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7.3.1 Principal Component Analysis

Let’s begin by looking at an example that illustrates the central theme of this technique.

Activity 7.3.2. Suppose that we work with a dataset having 100 five-dimensional data
points. The demeaned data matrix A is therefore 5 × 100 and leads to the covariance
matrix C �

1
100 AAT , which is a 5 × 5 matrix. Because C is symmetric, the Spectral

Theorem tells us it is orthogonally diagonalizable so suppose that C � QDQT where

Q �
[
u1 u2 u3 u4 u5

]
, D �


13 0 0 0 0
0 10 0 0 0
0 0 2 0 0
0 0 0 0 0
0 0 0 0 0


.

a. What is Vu2 , the variance in the u2 direction?

b. Find the variance of the data projected onto the line defined by u4. What does
this say about the data?

c. What is the total variance of the data?

d. Consider the 2-dimensional subspace spanned by u1 and u2. If we project the
data onto this subspace, what fraction of the total variance is represented by the
variance of the projected data?

e. How does this question change if we project onto the 3-dimensional subspace
spanned by u1, u2, and u3?

f. What does this tell us about the data?

This activity demonstrates how the eigenvalues of the covariance matrix can tell us when
data are clustered around, or even wholly contained within, a smaller dimensional sub-
space. In particular, the original data is 5-dimensional, but we see that it actually lies in
a 3-dimensional subspace of �5. Later in this section, we’ll see how to use this observation
to work with the data as if it were three-dimensional, an idea known as dimensional reduction.

The eigenvectors u j of the covariance matrix are called principal components, and we will
order them so that their associated eigenvalues decrease. Generally speaking, we hope that
the first few principal components retain most of the variance, as the example in the activity
demonstrates. In that example, we have the sequence of subspaces

• W1, the 1-dimensional subspace spanned by u1, which retains 13/25 � 52% of the total
variance,

• W2, the 2-dimensional subspace spanned by u1 and u2, which retains 23/25 � 92% of
the variance, and

• W3, the 3-dimensional subspace spanned by u1, u2, and u3, which retains all of the
variance.
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Notice howwe retainmore of the total variance aswe increase the dimension of the subspace
onto which the data are projected. Eventually, projecting the data onto W3 retains all the
variance, which tells us the data must lie in W3, a smaller dimensional subspace of �5.

In fact, these subspaces are the best possible. We know that the first principal component u1
is the eigenvector of C associated to the largest eigenvalue. This means that the variance is as
large as possible in the u1 direction. In other words, projecting onto any other linewill retain
a smaller amount of variance. Similarly, projecting onto any other 2-dimensional subspace
besides W2 will retain less variance than projecting onto W2. The principal components have
the wonderful ability to pick out the best possible subspaces to retain as much variance as
possible.

Of course, this is a contrived example. Typically, the presence of noise in a datasetmeans that
we do not expect all the points to be wholly contained in a smaller dimensional subspace. In
fact, the 2-dimensional subspace W2 retains 92% of the variance. Depending on the situation,
we may want to write off the remaining 8% of the variance as noise in exchange for the
convenience of working with a smaller dimensional subspace. As we’ll see later, we will
seek a balance using a number of principal components large enough to retain most of the
variance but small enough to be easy to work with.

Activity 7.3.3. Wewill work here with a dataset having 100 3-dimensional demeaned
data points. Evaluating the following cell will plot those data points and define the
demeaned data matrix A whose shape is 3 × 100.

url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/pca_demo.py '
sage.repl.load.load(url , globals ())

Notice that the data appears to cluster around a plane though it does not seem to be
wholly contained within that plane.

a. Use the matrix A to construct the covariance matrix C. Then determine the vari-

ance in the direction of u �


1/3
2/3
2/3

?
b. Find the eigenvalues of C and determine the total variance.

Notice that Sage does not necessarily sort the eigenvalues in decreasing order.

c. Use the right_eigenmatrix() command to find the eigenvectors of C. Remem-
bering that the Sage command B.column(1) retrieves the vector represented by
the second column of B, define vectors u1, u2, and u3 representing the three
principal components in order of decreasing eigenvalues. How can you check
if these vectors are an orthonormal basis for �3?
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d. What fraction of the total variance is retained by projecting the data onto W1,
the subspace spanned by u1? What fraction of the total variance is retained by
projecting onto W2, the subspace spanned by u1 and u2? What fraction of the
total variance do we lose by projecting onto W2?

e. If we project a data point x onto W2, the Projection Formula tells us we obtain

x̂ � (u1 · x)u1 + (u2 · x)u2.

Rather than viewing the projected data in�3, we will record the coordinates of
x̂ in the basis defined by u1 and u2; that is, we will record the coordinates[

u1 · x
u2 · x

]
.

Construct the matrix Q so that QTx �

[
u1 · x
u2 · x

]
.

f. Since each column of A represents a data point, the matrix QTA represents the
coordinates of the projected data points. Evaluating the following cell will plot
those projected data points.

pca_plot(Q.T*A)

Notice how this plot enables us to view the data as if it were two-dimensional.
Why is this plot wider than it is tall?

This example is a more realistic illustration of principal component analysis. The plot of
the 3-dimensional data appears to show that the data lies close to a plane, and the principal
components will identify this plane. Starting with the 3 × 100 matrix of demeaned data A,
we construct the covariance matrix C �

1
100 AAT and study its eigenvalues. Notice that the

first two principal components account for more than 98% of the variance, which means we
can expect the points to lie close to W2, the two-dimensional subspace spanned by u1 and
u2.

Since W2 is a subspace of �3, projecting the data points onto W2 gives a list of 100 points
in �3. In order to visualize them more easily, we instead consider the coordinates of the
projections in the basis defined by u1 and u2. For instance, we know that the projection of a
data point x is

x̂ � (u1 · x)u1 + (u2 · x)u2 ,

which is a three-dimensional vector. Instead, we can record the coordinates
[

u1 · x
u2 · x

]
and

plot them in the two-dimensional coordinate plane, as illustrated in Figure 7.3.1.
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u1

u2

x

x̂

u1

u2

x̂ =

[

u1 · x

u2 · x

]

Figure 7.3.1 The projection x̂ of a data point x onto W2 is a three-dimensional vector, which
may be represented by the two coordinates describing this vector as a linear combination of
u1 and u2.

If we form the matrix Q �
[
u1 u2

]
, then we have

QTx �

[
u1 · x
u2 · x

]
.

Thismeans that the columns of QTA represent the coordinates of the projected points, which
may now be plotted in the plane.

In this plot, the first coordinate, represented by the horizontal coordinate, represents the
projection of a data point onto the line defined by u1 while the second coordinate represents
the projection onto the line defined by u2. Since u1 is the first principal component, the
variance in the u1 direction is greater than the variance in the u2 direction. For this reason,
the plot will be more spread out in the horizontal direction than in the vertical.

7.3.2 Using Principal Component Analysis

Now that we’ve explored the ideas behind principal component analysis, we will look at a
few examples that illustrate its use.

Activity 7.3.4. The next cell will load a dataset describing the average consumption
of various food groups for citizens in each of the four nations of the United Kingdom.
The units for each entry are grams per person per week.

import pandas as pd
url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/data/uk-diet.csv '
df = pd.read_csv(url , index_col =0)
data_mean = vector(df.T.mean())
A = matrix ([ vector(row) for row in (df.T-df.T.mean()).values ]).T
df
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Wewill view this as a dataset consisting of four points in�17. As such, it is impossible
to visualize and studying the numbers themselves doesn’t lead to much insight.

In addition to loading the data, evaluating the cell above created a vector data_mean,
which is the mean of the four data points, and A, the 17 × 4 matrix of demeaned data.

a. What is the average consumption of Beverages across the four nations?

b. Find the covariance matrix C and its eigenvalues. Because there are four points
in �17 whose mean is zero, there are only three nonzero eigenvalues.

c. For what percentage of the total variance does the first principal component
account?

d. Find the first principal component u1 and project the four demeaned data points
onto the line defined by u1. Plot those points on Figure 7.3.2

-500 -400 -300 -200 -100 100 200 300 400 5000

Figure 7.3.2 A plot of the demeaned data projected onto the first principal com-
ponent.

e. For what percentage of the total variance do the first two principal components
account?

f. Find the coordinates of the demeaned data points projected onto W2, the two-
dimensional subspace of �17 spanned by the first two principal components.

Plot these coordinates in Figure 7.3.3.
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Figure 7.3.3 The coordinates of the demeaned data points projected onto the
first two principal components.

g. What information do these plots reveal that is not clear from consideration of
the original data points?

h. Study the first principal component u1 and find the first component of u1, which
corresponds to the dietary categoryAlcoholic Drinks. (To do this, youmaywish
to use N(u1, digits=2) for a result that’s easier to read.) If a data point lies on
the far right side of the plot in Figure 7.3.3, what does it mean about that nation’s
consumption of Alcoholic Drinks?

This activity demonstrates how principal component analysis enables us to extract informa-
tion from a dataset that may not be easily obtained otherwise. As in our previous example,
we see that the data points lie quite close to a two-dimensional subspace of �17. In fact, W2,
the subspace spanned by the first two principal components, accounts for more than 96%
of the variance. More importantly, when we project the data onto W2, it becomes apparent
that Northern Ireland is fundamentally different from the other three nations.

With some additional thought, we can determine more specific ways in which Northern Ire-
land is different. On the 2-dimensional plot, Northern Ireland lies far to the right compared
to the other three nations. Since the data has been demeaned, the origin (0, 0) in this plot
corresponds to the average of the four nations. The coordinates of the point representing
Northern Ireland are about (477, 59), meaning that the projected data point differs from the
mean by about 477u1 + 59u2.

Let’s just focus on the contribution from u1. We see that the ninth component of u1, the one
that describes Fresh Fruit, is about −0.63. This means that the ninth component of 477u1
differs from the mean by about 477(−0.63) � −300 grams per person per week. So roughly
speaking, people in Northern Ireland are eating about 300 fewer grams of Fresh Fruit than
the average across the four nations. This is borne out by looking at the original data, which
show that the consumption of Fresh Fruit in Northern Ireland is significantly less than the
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other nations. Examing the other components of u1 shows other ways in which Northern
Ireland differs from the other three nations.

Activity 7.3.5. In this activity, we’ll look at a well-known dataset¹ that describes 150
irises representing three species of iris: Iris setosa, Iris versicolor, and Iris virginica.
For each flower, the length andwidth of its sepal and the length andwidth of its petal,
all in centimeters, are recorded.

Figure 7.3.4 One of the three species, iris versicolor, represented in the dataset show-
ing three shorter petals and three longer sepals. (Source: Wikipedia², License: GNU
Free Documetation License³)

Evaluating the following cell will load the dataset, which consists of 150 points in�4.
In addition, we have a vector data_mean, a four-dimensional vector holding the mean
of the data points, and A, the 4 × 150 demeaned data matrix.

url= ' https :// raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/pca_iris.py '
sage.repl.load.load(url , globals ())
df.T

Since the data is four-dimensional, we are not able to visualize it. Of course, we could
forget about two of the measurements and plot the 150 points represented by their,
say, sepal length and sepal width.

sepal_plot ()

a. What is the mean sepal width?

b. Find the covariance matrix C and its eigenvalues.

https://archive.ics.uci.edu/ml/datasets/Iris
https://commons.wikimedia.org/wiki/File:Iris_versicolor_3.jpg
https://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License,_version_1.2
https://commons.wikimedia.org/wiki/Commons:GNU_Free_Documentation_License,_version_1.2


454 CHAPTER 7. SINGULAR VALUE DECOMPOSITIONS

c. Find the fraction of variance for which the first two principal components ac-
count.

d. Construct the first two principal components u1 and u2 along with the matrix
Q whose columns are u1 and u2.

e. As we have seen, the columns of the matrix QTA hold the coordinates of the
demeaned data points after projecting onto W2, the subspace spanned by the
first two principal components. Evaluating the following cell shows a plot of
these coordinates.

pca_plot(Q.T*A)

Suppose we have a flower whose coordinates in this plane are (−2.5,−0.75). To
what species does this iris most likely belong? Find an estimate of the sepal
length, sepal width, petal length, and petal width for this flower.

f. Suppose you have an iris, but you only know that its sepal length is 5.65 cm and
its sepal width is 2.75 cm. Knowing only these two measurements, determine
the coordinates (c1 , c2) in the plane where this iris lies. To what species does
this iris most likely belong? Now estimate the petal length and petal width of
this iris.

g. Suppose you find another iris whose sepal width is 3.2 cm and whose petal
width is 2.2 cm. Find the coordinates (c1 , c2) of this iris and determine the
species to which it most likely belongs. Also, estimate the sepal length and the
petal length.

7.3.3 Summary

This section has explored principal component analysis as a technique to reduce the di-
mension of a dataset. From the demeaned data matrix A, we form the covariance matrix
C �

1
N AAT , where N is the number of data points.

• The eigenvectors u1 , u2 , . . . um , of C are called the principal components. We arrange
them so that their corresponding eigenvalues are in decreasing order.

• If Wn is the subspace spanned by the first n principal components, then the variance
of the demeaned data projected onto Wn is the sum of the first n eigenvalues of C. No
other n-dimensional subspace retains more variance when the data is projected onto
it.

¹archive.ics.uci.edu
²gvsu.edu/s/21D
³gvsu.edu/s/21E
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• If Q is thematrixwhose columns are the first n principal components, then the columns
of QTA hold the coordinates, expressed in the basis u1 , . . . , un , of the data once pro-
jected onto Wn .

• Our goal is to use a number of principal components that is large enough to retain
most of the variance in the dataset but small enough to be manageable.

7.3.4 Exercises

1. Suppose that

Q �

[
−1/

√
2 1/

√
2

1/
√

2 1/
√

2

]
, D1 �

[
75 0
0 74

]
, D2 �

[
100 0
0 1

]
and that we have two datasets, one whose covariance matrix is C1 � QD1QT and one
whose covariance matrix is C2 � QD2QT . For each dataset, find

a. the total variance.

b. the fraction of variance represented by the first principal component.

c. a verbal description of how the demeaned data points appear when plotted in the
plane.

2. Suppose that a dataset has mean


13
5
7

 and that its associated covariance matrix is

C �


275 −206 251
−206 320 −206
251 −206 275

 .

a. What fraction of the variance is represented by the first two principal compo-
nents?

b. If


30
−3
26

 is one of the data points, find the coordinates when the demeaned point

is projected into the plane defined by the first two principal components.

c. If a projected data point has coordinates
[

12
−25

]
, find an estimate for the original

data point.
3. Evaluating the following cell loads a 2 × 100 demeaned data matrix A.

url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/pca_ex.py '
sage.repl.load.load(url , globals ())
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a. Find the principal components u1 and u2 and the variance in the direction of each
principal component.

b. What is the total variance?

c. What can you conclude about this dataset?
4. Determine whether the following statements are true or false and explain your think-

ing.
a. If the eigenvalues of the covariance matrix are λ1, λ2, and λ3, then λ3 is the vari-

ance of the demeaned data points when projected on the third principal compo-
nent u3.

b. Principal component analysis always allows us to construct a smaller dimensional
representation of a dataset without losing any information.

c. If the eigenvalues of the covariance matrix are 56, 32, and 0, then the demeaned
data points all lie on a line in �3.

5. In Activity 7.3.5, we looked at a dataset consisting of four measurements of 150 irises.
These measurements are sepal length, sepal width, petal length, and petal width.

a. Find the first principal component u1 and describe themeaning of its four compo-
nents. Which component is most significant? What can you say about the relative
importance of the four measurements?

b. When the dataset is plotted in the plane defined by u1 and u2, the specimens from
the species iris-setosa lie on the left side of the plot. What does this tell us about
how iris-setosa differs from the other two species in the four measurements?

c. In general, which species is closest to the “average iris”?
6. This problem explores a dataset describing 333 penguins. There are three species,

Adelie, Chinstrap, and Gentoo, as illustrated on the left of Figure 7.3.5, as well as both
male and female penguins in the dataset.

Figure 7.3.5 Artwork by @allison_horst⁴

Evaluating the next cell will load and display the data. The meaning of the culmen
length and width is contained in the illustration on the right of Figure 7.3.5.

https://github.com/allisonhorst/palmerpenguins/blob/master/README.md
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url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/pca_penguins.py '
sage.repl.load.load(url , globals ())
df.T

This dataset is a bit different from others that we’ve looked at because the scale of the
measurements is significantly different. For instance, the measurements for the body
mass are roughly 100 times as large as those for the culmen length. For this reason,
we will standardize the data by first demeaning it, as usual, and then rescaling each
measurement by the reciprocal of its standard deviation. The result is stored in the
4 × 333 matrix A.

a. Find the covariance matrix and its eigenvalues.

b. What fraction of the total variance is explained by the first two principal compo-
nents?

c. Construct the 2 × 333 matrix B whose columns are the coordinates of the de-
meaned data points projected onto the first two principal components. The fol-
lowing cell will create the plot.

pca_plot(B)

d. Examine the components of the first two principal component vectors. How does
the body mass of Gentoo penguins compare to that of the other two species?

e. What seems to be generally true about the culmen measurements for a Chinstrap
penguin compared to a Adelie?

f. You can plot just the males or females using the following cell.

pca_plot(B, sex= ' female ' )

What seems to be generally true about the body mass measurements for a male
Gentoo compared to a female Gentoo?

⁴gvsu.edu/s/21G
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7.4 Singular Value Decompositions

The Spectral Theorem has motivated the past few sections. In particular, we applied the
fact that symmetric matrices can be orthogonally diagonalized to simplify quadratic forms,
which enabled us to use principal component analysis to reduce the dimension of a dataset.

But what can we do with matrices that are not symmetric or even square? For instance, the
following matrices are not diagonalizable, much less orthogonally so:[

2 1
0 2

]
,

[
1 1 0
−1 0 1

]
.

In this section, we will develop a description of matrices called the singular value decompo-
sition that is, in many ways, analogous to an orthogonal diagonalization. For example, we
have seen that any symmetricmatrix can bewritten in the form QDQT where Q is an orthog-
onal matrix and D is diagonal. A singular value decomposition will have the form UΣVT

where U and V are orthogonal andΣ is diagonal. Most notably, we will see that everymatrix
has a singular value decomposition whether it’s symmetric or not.

Preview Activity 7.4.1. Let’s review orthogonal diagonalizations and quadratic forms
as our understanding of singular value decompositions will rely on them.

a. Suppose that A is any matrix. Explain why the matrix G � ATA is symmetric.

b. Suppose that A �

[
1 2
−2 −1

]
. Find the matrix G � ATA and write out the qua-

dratic form qG

( [
x1
x2

] )
as a function of x1 and x2.

c. What is the maximum value of qG(x) and in which direction does it occur?

d. What is the minimum value of qG(x) and in which direction does it occur?

e. What is the geometric relationship between the directions in which the maxi-
mum and minimum values occur?

7.4.1 Finding singular value decompositions

We will begin by explaining what a singular value decomposition is and how we can find
one for a given matrix A.

Recall how the orthogonal diagonalization of a symmetric matrix is formed: if A is sym-
metric, we write A � QDQT where the diagonal entries of D are the eigenvalues of A and
the columns of Q are the associated eigenvectors. Moreover, the eigenvalues are related to
the maximum and minimum values of the associated quadratic form qA(u) among all unit
vectors.
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A general matrix, particularly a matrix that is not square, may not have eigenvalues and
eigenvectors, but we can discover analogous features, called singular values and singular vec-
tors, by studying a function somewhat similar to a quadratic form. More specifically, any
matrix A defines a function

lA(x) � |Ax|,

which measures the length of Ax. For example, the diagonal matrix D �

[
3 0
0 −2

]
gives the

function lD(x) �
√

9x2
1 + 4x2

2. The presence of the square root means that this function is not
a quadratic form. We can, however, define the singular values and vectors by looking for
the maximum and minimum of this function lA(u) among all unit vectors u.

While lA(x) is not itself a quadratic form, it becomes one if we square it:

(lA(x))2 � |Ax|2 � (Ax) · (Ax) � x · (ATAx) � qAT A(x).

We call G � ATA, the Gram matrix associated to A and note that

lA(x) �
√

qG(x).

This is important in the next activity, which introduces singular values and singular vectors.

Activity 7.4.2. The following interactive figure will help us explore singular values
and vectors geometrically before we begin a more algebraic approach.

There is an interactive diagram, available at gvsu.edu/s/0YE, that accompanies this ac-
tivity.

Figure 7.4.1 Singular values, right singular vectors and left singular vectors

Select the matrix A �

[
1 2
−2 −1

]
. As we vary the vector x, we see the vector Ax on the

right in gray while the height of the blue bar to the right tells us lA(x) � |Ax|.

http://gvsu.edu/s/0YE
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a. The first singular value σ1 is the maximum value of lA(x) and an associated right
singular vector v1 is a unit vector describing a direction in which this maximum
occurs.
Use the diagram to find the first singular value σ1 and an associated right sin-
gular vector v1.

b. The second singular value σ2 is the minimum value of lA(x) and an associated
right singular vector v2 is a unit vector describing a direction in which this min-
imum occurs.
Use the diagram to find the second singular value σ2 and an associated right
singular vector v2.

c. Here’s how we can find the right singular values and vectors without using the
diagram. Remember that lA(x) �

√
qG(x) where G � ATA is the Gram matrix

associated to A. Since G is symmetric, it is orthogonally diagonalizable. Find G
and an orthogonal diagonalization of it.

What is the maximum value of the quadratic form qG(x) among all unit vectors
and in which direction does it occur? What is the minimum value of qG(x) and
in which direction does it occur?

d. Because lA(x) �
√

qG(x), the first singular value σ1 will be the square root of the
maximum value of qG(x) and σ2 the square root of the minimum. Verify that
the singular values that you found from the diagram are the square roots of the
maximum and minimum values of qG(x).

e. Verify that the right singular vectors v1 and v2 that you found from the diagram
are the directions in which the maximum and minimum values occur.

f. Finally, we introduce the left singular vectors u1 and u2 by requiring that Av1 �

σ1u1 and Av2 � σ2u2. Find the two left singular vectors.

g. Form the matrices

U �
[
u1 u2

]
, Σ �

[
σ1 0
0 σ2

]
, V �

[
v1 v2

]
and explain why AV � UΣ.

h. Finally, explain why A � UΣVT and verify that this relationship holds for this
specific example.

As this activity shows, the singular values of A are the maximum and minimum values of
lA(x) � |Ax| among all unit vectors and the right singular vectors v1 and v2 are the directions
in which they occur. The key to finding the singular values and vectors is to utilize the
Gram matrix G and its associated quadratic form qG(x). We will illustrate with some more
examples.
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Example 7.4.2 We will find a singular value decomposition of the matrix A �

[
1 2
−1 2

]
. No-

tice that this matrix is not symmetric so it cannot be orthogonally diagonalized.

We begin by constructing the Gram matrix G � ATA �

[
2 0
0 8

]
. Since G is symmetric, it can

be orthogonally diagonalized with

D �

[
8 0
0 2

]
, Q �

[
0 1
1 0

]
.

We now know that the maximum value of the quadratic form qG(x) is 8, which occurs in

the direction
[

0
1

]
. Since lA(x) �

√
qG(x), this tells us that the maximum value of lA(x), the

first singular value, is σ1 �
√

8 and that this occurs in the direction of the first right singular

vector v1 �

[
0
1

]
.

In the same way, we also know that the second singular value σ2 �
√

2 with associated right

singular vector v2 �

[
1
0

]
.

The first left singular vector u1 is defined by Av1 �

[
2
2

]
� σ1u1. Because σ1 �

√
8, we have

u1 �

[
1/
√

2
1/
√

2

]
. Notice that u1 is a unit vector because σ1 � |Av1 |.

In the same way, the second left singular vector is defined by Av2 �

[
1

−1

]
� σ2u2, which

gives us u2 �

[
1/
√

2
−1/

√
2

]
.

We then construct

U �
[
u1 u2

]
�

[
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
Σ �

[
σ1 0
0 σ2

]
�

[√
8 0

0
√

2

]
V �

[
v1 v2

]
�

[
0 1
1 0

]
We now have AV � UΣ because

AV �
[
Av1 Av2

]
�
[
σ1u1 σ2u2

]
� ΣU.

Because the right singular vectors, the columns of V , are eigenvectors of the symmetric ma-
trix G, they form an orthonormal basis, which means that V is orthogonal. Therefore, we
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have (AV)VT � A � UΣVT . This gives the singular value decomposition

A �

[
1 2
−1 2

]
�

[
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

] [√
8 0

0
√

2

] [
0 1
1 0

]T

� UΣVT .

To summarize, we find a singular value decomposition of a matrix A in the following way:

• Construct the Grammatrix G � ATA and find an orthogonal diagonalization to obtain
eigenvalues λi and an orthonormal basis of eigenvectors.

• The singular values of A are the squares roots of eigenvalues λi of G; that is, σi �
√
λi .

By convention, the singular values are listed in decreasing order: σ1 ≥ σ2 ≥ . . .. The
right singular vectors vi are the associated eigenvectors of G.

• The left singular vectors ui are found by Avi � σiui . Because σi � |Avi |, we know that
ui will be a unit vector.
In fact, the left singular vectors will also form an orthonormal basis. To see this, sup-
pose that the associated singular values are nonzero. We then have:

σiσ j(ui · u j) � (σiui) · (σ ju j) � (Avi) · (Av j)
� vi · (ATAv j)
� vi · (Gv j) � λ jvi · v j � 0

since the right singular vectors are orthogonal.

Example 7.4.3 Let’s find a singular value decomposition for the symmetric matrix A �[
1 2
2 1

]
. The associated Gram matrix is

G � ATA �

[
5 4
4 5

]
,

which has an orthogonal diagonalization with

D �

[
9 0
0 1

]
, Q �

[
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
.

This gives singular values and vectors

σ1 � 3, v1 �

[
1/
√

2
1/
√

2

]
, u1 �

[
1/
√

2
1/
√

2

]
σ2 � 1, v2 �

[
1/
√

2
−1/

√
2

]
, u2 �

[
−1/

√
2

1/
√

2

]
and the singular value decomposition A � UΣVT where

U �

[
1/
√

2 −1/
√

2
1/
√

2 1/
√

2

]
, Σ �

[
3 0
0 1

]
, V �

[
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
.
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This example is special because A is symmetric. With a little thought, it’s possible to relate
this singular value decomposition to an orthogonal diagonalization of A using the fact that
G � ATA � A2.

Activity 7.4.3. In this activity, we will construct the singular value decomposition of

A �

[
1 0 −1
1 1 1

]
. Notice that this matrix is not square so there are no eigenvalues and

eigenvectors associated to it.
a. Construct the Grammatrix G � ATA and find an orthogonal diagonalization of

it.

b. Identify the singular values of A and the right singular vectors v1, v2, and v3.
What is the dimension of these vectors? Howmany nonzero singular values are
there?

c. Find the left singular vectors u1 and u2 using the fact that Avi � σiui . What
is the dimension of these vectors? What happens if you try to find a third left
singular vector u3 in this way?

d. As before, form the orthogonalmatrices U and V from the left and right singular
vectors. What are the shapes of U and V? How do these shapes relate to the
number of rows and columns of A?

e. Now form Σ so that it has the same shape as A:

Σ �

[
σ1 0 0
0 σ2 0

]
and verify that A � UΣVT .

f. How can you use this singular value decomposition of A � UΣVT to easily find

a singular value decomposition of AT �


1 1
0 1
−1 1

?
Example 7.4.4 Wewill find a singular value decomposition of thematrix A �

[
2 −2 1
−4 −8 −8

]
.

Finding an orthogonal diagonalization of G � ATA gives

D �


144 0 0
0 9 0
0 0 0

 , Q �


1/3 2/3 2/3
2/3 −2/3 1/3
2/3 1/3 −2/3

 ,
which gives singular values σ1 �

√
144 � 12, σ2 �

√
9 � 3, and σ3 � 0. The right singular

vectors vi appear as the columns of Q so that V � Q.
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We now find

Av1 �

[
0

−12

]
� 12u1 , u1 �

[
0

−1

]
Av2 �

[
3
0

]
� 3u1 , u1 �

[
1
0

]
Av3 �

[
0
0

]
Notice that it’s not possible to find a third left singular vector since Av3 � 0. We therefore
form the matrices

U �

[
0 1
−1 0

]
, Σ �

[
12 0 0
0 3 0

]
, V �


1/3 2/3 2/3
2/3 −2/3 1/3
2/3 1/3 −2/3

 ,
which gives the singular value decomposition A � UΣVT .

Notice that U is a 2×2 orthogonal matrix because A has two rows, and V is a 3×3 orthogonal
matrix because A has three columns.

As we’ll see in the next section, some additional work may be needed to construct the left
singular vectors u j if more of the singular values are zero, but we won’t worry about that
now. For the time being, let’s record our work in the following theorem.

Theorem 7.4.5 The singular value decomposition. An m × n matrix A may be written as
A � UΣVT where U is an orthogonal m × m matrix, V is an orthogonal n × n matrix, and Σ is an
m × n matrix whose entries are zero except for the singular values of A which appear in decreasing
order on the diagonal.

Notice that a singular value decomposition of A gives us a singular value decomposition of
AT . More specifically, if A � UΣVT , then

AT
� (UΣVT)T � VΣTUT .

Proposition 7.4.6 If A � UΣVT , then AT � VΣTUT . In other words, A and AT share the same
singular values, and the left singular vectors of A are the right singular vectors of AT and vice-versa.

As we said earlier, a singular value decomposition should be thought of a generalization of
an orthogonal diagonalization. For instance, the Spectral Theorem tells us that a symmetric
matrix can bewritten as QDQT . Manymatrices, however, are not symmetric and so they are
not orthogonally diagonalizable. However, everymatrix has a singular value decomposition
UΣVT . The price of this generalization is that we usually have two sets of singular vectors
that form the orthogonal matrices U and V whereas a symmetric matrix has a single set of
eignevectors that form the orthogonal matrix Q.

7.4.2 The structure of singular value decompositions

Now that we have an understanding of what a singular value decomposition is and how
to construct it, let’s explore the ways in which a singular value decomposition reveals the
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underlying structure of the matrix. As we’ll see, the matrices U and V in a singular value
decomposition provide convenient bases for some important subspaces, such as the column
and null spaces of the matrix. This observation will provide the key to some of our uses of
these decompositions in the next section.

Activity 7.4.4. Let’s suppose that a matrix A has a singular value decomposition A �

UΣVT where

U �
[
u1 u2 u3 u4

]
, Σ �


20 0 0
0 5 0
0 0 0
0 0 0

 , V �
[
v1 v2 v3

]
.

a. What is the shape of A; that is, how many rows and columns does A have?

b. Suppose we write a three-dimensional vector x as a linear combination of right
singular vectors:

x � c1v1 + c2v2 + c3v3.

We would like to find an expression for Ax.

To begin, VTx �


v1 · x
v2 · x
v3 · x

 �


c1
c2
c3

 .
Now ΣVTx �


20 0 0
0 5 0
0 0 0
0 0 0




c1
c2
c3

 �


20c1
5c2
0
0

 .
And finally, Ax � UΣVTx �

[
u1 u2 u3 u4

] 
20c1
5c2
0
0

 � 20c1u1 + 5c2u2.

To summarize, we have Ax � 20c1u1 + 5c2u2.
What condition on c1, c2, and c3 must be satisfied if x is a solution to the equation
Ax � 40u1 + 20u2? Is there a unique solution or infinitely many?

c. Remembering that u1 and u2 are linearly independent, what condition on c1, c2,
and c3 must be satisfied if Ax � 0?

d. How do the right singular vectors vi provide a basis for Nul(A), the subspace of
solutions to the equation Ax � 0?

e. Remember that b is in Col(A) if the equation Ax � b is consistent, which means
that

Ax � 20c1u1 + 5c2u2 � b

for some coefficients c1 and c2. How do the left singular vectors ui provide an
orthonormal basis for Col(A)?
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f. Remember that rank(A) is the dimension of the column space. What is rank(A)
and how do the number of nonzero singular values determine rank(A)?

This activity shows how a singular value decomposition of a matrix encodes important in-
formation about its null and column spaces. More specifically, the left and right singular
vectors provide orthonormal bases for Nul(A) and Col(A). This is one of the reasons that
singular value decompositions are so useful.

Example 7.4.7 Suppose we have a singular value decomposition A � UΣVT where Σ �
σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0
0 0 0 0 0

 . This means that A has four rows and five columns just as Σ does.

As in the activity, if x � c1v1 + c2v2 + . . . + c5v5, we have

Ax � σ1c1u1 + σ2c2u2 + σ3c3u3.

If b is in Col(A), then b must have the form

b � σ1c1u1 + σ2c2u2 + σ3c3u3,

which says that b is a linear combination of u1, u2, and u3. These three vectors therefore
form a basis for Col(A). In fact, since they are columns in the orthogonal matrix U, they
form an orthonormal basis for Col(A).
Remembering that rank(A) � dimCol(A), we see that rank(A) � 3, which results from the
three nonzero singular values. In general, the rank r of a matrix A equals the number of
nonzero singular values, and u1 , u2 , . . . , ur form an orthonormal basis for Col(A).
Moreover, if x � c1v1 + c2v2 + . . . + c5v5 satisfies Ax � 0, then

Ax � σ1c1u1 + σ2c2u2 + σ3c3u3 � 0,

which implies that c1 � 0, c2 � 0, and c3 � 0. Therefore, x � c4v4 + c5v5 so v4 and v5 form an
orthonormal basis for Nul(A).
More generally, if A is an m×n matrix and if rank(A) � r, the last n− r right singular vectors
form an orthonormal basis for Nul(A).

Generally speaking, if the rank of an m × n matrix A is r, then there are r nonzero singular
values and Σ has the form 

σ1 . . . 0 . . . 0
0 . . . 0 . . . 0
0 . . . σr . . . 0
0 . . . 0 . . . 0
...

...
...
. . .

...
0 . . . 0 . . . 0


,
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The first r columns of U form an orthonormal basis for Col(A):

U �

u1 . . . ur︸     ︷︷     ︸
Col(A)

ur+1 . . . um


and the last n − r columns of V form an orthonormal basis for Nul(A):

V �

v1 . . . vr vr+1 . . . vn︸        ︷︷        ︸
Nul(A)


Remember that Proposition 7.4.6 says that A and its transpose AT share the same singular
values. Since the rank of a matrix equals its number of nonzero singular values, this means
that rank(A) � rank(AT), a fact that we cited back in Section 6.2.

Proposition 7.4.8 For any matrix A,

rank(A) � rank(AT).

If we have a singular value decomposition of an m × n matrix A � UΣVT , Proposition 7.4.6
also tells us that the left singular vectors of A are the right singular vectors of AT . Therefore,
U is the m × m matrix whose columns are the right singular vectors of AT . This means that
the last m − r vectors form an orthonormal basis for Nul(AT). Therefore, the columns of U
provide orthonormal bases for Col(A) and Nul(AT):

U �

u1 . . . ur︸     ︷︷     ︸
Col(A)

ur+1 . . . um︸        ︷︷        ︸
Nul(AT )

 .
This reflects the familiar fact that Nul(AT) is the orthogonal complement of Col(A).
In the same way, V is the n × n matrix whose columns are the left singular vectors of AT ,
which means that the first r vectors form an orthonormal basis for Col(AT). Because the
columns of AT are the rows of A, this subspace is sometimes called the row space of A and
denoted Row(A). While we have yet to have an occasion to use Row(A), there are times
when it is important to have an orthonormal basis for it, and a singular value decomposition
provides just that. To summarize, the columns of V provide orthonormal bases for Col(AT)
and Nul(A):

V �

v1 . . . vr︸    ︷︷    ︸
Col(AT )

vr+1 . . . vm︸        ︷︷        ︸
Nul(A)


Considered altogether, the subspaces Col(A), Nul(A), Col(AT), and Nul(AT) are called the
four fundamental subspaces associated to A. In addition to telling us the rank of a matrix, a sin-
gular value decomposition gives us orthonormal bases for all four fundamental subspaces.



468 CHAPTER 7. SINGULAR VALUE DECOMPOSITIONS

Theorem 7.4.9 Suppose A is an m × n matrix having a singular value decomposition A � UΣVT .
Then

• r � rank(A) is the number of nonzero singular values.

• The columns u1 , u2 , . . . , ur form an orthonormal basis for Col(A).

• The columns ur+1 , . . . , um form an orthonormal basis for Nul(AT).

• The columns v1 , v2 , . . . , vr form an orthonormal basis for Col(AT).

• The columns vr+1 , . . . , vn form an orthonormal basis for Nul(A).

When we previously outlined a procedure for finding a singular decomposition of an m ×
n matrix A, we found the left singular vectors u j using the expression Av j � σ ju j . This
produces left singular vectors u1 , u2 , . . . , ur , where r � rank(A). If r < m, however, we still
need to find the left singular vectors ur+1 , . . . , um . Theorem 7.4.9 tells us how to do that:
because those vectors form an orthonormal basis for Nul(AT), we can find them by solving
ATx � 0 to obtain a basis for Nul(AT) and applying the Gram-Schmidt algorithm.

We won’t worry about this issue too much, however, as we will frequently use software to
find singular value decompositions for us.

7.4.3 Reduced singular value decompositions

As we’ll see in the next section, there are times when it is helpful to express a singular value
decomposition in a slightly different form.

Activity 7.4.5. Suppose we have a singular value decomposition A � UΣVT where

U �
[
u1 u2 u3 u4

]
, Σ �


18 0 0
0 4 0
0 0 0
0 0 0

 , V �
[
v1 v2 v3

]
.

a. What is the shape of A? What is rank(A)?

b. Identify bases for Col(A) and Col(AT).

c. Explain why

UΣ �
[
u1 u2

] [18 0 0
0 4 0

]
.

d. Explain why [
18 0 0
0 4 0

]
VT

�

[
18 0
0 4

] [
v1 v2

]T .

e. If A � UΣVT , explain why A � UrΣrVT
r where the columns of Ur are an or-

thonormal basis for Col(A), Σr is a square, diagonal, invertible matrix, and the
columns of Vr form an orthonormal basis for Col(AT).
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We call this a reduced singular value decomposition.

Proposition 7.4.10 Reduced singular value decomposition. If A is an m × n matrix having
rank r, then A � UrΣrVT

r where
• Ur is an m × r matrix whose columns form an orthonormal basis for Col(A),

• Σr �


σ1 0 . . . 0
0 σ2 . . . 0
...
...
. . .

...
0 0 0 σr


is an r × r diagonal, invertible matrix, and

• Vr is an n × r matrix whose columns form an orthonormal basis for Col(AT).
Example 7.4.11 In Example 7.4.4, we found the singular value decomposition

A �

[
2 −2 1
−4 −8 −8

]
�

[
0 1
−1 0

] [
12 0 0
0 3 0

] 
1/3 2/3 2/3
2/3 −2/3 1/3
2/3 1/3 −2/3


T

.

Since there are two nonzero singular values, rank(A) � 2 so that the reduced singular value
decomposition is

A �

[
2 −2 1
−4 −8 −8

]
�

[
0 1
−1 0

] [
12 0
0 3

] 
1/3 2/3
2/3 −2/3
2/3 1/3


T

.

7.4.4 Summary

This section has explored singular value decompositions, how to find them, and how they
organize important information about a matrix.

• A singular value decomposition of a matrix A is a factorization where A � UΣVT .
The matrix Σ has the same shape as A, and its only nonzero entries are the singular
values of A, which appear in decreasing order on the diagonal. The matrices U and
V are orthogonal and contain the left and right singular vectors, respectively, as their
columns.

• To find a singular value decomposition of a matrix, we construct the Gram matrix
G � ATA, which is symmetric. The singular values of A are the square roots of the
eigenvalues of G, and the right singular vectors v j are the associated eigenvectors of
G. The left singular vectors u j are determined from the relationship Av j � σ ju j .

• A singular value decomposition reveals fundamental information about a matrix. For
instance, the number of nonzero singular values is the rank r of the matrix. The first
r left singular vectors form an orthonormal basis for Col(A) with the remaining left
singular vectors forming an orthonormal basis of Nul(AT). The first r right singular
vectors form an orthonormal basis for Col(AT)while the remaining right singular vec-
tors form an orthonormal basis of Nul(A).
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• If A is a rank r matrix, we can write a reduced singular value decomposition as A �

UrΣrVT
r where the columns of Ur form an orthonormal basis for Col(A), the columns

of Vr form an orthonormal basis for Col(AT), and Σr is an r × r diagonal, invertible
matrix.

7.4.5 Exercises

1. Consider the matrix A �

[
1 2 1
0 −1 2

]
.

a. Find the Gram matrix G � ATA and use it to find the singular values and right
singular vectors of A.

b. Find the left singular vectors.

c. Form the matrices U, Σ, and V and verify that A � UΣVT .

d. What is rank(A) and what does this say about Col(A)?

e. Determine an orthonormal basis for Nul(A).
2. Find singular value decompositions for the following matrices:

a.
[
0 0
0 −8

]
.

b.
[
2 3
0 2

]
.

c.
[
4 0 0
0 0 2

]
d.


4 0
0 0
0 2


3. Consider the matrix A �

[
2 1
1 2

]
.

a. Find a singular value decomposition of A and verify that it is also an orthogonal
diagonalization of A.

b. If A is a symmetric, positive semidefinite matrix, explain why a singular value
decomposition of A is an orthogonal diagonalization of A.
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4. Suppose that the matrix A has the singular value decomposition
−0.46 0.52 0.46 0.55
−0.82 0.00 −0.14 −0.55
−0.04 0.44 −0.85 0.28
−0.34 −0.73 −0.18 0.55



6.2 0.0 0.0
0.0 4.1 0.0
0.0 0.0 0.0
0.0 0.0 0.0



−0.74 0.62 −0.24
0.28 0.62 0.73
−0.61 −0.48 0.64

 .
a. What are the dimensions of A?

b. What is rank(A)?

c. Find orthonormal bases for Col(A), Nul(A), Col(AT), and Nul(AT).

d. Find the orthogonal projection of b �


1
0
2

−1

 onto Col(A).

5. Consider the matrix A �


1 0 −1
2 2 0
−1 1 2

 .

a. Construct the Gram matrix G and use it to find the singular values and right
singular vectors v1, v2, and v3 of A. What are the matrices Σ and V in a singular
value decomposition?

b. What is rank(A)?

c. Find asmany left singular vectors u j as you can using the relationship Av j � σ ju j .

d. Find an orthonormal basis for Nul(AT) and use it to construct the matrix U so
that A � UΣVT .

e. State an orthonormal basis for Nul(A) and an orthonormal basis for Col(A).

6. Consider the matrix B �


1 0
2 −1
1 2

 and notice that B � AT where A is the matrix in

Exercise 7.4.5.1.

a. Use your result from Exercise 7.4.5.1 to find a singular value decomposition of
B � UΣVT .

b. What is rank(B)? Determine a basis for Col(B) and Col(B)⊥.

c. Suppose that b �


−3

4
7

 . Use the bases you found in the previous part of this
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exericse to write b � b̂ + b⊥, where b̂ is in Col(B) and b⊥ is in Col(B)⊥.

d. Find the least-squares approximate solution to the equation Bx � b.

7. Suppose that A is a square m×m matrix with singular value decomposition A � UΣVT .
a. If A is invertible, find a singular value decomposition of A−1.

b. What condition on the singular values must hold for A to be invertible?

c. How are the singular values of A and the singular values of A−1 related to one
another?

d. How are the right and left singular vectors of A related to the right and left sin-
gular vectors of A−1?

8.
a. If Q is an orthogonal matrix, remember that QTQ � I. Explain why det Q � ±1.

b. If A � UΣVT is a singular value decomposition of a squarematrix A, explain why
| det A| is the product of the singular values of A.

c. What does this say about the singular values of A if A is invertible?

9. If A is a matrix and G � ATA its Gram matrix, remember that

x · (Gx) � x · (ATAx) � (Ax) · (Ax) � |Ax|2 .

a. For a general matrix A, explain why the eigenvalues of G are nonnegative.

b. Given a symmetric matrix A having an eigenvalue λ, explain why λ2 is an eigen-
value of G.

c. If A is symmetric, explain why the singular values of A equal the absolute value
of its eigenvalues: σ j � |λ j |.

10. Determine whether the following statements are true or false and explain your reason-
ing.

a. If A � UΣVT is a singular value decomposition of A, then G � V(ΣTΣ)VT is an
orthogonal diagonalization of its Gram matrix.

b. If A � UΣVT is a singular value decomposition of a rank 2 matrix A, then v1 and
v2 form an orthonormal basis for the column space Col(A).

c. If A is a symmetric matrix, then its set of singular values is the same as its set of
eigenvalues.

d. If A is a 10× 7 matrix and σ7 � 4, then the columns of A are linearly independent.

e. The Gram matrix is always orthogonally diagonalizable.

11. Suppose that A � UΣVT is a singular value decomposition of the m × n matrix A. If
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σ1 , . . . , σr are the nonzero singular values, the general form of the matrix Σ is

Σ �



σ1 . . . 0 . . . 0
0 . . . 0 . . . 0
0 . . . σr . . . 0
0 . . . 0 . . . 0

0
... 0

... 0
0 . . . 0 . . . 0


.

a. If you know that the columns of A are linearly independent, what more can you
say about the form of Σ?

b. If you know that the columns of A span �m , what more can you say about the
form of Σ?

c. If you know that the columns of A are linearly independent and span �m , what
more can you say about the form of Σ?
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7.5 Using Singular Value Decompositions

We’ve now seen what singular value decompositions are, how to construct them, and how
they provide important information about a matrix such as orthonormal bases for the four
fundamental subspaces. This puts us in a good position to begin using singular value de-
compositions to solve a wide variety of problems.

Given the fact that singular value decompositions so immediately convey fundamental data
about a matrix, it seems natural that some of our previous work can be reinterpreted in
terms of singular value decompositions. Therefore, we’ll take some time in this section to
revisit some familiar issues, such as least-squares problems and principal component analy-
sis, while also looking at some new applications.

Preview Activity 7.5.1. Suppose that A � UΣVT where

Σ �


13 0 0 0
0 8 0 0
0 0 2 0
0 0 0 0
0 0 0 0


,

vectors u j form the columns of U, and vectors v j form the columns of V .
a. What are the shapes of the matrices A, U, and V?

b. What is the rank of A?

c. Describe how to find an orthonormal basis for Col(A).

d. Describe how to find an orthonormal basis for Nul(A).

e. If the columns of Q form an orthonormal basis for Col(A), what is QTQ?

f. How would you form a matrix that projects vectors orthogonally onto Col(A)?

7.5.1 Least-squares problems

Least-squares problems, which we explored in Section 6.5, arise when we are confronted
with an inconsistent linear system Ax � b. Since there is no solution to the system, we
instead find the vector x minimizing the distance between b and Ax. That is, we find the
vector x̂, the least-squares approximate solution, by solving Ax̂ � b̂where b̂ is the orthogonal
projection of b onto the column space of A.

If we have a singular value decomposition A � UΣVT , then the number of nonzero singular
values r tells us the rank of A, and the first r columns of U form an orthonormal basis
for Col(A). This basis may be used to project vectors onto Col(A) and hence to solve least-
squares problems.
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Before exploring this connection further, we will introduce Sage as a tool for automating the
construction of singular value decompositions. One new feature is that we need to declare
our matrix to consist of floating point entries. We do this by including RDF inside the matrix
definition, as illustrated in the following cell.

A = matrix(RDF , 3, 2, [1,0,-1,1,1,1])
U, Sigma , V = A.SVD()
print(U)
print( ' --------- ' )
print(Sigma)
print( ' --------- ' )
print(V)

Activity 7.5.2. Consider the equation Ax � b where
1 0
1 1
1 2

 x �


−1

3
6


a. Find a singular value decomposition for A using the Sage cell below. What are

singular values of A?

b. What is r, the rank of A? How can we identify an orthonormal basis for Col(A)?

c. Form the reduced singular value decomposition UrΣrVT
r by constructing: the

matrix Ur , consisting of the first r columns of U; the matrix Vr , consisting of
the first r columns of V ; and Σr , a square r × r diagonal matrix. Verify that
A � UrΣrVT

r .
You may find it convenient to remember that if B is a matrix defined in Sage,
then B.matrix_from_columns( list ) and B.matrix_from_rows( list ) can be
used to extract columns or rows from B. For instance, B.matrix_from_rows([0,1,2])
provides a matrix formed from the first three rows of B.

d. How does the reduced singular value decomposition provide a matrix whose
columns are an orthonormal basis for Col(A)?

e. Explain why a least-squares approximate solution x̂ satisfies

Ax̂ � UrUT
r b.

f. What is the product VT
r Vr and why does it have this form?

g. Explain why
x̂ � VrΣ

−1
r UT

r b

is the least-squares approximate solution, and use this expression to find x̂.
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This activity demonstrates the power of a singular value decomposition to find a least-squares
approximate solution for an equation Ax � b. Because it immediately provides an orthonor-
mal basis for Col(A), something thatwe’ve had to construct using theGram-Schmidt process
in the past, we can easily project b onto Col(A), which results in a simple expression for x̂.

Proposition 7.5.1 If A � UrΣrVT
r is a reduced singular value decomposition of A, then a least-

squares approximate solution to Ax � b is given by

x̂ � VrΣ
−1
r UT

r b.

If the columns of A are linearly independent, then the equation Ax̂ � b̂ has only one solu-
tion so there is a unique least-squares approximate solution x̂. Otherwise, the expression in
Proposition 7.5.1 produces the solution to Ax̂ � b̂ having the shortest length.

The matrix A+ � VrΣ
−1
r UT

r is known as the Moore-Penrose psuedoinverse of A. When A is
invertible, A−1 � A+.

7.5.2 Rank k approximations

If we have a singular value decomposition for amatrix A, we can form a sequence ofmatrices
Ak that approximate A with increasing accuracy. This may feel familiar to calculus students
who have seen the way in which a function f (x) can be approximated by a linear function,
a quadratic function, and so forth with increasing accuracy.

We’ll begin with a singular value decomposition of a rank r matrix A so that A � UΣVT . To
create the approximating matrix Ak , we keep the first k singular values and set the others to

zero. For instance, if Σ �


22 0 0 0 0
0 14 0 0 0
0 0 3 0 0
0 0 0 0 0

 , we can form matrices

Σ(1) �


22 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , Σ(2) �


22 0 0 0 0
0 14 0 0 0
0 0 0 0 0
0 0 0 0 0


and define A1 � UΣ(1)VT and A2 � UΣ(2)VT . Because Ak has k nonzero singular values, we
know that rank(Ak) � k. In fact, there is a sense in which Ak is the closest matrix to A among
all rank k matrices.

Activity 7.5.3. Let’s consider a matrix A � UΣVT where

U �


1
2

1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2 − 1

2
1
2 − 1

2
1
2 − 1

2 − 1
2

1
2

 , Σ �


500 0 0 0
0 100 0 0
0 0 20 0
0 0 0 4


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V �


1
2

1
2

1
2

1
2

1
2 − 1

2 − 1
2

1
2

− 1
2 − 1

2
1
2

1
2

− 1
2

1
2 − 1

2
1
2


Evaluating the following cell will create the matrices U, V, and Sigma. Notice how the
diagonal_matrix command provides a convenient way to form the diagonal matrix
Σ.

h = 1/2
U = matrix (4,4,[h,h,h,h, h,h,-h,-h, h,-h,h,-h, h,-h,-h,h])
V = matrix (4,4,[h,h,h,h, h,-h,-h,h, -h,-h,h,h, -h,h,-h,h])
Sigma = diagonal_matrix ([500, 100, 20, 4])

a. Form the matrix A � UΣVT . What is rank(A)?

b. Now form the approximating matrix A1 � UΣ(1)VT . What is rank(A1)?

c. Find the error in the approximation A ≈ A1 by finding A − A1.

d. Now find A2 � UΣ(2)VT and the error A − A2. What is rank(A2)?

e. Find A3 � UΣ(3)VT and the error A − A3. What is rank(A3)?

f. What would happen if we were to compute A4?

g. What do you notice about the error A − Ak as k increases?

In this activity, the approximating matrix Ak has rank k because its singular value decom-
position has k nonzero singular values. We then saw how the difference between A and the
approximations Ak decreases as k increases, which means that the sequence Ak forms better
approximations as k increases.

Another way to represent Ak is with a reduced singular value decomposition so that Ak �

UkΣkVT
k where

Uk �
[
u1 . . . uk

]
, Σk �


σ1 0 . . . 0
0 σ2 . . . 0
...
...
. . .

...
0 0 . . . σk


, Vk �

[
v1 . . . vk

]
.

Notice that the rank 1 matrix A1 then has the form A1 � u1
[
σ1
]

vT
1 � σ1u1vT

1 and that we
can similarly write:

A ≈ A1 � σ1u1vT
1
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A ≈ A2 � σ1u1vT
1 + σ2u2vT

2

A ≈ A3 � σ1u1vT
1 + σ2u2vT

2 + σ3u3vT
3

...

A � Ar � σ1u1vT
1 + σ2u2vT

2 + σ3u3vT
3 + . . . + σrurvT

r .

Given two vectors u and v, the matrix u vT is called the outer product of u and v. (The dot
product u · v � uTv is sometimes called the inner product.) An outer product will always be
a rank 1 matrix so we see above how Ak is obtained by adding together k rank 1 matrices,
each of which gets us one step closer to the original matrix A.

7.5.3 Principal component analysis

In Section 7.3, we explored principal component analysis as a technique to reduce the dimen-
sion of a dataset. In particular, we constructed the covariance matrix C from a demeaned
data matrix and saw that the eigenvalues and eigenvectors of C tell us about the variance
of the dataset in different directions. We referred to the eigenvectors of C as principal compo-
nents and found that projecting the data onto a subspace defined by the first few principal
components frequently gave us a way to visualize the dataset. As we added more principal
components, we retained more information about the original dataset. This feels similar to
the rank k approximations we have just seen so let’s explore the connection.

Suppose that we have a dataset with N points, that A represents the demeaned data matrix,
that A � UΣVT is a singular value decomposition, and that the singular values are A are
denoted as σi . It follows that the covariance matrix

C �
1
N

AAT
�

1
N
(UΣVT)(UΣVT)T � U

(
1
N
ΣΣT

)
UT .

Notice that 1
NΣΣ

T is a diagonal matrix whose diagonal entries are 1
N σ

2
i . Therefore, it follows

that
C � U

(
1
N
ΣΣT

)
UT

is an orthogonal diagonalization of C showing that

• the principal components of the dataset, which are the eigenvectors of C, are given
by the columns of U. In other words, the left singular vectors of A are the principal
components of the dataset.

• the variance in the direction of a principal component is the associated eigenvalue of
C and therefore

Vui �
1
N
σ2

i .

Activity 7.5.4. Let’s revisit the iris dataset that we studied in Section 7.3. Remember
that there are fourmeasurements given for each of 150 irises and that each iris belongs
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to one of three species.

Evaluating the following cell will load the dataset and define the demeaned data ma-
trix A whose shape is 4 × 150.

url= ' https :// raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/pca_iris.py '
sage.repl.load.load(url , globals ())
df.T

a. Find the singular values of A using the command A.singular_values() and use
them to determine the variance Vu j in the direction of each of the four principal
components. What is the fraction of variance retained by the first two principal
components?

b. We will now write the matrix Γ � ΣVT so that A � UΓ. Suppose that a de-
meaned data point, say, the 100th column of A, is written as a linear combina-
tion of principal components:

x � c1u1 + c2u2 + c3u3 + c4u4.

Explain why


c1
c2
c3
c4

 , the vector of coordinates of x in the basis of principal com-

ponents, appears as 100th column of Γ.

c. Suppose that we now project this demeaned data point x orthogonally onto the
subspace spanned by the first two principal components u1 and u2. What are
the coordinates of the projected point in this basis and how can we find them in
the matrix Γ?

d. Alternatively, consider the approximation A2 � U2Σ2VT
2 of the demeaned data

matrix A. Explain why the 100th column of A2 represents the projection of x
onto the two-dimensional subspace spanned by the first two principal compo-
nents, u1 andu2. Then explainwhy the coefficients in that projection, c1u1+c2u2,

form the two-dimensional vector
[

c1
c2

]
that is the 100th column of Γ2 � Σ2VT

2 .

e. Now we’ve seen that the columns of Γ2 � Σ2VT
2 form the coordinates of the

demeaned data points projected on to the two-dimensional subspace spanned
by u1 and u2. In the cell below, find a singular value decomposition of A and use
it to form the matrix Gamma2. When you evaluate this cell, you will see a plot of
the projected demeaned data plots, similar to the one we created in Section 7.3.
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# Form the SVD of A and use it to form Gamma2

Gamma2 =

# The following will plot the projected demeaned data points
data = Gamma2.columns ()
(list_plot(data [:50], color= ' blue ' , aspect_ratio =1) +
list_plot(data [50:100] , color= ' orange ' ) +
list_plot(data [100:] , color= ' green ' ))

In our first encounter with principal component analysis, we began with a demeaned data
matrix A, formed the covariance matrix C, and used the eigenvalues and eigenvectors of C
to project the demeaned data onto a smaller dimensional subspace. In this section, we have
seen that a singular value decomposition of A provides a more direct route: the left singular
vectors of A form the principal components and the approximatingmatrix Ak represents the
data points projected onto the subspace spanned by the first k principal components. The
coordinates of a projected demeaned data point are given by the columns of Γk � ΣkVT

k .

7.5.4 Image compressing and denoising

In addition to principal component analysis, the approximations Ak of a matrix A obtained
from a singular value decomposition can be used in image processing. Remember that we
studied the JPEG compression algorithm, whose foundation is the change of basis defined
by the Discrete Cosine Transform, in Section 3.3. We will now see how a singular value
decomposition provides another tool for both compressing images and removing noise in
them.

Activity 7.5.5. Evaluating the following cell loads some data that we’ll use in this
activity. To begin, it defines and displays a 25 × 15 matrix A.

url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/svd_compress.py '
sage.repl.load.load(url , globals ())
print(A)

a. If we interpret 0 as black and 1 as white, this matrix represents an image as
shown below.

display_matrix(A)

Wewill explore how the singular value decomposition helps us to compress this
image.

1. By inspecting the image represented by A, identify a basis for Col(A) and
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determine rank(A).
2. The following cell plots the singular values of A. Explain how this plot

verifies that the rank is what you found in the previous part.

plot_sv(A)

3. There is a command approximate(A, k) that creates the approximation Ak .
Use the cell below to define k and look at the images represented by the
first few approximations. What is the smallest value of k for which A � Ak?

k =
display_matrix(approximate(A, k))

4. Now we can see how the singular value decomposition allows us to com-
press images. Since this is a 25× 15 matrix, we need 25 · 15 � 375 numbers
to represent the image. However, we can also reconstruct the image using
a small number of singular values and vectors:

A � Ak � σ1u1vT
1 + σ2u2vT

2 + . . . + σkukvT
k .

What are the dimensions of the singular vectors ui and vi? Between the
singular vectors and singular values, how many numbers do we need to
reconstruct Ak for the smallest k for which A � Ak? This is the compressed
size of the image.

5. The compression ratio is the ratio of the uncompressed size to the compressed
size. What compression ratio does this represent?

b. Next we’ll explore an example based on a photograph.

1. Consider the following image consisting of an array of 316 × 310 pixels
stored in the matrix A.

A = matrix(RDF , image)
display_image(A)

Plot the singular values of A.

plot_sv(A)

2. Use the cell below to study the approximations Ak for k � 1, 10, 20, 50, 100.

k = 1
display_image(approximate(A, k))

Notice how the approximating image Ak more closely approximates the
original image A as k increases.
What is the compression ratio when k � 50? What is the compression ratio
when k � 100? Notice how a higher compression ratio leads to a lower
quality reconstruction of the image.



482 CHAPTER 7. SINGULAR VALUE DECOMPOSITIONS

c. A second, related application of the singular value decomposition to image pro-
cessing is called denoising. For example, consider the image represented by the
matrix A below.

A = matrix(RDF , noise.values)
display_matrix(A)

This image is similar to the image of the letter ”O” we first studied in this activ-
ity, but there are splotchy regions in the background that result, perhaps, from
scanning the image. We think of the splotchy regions as noise, and our goal is
to improve the quality of the image by reducing the noise.

1. Plot the singular values below. How are the singular values of this matrix
similar to those represented by the clean image that we considered earlier
and how are they different?

plot_sv(A)

2. There is a natural point where the singular values dramatically decrease so
it makes sense to think of the noise as being formed by the small singular
values. To denoise the image, we will therefore replace A by its approxi-
mation Ak , where k is the point at which the singular values drop off. This
has the effect of setting the small singular values to zero and hence elimi-
nating the noise. Choose an appropriate value of k below and notice that
the new image appears to be somewhat cleaned up as a result of removing
the noise.

k =
display_matrix(approximate(A, k))

Several examples illustrating how the singular value decomposition compresses images are
available at this page from Tim Baumann.¹

7.5.5 Analyzing Supreme Court cases

As we’ve seen, a singular value decomposition concentrates the most important features of
a matrix into the first singular values and singular vectors. We will now use this observa-
tion to extract meaning from a large dataset giving the voting records of Supreme Court
justices. A similar analysis appears in the paper A pattern analysis of the second Rehnquist
U.S. Supreme Court² by Lawrence Sirovich.

The makeup of the Supreme Court was unusually stable during a period from 1994-2005
when it was led by Chief Justice William Rehnquist. This is sometimes called the second
Rehnquist court. The justices during this period were:

• William Rehnquist
¹timbaumann.info/projects.html
²gvsu.edu/s/21F

http://timbaumann.info/svd-image-compression-demo/
https://www.pnas.org/content/100/13/7432
https://www.pnas.org/content/100/13/7432
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• Antonin Scalia

• Clarence Thomas

• Anthony Kennedy

• Sandra Day O’Connor

• John Paul Stevens

• David Souter

• Ruth Bader Ginsburg

• Stephen Breyer

During this time, there were 911 cases in which all nine judges voted. We would like to
understand patterns in their voting.

Activity 7.5.6. Evaluating the following cell loads and displays a dataset describing
the votes of each justice in these 911 cases. More specifically, an entry of +1means that
the justice represented by the row voted with the majority in the case represented by
the column. An entry of -1 means that justice was in the minority. This information
is also stored in the 9 × 911 matrix A.

url= ' https :// raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/svd_supreme.py '
sage.repl.load.load(url , globals ())
A = matrix(RDF , cases.values)
cases

The justices are listed, very roughly, in order from more conservative to more pro-
gressive.

In this activity, it will be helpful to visualize the entries in variousmatrices and vectors.
The next cell displays the first 50 columns of the matrix A with white representing an
entry of +1, red representing -1, and black representing 0.

display_matrix(A.matrix_from_columns(range (50)))

a. Plot the singular values of A below. Describe the significance of this plot, in-
cluding the relative contributions from the singular values σk as k increases.

plot_sv(A)

b. Form the singular value decomposition A � UΣVT and thematrix of coefficients
Γ so that A � UΓ.

c. We will now study a particular case, the second case which appears as the col-
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umn of A indexed by 1. There is a command display_column(A, k) that pro-
vides a visual display of the k th column of a matrix A. Describe the justices’
votes in the second case.

d. Also, display the first left singular vector u1, the column of U indexed by 0, and
the column of Γ holding the coefficients that express the second case as a linear
combination of left singular vectors.

What does this tell us about how the second case is constructed as a linear com-
bination of left singular vectors? What is the significance of the first left singular
vector u1?

e. Let’s now study the 48th case, which is represented by the column of A indexed
by 47. Describe the voting pattern in this case.

f. Display the second left singular vector u2 and the vector of coefficients that ex-
press the 48th case as a linear combination of left singular vectors.

Describe how this case is constructed as a linear combination of singular vectors.
What is the significance of the second left singular vector u2?

g. The data in Table 7.5.2 describes the number of cases decided by each possible
vote count.
Table 7.5.2 Number of cases by vote count

Vote count # of cases
9-0 405
8-1 89
7-2 111
6-3 118
5-4 188

How do the singular vectors u1 and u2 reflect this data? Would you character-
ize the court as leaning toward the conservatives or progressives? Use these
singular vectors to explain your response.

h. Cases decided by a 5-4 vote are often the most impactful as they represent a
sharp divide among the justices and, often, society at large. For that reason, we
will now focus on the 5-4 decisions. Evaluating the next cell forms the 9 × 188
matrix B consisting of 5-4 decisions.

B = matrix(RDF , fivefour.values)
display_matrix(B.matrix_from_columns(range (50)))



7.5. USING SINGULAR VALUE DECOMPOSITIONS 485

Form the singular value decomposition of B � UΣVT along with the matrix Γ
of coefficients so that B � UΓ and display the first left singular vector u1. Study
how the 7th case, indexed by 6, is constructed as a linear combination of left
singular vectors.

What does this singular vector tell us about themakeupof the court andwhether
it leans towards the conservatives or progressives?

i. Display the second left singular vector u2 and study how the 6th case, indexed
by 5, is constructed as a linear combination of left singular vectors.

What does u2 tell us about the relative importance of the justices’ voting records?

j. By a swing vote, we mean a justice who is less inclined to vote with a particular
bloc of justices but instead swings from one bloc to another with the potential
to sway close decisions. What do the singular vectors u1 and u2 tell us about the
presence of voting blocs on the court and the presence of a swing vote? Which
justice represents the swing vote?

7.5.6 Summary

This section has demonstrated some uses of the singular value decomposition. Because the
singular values appear in decreasing order, the decomposition has the effect of concentrating
the most important features of the matrix into the first singular values and singular vectors.

• Because the first left singular vectors form an orthonormal basis for Col(A), a singular
value decomposition provides a convenient way to project vectors onto Col(A) and
therefore to solve least-squares problems.

• A singular value decomposition of a rank r matrix A leads to a series of approximations
Ak of A where

A ≈ A1 � σ1u1vT
1

A ≈ A2 � σ1u1vT
1 + σ2u2vT

2

A ≈ A3 � σ1u1vT
1 + σ2u2vT

2 + σ3u3vT
3

...

A � Ar � σ1u1vT
1 + σ2u2vT

2 + σ3u3vT
3 + . . . + σrurvT

r

In each case, Ak is the rank k matrix that is closest to A.

• If A is a demeaned data matrix, the left singular vectors give the principal compo-
nents of A, and the variance in the direction of a principal component can be simply
expressed in terms of the corresponding singular value.
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• The singular value decomposition has many applications. In this section, we looked
at how the decomposition is used in image processing through the techniques of com-
pression and denoising.

• Because the first few left singular vectors contain the most important features of a
matrix, we can use a singular value decomposition to extract meaning from a large
dataset as we did when analyzing the voting patterns of the second Rehnquist court.

7.5.7 Exercises

1. Suppose that

A �


2.1 −1.9 0.1 3.7
−1.5 2.7 0.9 −0.6
−0.4 2.8 −1.5 4.2
−0.4 2.4 1.9 −1.8

 .

a. Find the singular values of A. What is rank(A)?

b. Find the sequence of matrices A1, A2, A3, and A4 where Ak is the rank k approxi-
mation of A.

2. Suppose we would like to find the best quadratic function

β0 + β1x + β2x2
� y

fitting the points
(0, 1), (1, 0), (2, 1.5), (3, 4), (4, 8).

a. Set up a linear system Ax � b describing the coefficients x �


β0
β1
β2

 .
b. Find the singular value decomposition of A.

c. Use the singular value decomposition to find the least-squares approximate solu-
tion x̂.

3. Remember that the outer product of two vectors u and v is the matrix u vT .

a. Suppose that u �

[
2

−3

]
and v �


2
0
1

 . Evaluate the outer product u vT . To get a

clearer sense of how this works, perform this operationwithout using technology.
How is each of the columns of u vT related to u?

b. Suppose u and v are general vectors. What is rank(u vT) and what is a basis for
its column space Col(u vT)?
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c. Suppose that u is a unit vector. What is the effect of multiplying a vector by the
matrix u uT?

4. Evaluating the following cell loads in a dataset recording some features of 1057 houses.
Notice how the lot size varies over a relatively small range compared to the other fea-
tures. For this reason, in addition to demeaning the data, we’ll scale each feature by
dividing by its standard deviation so that the range of values is similar for each feature.
The matrix A holds the result.

import pandas as pd
url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/data/housing.csv '
df = pd.read_csv(url , index_col =0)
df = df.fillna(df.mean())
std = (df -df.mean())/df.std()
A = matrix(std.values).T
df.T

a. Find the singular values of A and use them to determine the variance in the di-
rection of the principal components.

b. For what fraction of the variance do the first two principal components account?

c. Find a singular value decomposition of A and construct the 2 × 1057 matrix B
whose entries are the coordinates of the demeaned data points projected on to
the two-dimensional subspace spanned by the first two principal components.
You can plot the projected data points using list_plot(B.columns()).

d. Study the entries in the first two principal components u1 and u2. Would a more
expensive house lie on the left, right, top, or bottom of the plot you constructed?

e. In what ways does a house that lies on the far left of the plot you constructed
differ from an average house? In what ways does a house that lies near the top of
the plot you constructed differ from an average house?

5. Let’s revisit the voting records of justices on the second Rehnquist court. Evaluating
the following cell will load the voting records of the justices in the 188 cases decided
by a 5-4 vote and store them in the matrix A.

url= ' https ://raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/svd_supreme.py '
sage.repl.load.load(url , globals ())
A = matrix(RDF , fivefour.values)
v = vector (188*[1])
fivefour

a. The cell above also defined the 188-dimensional vector v whose entries are all
1. What does the product Av represent? Use the following cell to evaluate this
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product.

b. How does the product Av tell us which justice voted in the majority most fre-
quently? What does this say about the presence of a swing vote on the court?

c. How does this product tell us whether we should characterize this court as lean-
ing conservative or progressive?

d. How does this product tell us about the presence of a second swing vote on the
court?

e. Study the left singular vector u3 and describe how it reinforces the fact that there
was a second swing vote. Who was this second swing vote?

6. The following cell loads a dataset that describes the percentages with which justices
on the second Rehnquist court agreed with one another. For instance, the entry in the
first row and second column is 72.78, which means that Justices Rehnquist and Scalia
agreed with each other in 72.78% of the cases.

url= ' https :// raw.githubusercontent.com/davidaustinm/ '
url+= ' ula_modules/master/svd_supreme.py '
sage.repl.load.load(url , globals ())
A = 1/100* matrix(RDF , agreement.values)
agreement

a. Examine the matrix A. What special structure does this matrix have and why
should we expect it to have this structure?

b. Plot the singular values of A below. For what value of k would the approximation
Ak be a reasonable approximation of A?

plot_sv(A)

c. Find a singular value decomposition A � UΣVT and examine the matrices U
and V using, for instance, n(U, 3). What do you notice about the relationship
between U and V and why should we expect this relationship to hold?

d. The command approximate(A, k)will form the approximatingmatrix Ak . Study
thematrix A1 using the display_matrix command. Which justice or justices seem
to be most agreeable, that is, most likely to agree with other justices? Which
justice is least agreeable?

e. Examine the difference A2 −A1 and describe how this tells us about the presence
of voting blocs and swing votes on the court.
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7. Suppose that A � UrΣrVT
r is a reduced singular value decomposition of the m × n

matrix A. The matrix A+ � VrΣ
−1
r UT

r is called the Moore-Penrose inverse of A.
a. Explain why A+ is an n × m matrix.

b. If A is an invertible, square matrix, explain why A+ � A−1.

c. Explain why AA+b � b̂, the orthogonal projection of b onto Col(A).

d. Explain why A+Ax � x̂, the orthogonal projection of x onto Col(AT).
8. In Subsection 5.1.1, we saw how some linear algebraic computations are sensitive to

round off error made by a computer. A singular value decomposition can help us un-
derstand when this situation can occur.

For instance, consider the matrices

A �

[
1.0001 1

1 1

]
, B �

[
1 1
1 1

]
.

The entries in these matrices are quite close to one another, but A is invertible while B
is not. It seems like A is almost singular. In fact, we canmeasure how close amatrix is to
being singular by forming the condition number, σ1/σn , the ratio of the largest to smallest
singular value. If A were singular, the condition number would be undefined because
the singular value σn � 0. Therefore, we will think of matrices with large condition
numbers as being close to singular.

a. Define the matrix A and find a singular value decomposition. What is the condi-
tion number of A?

b. Define the left singular vectors u1 and u2. Compare the results A−1b when

1. b � u1 + u2.
2. b � 2u1 + u2.

Notice how a small change in the vector b leads to a small change in A−1b.

c. Now compare the results A−1b when

1. b � u1 + u2.
2. b � u1 + 2u2.

Notice now how a small change in b leads to a large change in A−1b.

d. Previously, we saw that, if we write x in terms of left singular vectors x � c1v1 +
c2v2, then we have

b � Ax � c1σ1u1 + c2σ2u2.

If we write b � d1u1 + d2u2, explain why A−1b is sensitive to small changes in d2.

Generally speaking, a square matrix A with a large condition number will demonstrate
this type of behavior so that the computation of A−1 is likely to be affected by round off
error. We call such a matrix ill-conditioned.
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APPENDIX A
Sage Reference

We have introduced a number of Sage commands throughout the text, and the most impor-
tant ones are summarized here in a single place.

Accessing Sage In addition to the Sage cellls included throughout the book, there are
a number of ways to access Sage.

a. There is a freely available Sage cell at sagecell.sagemath.org.

b. You can save your Sage work by creating an account at cocalc.
com and working in a Sage worksheet.

c. There is a page of Sage cells at gvsu.edu/s/0Ng. The results ob-
tained from evaluating one cell are available in other cells on
that page. However, you will lose any work once the page is
reloaded.

https://sagecell.sagemath.org/
https://cocalc.com
https://cocalc.com
http://gvsu.edu/s/0Ng
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Creating matrices There are a couple of ways to create matrices. For instance, the matrix
−2 3 0 4
1 −2 1 −3
0 2 3 0


can be created in either of the two following ways.

a.
matrix(3, 4, [-2, 3, 0, 4,

1,-2, 1,-3,
0, 2, 3, 0])

b.
matrix([ [-2, 3, 0, 4],

[ 1,-2, 1,-3],
[ 0, 2, 3, 0] ])

Be aware that Sage can treat mathematically equivalent matrices in
different ways depending on how they are entered. For instance, the
matrix

matrix([ [1, 2],
[2, 1] ])

has integer entries while

matrix([ [1.0, 2.0],
[2.0, 1.0] ])

has floating point entries.
If you would like the entries to be considered as floating point num-
bers, you can include RDF in the definition of the matrix.

matrix(RDF, [ [1, 2],
[2, 1] ])
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Special matrices The 4 × 4 identity matrix can be created with

identity_matrix(4)

A diagonal matrix can be created from a list of its diagonal entries.
For instance,

diagonal_matrix([3,-4,2])

Reduced row
echelon form

The reduced row echelon form of a matrix can be obtained using the
rref() function. For instance,

A = matrix([ [1,2], [2,1] ])
A.rref()

Vectors A vector is defined by listing its components.

v = vector([3,-1,2])

Addition The + operator performs vector and matrix addition.

v = vector([2,1])
w = vector([-3,2])
print(v+w)

A = matrix([[2,-3],[1,2]])
B = matrix([[-4,1],[3,-1]])
print(A+B)
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Multiplication The * operator performs scalar multiplication of vectors andmatrices.

v = vector([2,1])
print(3*v)
A = matrix([[2,1],[-3,2]])
print(3*A)

Similarly, the * is used for matrix-vector and matrix-matrix multipli-
cation.

A = matrix([[2,-3],[1,2]])
v = vector([2,1])
print(A*v)
B = matrix([[-4,1],[3,-1]])
print(A*B)

Operations on
vectors

a. The length of a vector v is found using v.norm().

b. The dot product of two vectors v and w is v*w.
Operations on

matrices
a. The transpose of a matrix A is obtained using either

A.transpose() or A.T.

b. The inverse of a matrix A is obtained using either A.inverse()
or A^-1.

c. The determinant of A is A.det().

d. A basis for the null space Nul(A) is found with
A.right_kernel().

e. Pull out a column of A using, for instance, A.column(0), which
returns the vector that is the first column of A.

f. The command A.matrix_from_columns([0,1,2]) returns the
matrix formed by the first three columns of A.
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Eigenvectors and
eigenvalues

a. The eigenvalues of a matrix A can be found with
A.eigenvalues(). The number of times that an eigenvalue
appears in the list equals its multiplicity.

b. The eigenvectors of a matrix having rational entries can be
found with A.eigenvectors_right().

c. If A can be diagonalized as A � PDP−1, then

D, P = A.right_eigenmatrix()

provides the matrices D and P.

d. The characteristic polynomial of A is A.charpoly('x') and its fac-
tored form A.fcp('x').

Matrix
factorizations

a. The LU factorization of a matrix

P, L, U = A.LU()

gives matrices so that PA � LU.

b. A singular value decomposition is obtained with

U, Sigma, V = A.SVD()

It’s important to note that the matrix must be defined using RDF.
For instance, A = matrix(RDF, 3,2,[1,0,-1,1,1,1]).

c. The QR factorization of A is A.QR() provided that A is defined
using RDF.
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Index

RGB color model, 179
YCbCr color model, 179

augmented matrix, 15

back substitution, 11
basic variable, 18
basis, 160
basis, standard, 162

characteristic equation, 244
characteristic polynomial, 245
chrominance, 179
coefficient matrix, 15
coefficient of determination, 400
column space, 220
consistent system, 35

decoupled system, 11
determinant, 203
diagonalizable, 259
dimension, 219
discrete dynamical system, 117
Discrete Fourier Transform, 185
dot product, 336

eigenspace, 246
eigenvalue, 230
eigenvalue, dominant, 324
eigenvector, 230

free variable, 18

Gaussian elimination, 10
Gram matrix, 459
Gram-Schmidt, 384

inconsistent system, 35

invertible, 146

linear combination, 51
linear equation, 8
linear system, 8
linearly dependent, 98
linearly independent, 98
lower triangular matrix, 150
luminance, 179

Markov chain, 294
matrix transformation, 109
matrix, addition, 63
matrix, elementary, 152
matrix, identity, 64
matrix, inverse, 146
matrix, rank, 222
matrix, scalar multiplication, 63
matrix, shape, 63
matrix, square, 146
matrix-vector multiplication, 65
Moore-Penrose psuedoinverse, 476
multiplicity, 248

normal equation, 398
null space, 222

orthogonal, 341
orthogonal complement, 356
orthogonal diagonalization, 419
orthogonal matrix, 378
orthogonal projection, 372
orthogonal set, 368
othonormal set, 370

parametric description, 18
partial pivoting, 315
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pivot position, 34
positive matrix, 296
power method, 326
principal components, 447
probability vector, 292

quadratic form, 433

R squared, 400
rank, 222
reduced row echelon form, 17
reduced row echelon matrix, 17
round off error, 312
row equivalent, 15
row space, 467

scalar multiplication, 46
similarity, 263
solution, 8
solution space, 8

span, 81
state vector, 117
stationary vector, 295
steady-state vector, 295
stochastic matrix, 292
subspace, 217
symmetric matrix, 419

transition function, 117
transpose, 358
triangular system, 11

unit vector, 369
upper triangular matrix, 150

vector, 45
vector addition, 46

weights, 51
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