
Motion in a central field

The objective of this document is to investigate the motion of a single point through a central
field, with a specific goal of showing that planetary orbits are conic sections.

Kepler’s laws

Newton’s derivation of Kepler’s laws was a watershed event in the history of science and mathe-
matics. Kepler, largely based on data meticulously gathered by Tycho Brahe, wrote down a precise
description of planetary motion.

Kepler’s description takes the form of the following three laws (as stated by Wikipedia):

1. The orbit of every planet is an ellipse, with the Sun at one of the foci of the ellipse.

2. A line joining a planet and the Sun sweeps out equal areas during equal intervals of time.

3. The square of the orbital period of a planet is directly proportional to the cube of the semi-major
axis of the ellipse.

It should be emphasized that Kepler’s techniques are purely inductive, being based on Brahe’s
empirical data. Newton’s contribution was purely deductive, that is he derived Kepler’s laws from
more fundamental laws, namely his second law of motion and his law of universal gravitation.
Newton’s laws are applicable to many more contexts, however.

Gravitation

As we’ve discussed, the force on a planet moving through a solar system with a massive star can
be modeled by FFF (xxx) = −gmxxx

/

‖xxx‖3 . Since Newton’s second law states that FFF = mxxx′′, we get

xxx′′ = −gxxx
/

‖xxx‖3 . This is a vector equation that should be considered as three dimensional for
our purposes. Nonetheless, we will assume for the moment that the motion is planar and write
xxx = 〈x1, x2〉. (We can prove that the motion is planar anyway, after we learn a bit about angular
momentum.) Thus, we can now write our second order equation as a two-dimensional system:

x′′

1 = − gx1

(x2

1
+x2

2)3/2
,

x′′

2 = − gx2

(x2

1
+x2

2)3/2

. (1)

Given a specific value of g (we will typically take g = 1) and initial conditions, we can solve
this system numerically. Here’s how to do so with Mathematica, assuming the initial conditions
x1(0) = 1, x2(0) = 0, x′

1(0) = 0, x′

2(0) = 0.7.



Clear @x1, x2 D;

8x1@t_ D, x2 @t_ D< = 8x1@t D, x2 @t D< �. First BNDSolve B:
x1 '' @t D � -x1@t D � Ix1@t D2

+ x2@t D2M3�2
,

x2 '' @t D � -x2@t D � Ix1@t D2
+ x2@t D2M3�2

,

x1@0D � 1, x1 ' @0D � 0, x2 @0D � 0, x2 ' @0D � 0.7 >,

8x1@t D, x2 @t D<, 8t, 0, 5 <FF;

T = t �. FindRoot @x2@t D � 0, 8t, 3.5 <D;
path = ParametricPlot @8x1@t D, x2 @t D<, 8t, 0, T <D
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Certainly looks elliptical with the origin at a focus of the ellipse. Ultimately, our objective is to
prove this fact.

Conservative fields

Definition and examples

An n-dimensional vector field FFF is called conservative if it arises as the gradient of a function
f : R

n → R, i.e. FFF = ∇f for some f . The function V = −f is called the potential or potential

energy of FFF .

As an example, the field FFF 1(x, y) =
〈

2xy3, 3x2y2
〉

is conservative, since it can be expressed as the

gradient of f(x, y) = x2y3. The field FFF 2(x, y) =
〈

xy3, x2y2
〉

is not conservative; try to find a real
valued function f such that ∇f = FFF 2.

Natural questions arise. How can we tell if a given vector field is conservative? How would we
know if FFF 1 above is conservative, if we didn’t have f(x, y) = x2y3? How do we know for sure that
FFF 2 above is not conservative? Perhaps, we just weren’t clever enough to find the appropriate f . If
we suspect that a vector field FFF is conservative, how do we find the function f such that ∇f = FFF?

Suppose we write FFF (x, y) = 〈u(x, y), v(x, y)〉. In our first example FFF 1 above, we have u(x, y) = 2xy3
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and v(x, y) = 3x2y2. Note that uy = vx = 6xy2. This is not by chance, for Clairaut’s theorem
asserts that the mixed partial derivatives of a function are equal - i.e. fxy = fyx. This provides a
test to check if a given vector field is conservative.

We can now see that the field FFF 2 is definitely not conservative. If it were, say FFF 2 = ∇f , then we
would have

3xy2 =
∂

∂y

(

xy3
)

= fxy = fyx =
∂

∂x

(

x2y2
)

= 2xy2.

Exercise 1: Which of the following fields are conservative?

(a) FFF (x, y) = 〈y, x〉

(b) FFF (x, y) = 〈x, y〉

(c) FFF (x, y) = 〈y cos(xy), x cos(xy)〉

(d) FFF (x, y) = 〈x cos(xy), y cos(xy)〉

Exercise 2: Prove that the gravitational field that arises from equations 1 is conservative by

showing they arise from the potential function f (x1, x2) = −g
/

√

x2
1 + x2

2 .

Finding the potential

As we know, the field FFF (x, y) =
〈

2xy3, 3x2y2
〉

is conservative, since it has potential function
f(x, y) = x2y3. What if we don’t know f? Well, we do know that fx = 2xy3. Integrating, we
obtain f(x, y) = x2y3 + c(y). The notation c(y) indicates that the “constant” of integration is in
general a function of y. Now, if f has this form, then fy = 3x2y2 + c′(y). On the other hand, the
potential function of FFF must satisfy fy = 3x2y2. Thus, c′(y) = 0 so c(y) is indeed a constant in
this case. Any constant will do but the simplest is probably zero.

As another example, consider FFF (x, y) =
〈

2xy2 + 1, 2x2y + 1
〉

. If f is to be a potential function for
FFF , then fx = 2xy2 + 1. Thus, f(x, y) = x2y2 + x + c(y) and fy(x, y) = 2x2y + c′(y). This implies
that c′(y) = 1 so c(y) = y. Finally, we obtain f(x, y) = x2y2 + x + y.

Exercise 3: Find the potentials for the conservative fields from exercise 1.

Conservation of energy

There is a law of conservation of energy for conservative systems that mirrors what we have
learned for conservative equations. Since the equation is assumed to be conservative, we can
write it in the form FFF = ∇f . If we wish to emphasize the state vector xxx, we could write it in
the form FFF (xxx) = ∇f(xxx). In this context, the kinetic energy is ‖xxx′‖/ 2, the potential energy is
V (xxx) = −f(xxx), and the total energy is the sum of these two. A fundamental fact is that the total
energy is conserved.

Theorem 1 In a conservative system, to total energy is conserved. In symbols,

E =
1

2
‖xxx′‖

2
+ V (xxx)

is constant.
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Proof : We’ll simply show that dE/dt = 0. Using the multivariate chain rule on V (xxx), we get

dV/dt = ∇V · xxx′. Applying the dot product rule to ‖xxx′‖2 = xxx′ ·xxx′ we get

d ‖xxx′‖
2

dt
=

d (xxx′ · xxx′)

dt
= xxx′′ · xxx′ + xxx′ · xxx′′ = 2xxx′ · xxx′′.

Thus

dE

dt
=

d

dt

(

1

2
‖xxx′‖

2
+ V (xxx)

)

= xxx′ · xxx′′ + ∇V · xxx′ = xxx′ · (xxx′′ + ∇V ) = xxx′ · (xxx′′ −∇f) = 0.�

A major difference between conservative equations versus conservative systems is that every equa-
tion of the form of the form x′′ = F (x) is conservative, since we can always integrate F to find the
potential function. By contrast, a given system xxx′′ = FFF (xxx) might or might not be conservative,
since FFF might or might not arise as the gradient of a potential function.

Exercise 4: Use the technique in the proof of theorem 1 to show that total energy is conserved
for a conservative equation.

Exercise 5: Suppose that we add the initial conditions x1(0) = 2, x2(0) = 0, x′

1(0) = 0, and
x′

2(0) = 1 to the gravitational system given by equations 1. Find the total energy in the system.

Polar form and angular momentum

At this point, we’ve generalized the notion of energy to the point that it applies to systems. If we
have a 2nd order, two dimensional system, say

x′′

1 = f (x1, x2)

x′′

2 = g (x1, x2)

then we might introduce variables y1 = x′

1 and y2 = x′

2 to obtain the first order, four dimensional
system

y′

1 = f (x1, x2)

y′

2 = g (x1, x2)

x′

1 = y1

x′

2 = y2

Thus the phase space is four-dimensional. The law of conservation of energy places one constraint
on the variables x1, x2, y1, and y2. Thus the solution of the first order system is forced to flow
along a three dimensional subset of this four dimensional space. (Such a set is called a manifold.)
If we ultimately want to prove that the orbits of the gravitational system are elliptical, then we’ll
need to reduce this further. The next major step is to introduce a second conserved quantity called
the angular momentum, a concept which is best described in polar form.
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Polar form

We’ll write the polar form of a parametrized path in the plane as rrr(t) = r(t)eeer(t), or just rrr = reeer.
The scalar r is the distance of the point to the origin and the vector eeer is a unit vector pointing in
the direction of the object. With this notation, we can express the equation of motion in a central
field as rrr′′ = Φ(r)eeer.

It should be emphasized that this version of the equations of motion makes no specific reference to
the dimension of the space. (That’s why I’ve been using the ambiguous term “polar form” in favor
of the precise term “polar coordinates”.) We will prove, however, that motion in a 3D central field
necessarily lies in a plane. Thus, it is typically safe to think of polar form as polar coordinates. In
this context, we have eeer(t) = 〈cos(θ(t)), sin(θ(t))〉.

Conservation of angular momentum

The angular momentum of the motion parametrized by rrr is defined to be MMM = rrr × rrr′. Note
that we are implicitly assuming that the system is three dimensional. If the motion is planar, we
embed it in three space in the natural way to allow the formation of the cross-product. Either
way, the angular momentum is a vector quantity. The main fact concerning angular momentum
is reminiscent of the corresponding fact for energy.

Theorem 2 If rrr denotes the position of an object in space moving through a central field, then the

angular momentum of rrr is conserved.

Proof : We simply take the derivative of the angular momentum.

dMMM

dt
=

d

dt
(rrr × rrr′) = rrr′ × rrr′ + rrr × rrr′′ = 000.

Note that both terms in the sum are 000 (the zero vector), since the vectors in each product are
parallel.�

Recall that the cross-product of two vectors is perpendicular to both. This fact, combined with
theorem 2, implies that the motion of a point through a central field must lie in a plane. This is
illustrated in figure 1.

As an example, let’s compute the angular momentum of the system defined in equations 1 back in
the gravitation section. Since angular momentum is conserved, we can use the initial conditions
x1(0) = 1, x2(0) = 0, x′

1(0) = 0, x′

2(0) = 0.7 to determine it. Embedding the x1x2-plane into
3-space, we obtain the position and velocity vectors 〈1, 0, 0〉 and 〈0, 0.7, 0〉. The cross product of
these two vectors 〈0, 0, 0.7〉. This is the angular momentum of the system.

Kepler’s second law

Kepler’s second law states that a line joining a planet and the Sun sweeps out equal areas during
equal intervals of time. This is illustrated in figure 2. Ultimately, this is a simple consequence of
the conservation of angular momentum.

To prove Kepler’s second law, we introduce the unit vector eeeθ perpendicular to eeer and in the
direction of rotation. We can then express the velocity rrr′ in terms of the basis eeer, eeeθ, as in lemma
1.
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Figure 1: The angular momentum vector
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Figure 2: Equal area swept out in equal time
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Lemma 1

rrr′ = r′eeer + rθ′eeeθ.

Proof : The vector eeer rotates with constant angular velocity θ′. (This is the definition of angular
velocity.) Since eeeθ maintains a constant right angle to eeer, it rotates with the same angular velocity.
Since the derivative of a unit vector is perpendicular to that unit vector, we have eee′r = θ′eeeθ and
eee′θ = −θ′eeer. Thus, differentiating rrr = reeer, we get

rrr′ = r′eeer + reee′r = r′eeer + rθ′eeeθ.�

As a consequence of lemma 1, we can express the angular momentum as follows.

MMM = rrr × rrr′ = rrr × (r′eeer + rθ′eeeθ) = rrr × r′eeer + rθ′rrr × eeeθ = r2θ′eeer × eeeθ.

In particular, r2θ′ represents the length of the angular momentum. Since MMM is preserved, its length
must be constant so r2θ′ is constant. From this fact, Kepler’s second law can be derived fairly
easily since it’s clear that in figure 2 we have

∆A = A(t + ∆t) − A(t) ≈
1

2
r2 dθ

dt
∆t.

Reduction of dimension

We continue to focus on our polar description of motion in a central field described by rrr′′ = FFF (rrr),
where FFF = −∇U . Since the field is central, U should depend only upon the magnitude of rrr. Thus,
it should cause no ambiguity to think of U as a function of one variable and write U(r).

Theorem 3 For motion in a central field, the distance from the center of the field varies in the

same way as r varies in the one-dimensional problem with potential energy

V (r) = U(r) +
M2

2r2
.

V (r) is called the effective potential of the system. It should be emphasized that r and M are
scalar quantities in the one-dimensional problem. They are related to the vectors rrr and MMM in the
multidimensional problem via r = ‖rrr‖ and M = ‖MMM‖.

Before jumping into a proof of this theorem, it might be good to look at an example. Consider
the system defined in equations 1 defined back in the section on gravitation. Assuming that the
code from that section has been executed, we can plot the distance of the object to the origin as
a function of time as follows.

pic2 = Plot @Norm@8x1@t D, x2 @t D<D, 8t, 0, T <,
AxesOrigin ® 80, 0 <D
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We now try to relate this to the one dimensional problem with potential V (r) = U(r)+M2/
(

2r2
)

.
Using the fact that the force function F (r) = −V ′(r) , we can find the force function (the right
hand side) for the one-dimensional problem. Thus the one-dimensional problem is

r′′ =
M2

r3
− U ′(r).

Back in exercise 2 you should have shown that the gravitational field has potential function

f (x1, x2) = −
g

√

x2
1 + x2

2

.

Setting r =
√

x2
1 + x2

2, namely the distance of the point to the origin, we obtain U(r) = −g/r.
Of course, we set g = 1 for our example, so this simplifies further to U(r) = −1/r. Now, we’ve
already computed the angular momentum of our system is 0.7. Thus the effective potential can
be written as

V (r) = −
1

r
+

0.49

2r2

and the one-dimensional problem is

r′′ =
0.49

r3
−

1

r2
.

We can solve this problem numerically, plot it, and compare the result to distance versus time
graph obtained from the system. Here’s the result.

Clear @r D;

r @t_ D = r @t D �. First BNDSolve B:r '' @t D � 0.49

r @t D3
-

1

r @t D2
,

r @0D � 1, r ' @0D � 0>, r @t D, 8t, 0, T <FF;

pic1 = Plot @r @t D, 8t, 0, T <, AxesOrigin ® 80, 0 <D
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Looks the same!

Elliptical orbits

Using the equation of conservation of energy in the one-dimensional problem, it’s fairly easy to
deduce the dependence of r upon t. We have

1

2
(r′)

2
+ V (r) = E.

Thus,

dr

dt
=
√

2(E − V (r)).

Now, we applying the chain rule to dθ/dt, we get
dθ

dt
=

dθ

dr

dr

dt
. Furthermore, dθ/dt = M

/

r2 by

conservation of angular momentum. Thus,

M

r2
=

dθ

dr

√

2(E − V (r).

This is a separable equation, so

θ =

∫

dθ =

∫

M

r2
√

2(E − V (r))
dr.

If we can evaluate the integral on the right and solve for r, then we’ve got a polar description of
the orbit. In the case of planetary motion, we have

V (r) =
M2

2r2
−

g

r

Thus,
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θ =

∫

M

r2
√

2 (E − M2/ (2r2) + g/r)
dr = arccos

(

M/r − g/M
√

2E + g2/M2

)

. (2)

Here’s “proof” that the derivative of the arccos term yields the integrand.

FullSimplify B

DBArcCos B M

r
-

g

M
� 2 E + g2 � M2 F, r F -

M� Kr 2 2 IE-M2 � I2 r 2M + g � r M O,

Assumptions ® 8M³ 0, r ³ 0, g ³ 0<F
0

If we set

p = M2
/

g

e =
√

1 + 2EM2/g2
, (3)

then θ = arccos((p/r) − 1), i.e. r = p/(1 + e cos(θ)). This is the polar form of a conic section.

Let’s make the correspondence between this polar equation and the gravitational system defined in
equations 1 quite explicit. Back in the gravitation section, we used the initial conditions x1(0) = 1,
x2(0) = 0, x′

1(0) = 0, x′

2(0) = 0.7. We’ve computed the angular momentum to be M = 0.7 and
the energy to be E = 1

2
0.72 − 1 = −0.755. Recall also that we’ve also assumed g = 1. We can use

these to try to regenerate the orbit obtained before like so:

p = 0.7 2;

e = 1 + 2 H-0.755 L 0.7 2 ;

polarPath @Θ_D : = p � H1 + e * Cos@ΘDL;
PolarPlot @polarPath @ΘD, 8Θ, 0, 2 Pi <D
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If you compare this path to the path back in the gravitational section, it looks to have the exact
same dimensions, but it’s been flipped. Let’s check the dimensions:

88x1@0D, polarPath @ΠD<, 8x1@T � 2D, polarPath @0D<<
881., 1.<, 8-0.324503, 0.324503<<

Looks good, but why’s it been flipped? If we examine equation 2, we note that the integral could
include an arbitrary constant. Setting this constant to π, we generate the exact same path as back
in the gravitational section.

PolarPlot @polarPath @Θ + Pi D, 8Θ, 0, 2 Pi <D
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Exercise 6: The polar form of a conic section is

r(θ) =
p

1 + e cos(θ)
.

The parameter e ≥ 0 is called the eccentricity of the conic. 0 ≤ e < 1 yields an ellipse, with e = 0
a circle. e = 1 yields a parabola and e > 1 yields a hyperbola. Use equations 3 to find initial
conditions for the gravitational equations 1 that yield exactly a parabola. Use Mathematica to
draw the parabola twice - once using ParametricPlot applied to the result from NDSolve and
once using PolarPlot applied to the polar equation.

Other central fields

It’s important to realize that many of the results in this document apply to motion through any

central field - not just the gravitational field. The justification of Kepler’s second law, for example,
made no specific reference to the gravitational field and holds for any central field. The proof
that planetary orbits are conic sections, on the other hand, made quite specific reference to the
gravitational field and does not hold more generally. In this section, we’ll play with some other
central fields.
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Here’s a crazy example. Suppose we want to write down a system that has potential energy
U(r) = r. (What could be simpler?) In terms of x and y, this means that U(x, y) =

√

x2 + y2.
Computing minus the gradient, this yields the system

x′′ = −x
/

√

x2 + y2

y′′ = −y
/

√

x2 + y2

Let’s choose initial conditions x(0) = 1, x′(0) = 0, y(0) = 0, y(0) = 1/2 and investigate the orbit
numerically.

Clear @x, y D;

r @t_ D = 8x@t D, y @t D< �. First BNDSolve B:
x '' @t D � -x@t D � Ix@t D2

+ y@t D2M1�2
,

y '' @t D � -y@t D � Ix@t D2
+ y@t D2M1�2

,

x@0D � 1, x ' @0D � 0,

y@0D � 0, y ' @0D � 1 � 2>,

8x@t D, y @t D<, 8t, 0, 400 <FF;

ParametricPlot @r @t D, 8t, 0, 400 <D
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Glad I don’t live in that universe!

There’s actually a fairly simple explanation of what’s going on. Recall that the effective potential
is

V (r) = U(r) +
M2

2r2
= r +

1

8r2
,
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since M = 1/2. Now, the total energy can be computed from the initial conditions to be 9/8.
Since the kinetic energy is positive, the radius must remain the region where V (r) < 9/8. Let’s
plot this.

Plot A9r + 1 � I8 r 2M, 9 � 8=, 8r, 0, 3 <,

AspectRatio ® Automatic,

AxesOrigin ® 80, 0 <E
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We can compute the points of intersection fairly precisely.

NSolve Ar + 1 � I8 r 2M � 1 + 1 � 8, r E
88r ® 1.<, 8r ® 0.421535<, 8r ® -0.296535<<

Thus the orbit bops back and forth from r = 1 to r ≈ 0.42. It never quite returns back to the
starting point so the interior of an annulus is traced out. This behavior is actually quite typical. In
fact, in the only potential functions that always lead to closed orbits have the form U(r) = −g/r
(gravity) and U(r) = ar2! I wonder what U(r) = ar2 leads to?

Exercise 7: Write down the system corresponding to the potential function U(r) = r2. Solve the
system explicitly using the initial conditions x(0) = 1, x′(0) = 0, y(0) = 0, y′(0) = 1/2.

Exercise 8: Write down the system corresponding to the potential function U(r) = sin
(

r2
)

.
Investigate it numerically.
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The two-body problem

Suppose the universe is a plane containing precisely two point masses that interact via gravitation.
(We consider planar motion for ease of visualization; however, planar motion frequently occurs
naturally and the ideas generalize readily to motion in space.) Now an object of mass m1 at
location rrr1 = 〈x1, y1〉 exerts a force on an object of mass m2 at location rrr2 = 〈x2, y2〉 according to
Newton’s inverse square law:

FFF = Gm1m2

rrr1 − rrr2

|rrr1 − rrr2|3
,

where G is a fundamental constant. By Newton’s 2nd law, this induces an acceleration on object
2: m2rrr

′′

2 . This yields a vector differential equation describing the motion of object 2:

m2rrr
′′

2 = Gm1m2

rrr1 − rrr2

|rrr1 − rrr2|3
,

which is equivalent to the following pair of equations for the x and y components:

m2x
′′

2 = Gm1m2

x1 − x2

((x1 − x2) 2 + (y1 − y2) 2) 3/2

m2y
′′

2 = Gm1m2

y1 − y2

((x1 − x2) 2 + (y1 − y2) 2) 3/2
.

Of course, rrr1 = 〈x1, y1〉 also moves according to very similar equations.

m1x
′′

1 = Gm1m2

x2 − x1

((x1 − x2) 2 + (y1 − y2) 2) 3/2

m1y
′′

1 = Gm1m2

y2 − y1

((x1 − x2) 2 + (y1 − y2) 2) 3/2
.

As it turns out, there are conservation laws of energy, angular momentum, and momentum for this
system. (These conservation laws can be formulated even for the mutual interaction of n points.)
In fact, the two body problem can ultimately be written in the form

m1rrr
′′

1 = −∇1U (‖rrr1 − rrr2‖) ,

m2rrr
′′

2 = −∇2U (‖rrr1 − rrr2‖) ,

where ∇1 denotes the gradient with respect to rrr1 and ∇2 denotes the gradient with respect to rrr2.
From these facts, one can prove the following theorem.

Theorem 4 The time variation of rrr = rrr2 −rrr1 in the two body problem is the same as that for the

motion of a point of mass m = m1m2/ (m1 + m2) in a field with potential U(‖rrr‖).
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Figure 3: Motion in the two body problem.

As a result, the points move along a conic section with one focus at their center of mass, in the
case of an inverse square law. This is illustrated in figure 3.

These ideas can be extended to n-bodies but at n = 3 there are chaotic solutions with no analytic
description. Thus, we really need to focus on numerical techniques and the right place to do that
is in a Mathematica notebook.

To do

Proof that all central fields are conservative. Proof of theorem 3.
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