## Calc I - Review for Quiz 1

We have our first quiz this Friday, Jan 24. All the problems on that quiz will likely look like something you see on this problem sheet, though this sheet is a bit longer than the quiz will be.

1. Curious about the following limit,

$$\lim_{x\to 0}(1+x)^{2/x},$$

I used my computer to plug in several values of x that are *close* to 0 but *not equal* to 0. The results are shown in the table below.

| x    | 0.1    | 0.01    | 0.001   | 0.0001  | 0.00001 |
|------|--------|---------|---------|---------|---------|
| f(x) | 6.7275 | 7.31602 | 7.38168 | 7.38832 | 7.38898 |

Based on those computations, can you make a conjecture as to the approximate value of the limit? Be sure to indicate how many digits you believe to be correct and why.

2. The graph of

$$f(x) = \frac{x-1}{x^3 - x^2 + x - 1}$$

is shown in Figure 1 below.

- a) Judging from the figure, what do you suppose is the value of  $\lim_{x\to 1} f(x)$ ?
- b) Use a little algebra together with the limit laws to prove that your guess is correct.
- 3. The Complete graph of a function f is shown in Figure 2 below. At each of the points a = -1, a = 1, a = 2 and a = 4, find the value of
- a) f(a),
- b)  $\lim_{x \to \infty} f(x)$ ,
- c)  $\lim_{x \to a^+} f(x)$ , and
- d)  $\lim_{x \to a} f(x)$ .

- 4. Continuing with Figure 2, state one clear reason why f is discontinuous at each of the points a = -1, a = 1, a = 2 and a = 4.
- 5. Compute each of the following limits. For part (a) make sure to write your solution out carefully. I'm primarily interested in answers for the others.
- a)  $\lim_{x \to 2} \frac{2x^2 3x 2}{x 2}$ b)  $\lim_{x \to \infty} \frac{2x^2 - 3x - 2}{x - 2}$ c)  $\lim_{x \to \infty} \frac{2x^2 - 3x - 2}{x^2 - 2}$ d)  $\lim_{x \to 2} \frac{x + 1}{x^2 - 4}$ e)  $\lim_{x \to 4} \frac{x + 1}{(x - 4)^2}$
- 6. Let  $f(x) = x^3 x^2 x 1$ . Write a complete sentence explaining why there is a number  $c \in (0, 2)$  such that f(c) = 0.



Figure 1: The graph of  $(x-1)/(x^3-x^2+x-1)$ 



Figure 2: Figure for limits and continuity