Calc II - Review 2

Our second exam is this coming Friday, March 29. Here are a few problems to study for that exam. As before, these should be quite relevant for the exam!

Team	Rating
Ohio State	100
UNC	85
UNCA	75
Michigan	-1000

1. Suppose that 50 teams play in a common league. I've developed the McClure rating that assigns a real number rating to each team with larger values associated with stronger teams. The ratings for a few teams are shown in the table above.

Suppose that the pairwise, symmetric differences of the ratings have a mean of zero and a standard deviation of 10 . Find the probability that Ohio State defeats UNC in their next game.
2. Use u-substitution to translate the following normal integral into a standard normal integral:

$$
\frac{1}{\sqrt{2 \pi} 2} \int_{-2}^{3} e^{-(x+1)^{2} / 8} d x
$$

3. I've got an unfair coin that comes up heads $3 / 4$ of the time. Suppose I flip that coin 800 times, count the number of heads I get, and call that value S.
a) Find $E(S)$ - i.e. the mean or expectation of S.
b) Find $\sigma^{2}(S)$ and $\sigma(S)$ - i.e. the variance and standard deviation of S
c) Write down a normal integral that represents $P(590<S<620)$.
4. Use the limit laws for sequences to explain clearly why

$$
\lim _{n \rightarrow \infty} \frac{3 n+2}{4 n-3}=\frac{3}{4}
$$

5. Evaluate the following limits
a) $\lim _{n \rightarrow \infty} \frac{3 n+2}{4 n-3}$
b) $\lim _{n \rightarrow \infty} \frac{3 n^{3}-2 n+2}{5 n^{3}-2 n-3}$
c) $\lim _{n \rightarrow \infty} \frac{3 n^{3}-2 n+2}{5 n^{4}-2 n-3}$
d) $\lim _{n \rightarrow \infty} \frac{2^{n}}{n!}$
6. Suppose that $a_{0}=2$ and $a_{n+1}=2 a_{n}-1$. What is the value of a_{4} ?
7. Explain clearly why

$$
\sum_{n=1}^{\infty} \frac{n}{n+1}
$$

diverges.
8. Evaluate the sum

$$
\sum_{n=1}^{\infty} \frac{2}{n(n+2)}
$$

by

- Decomposing the term $2 /(n(n+2))$ into partial fractions and then
- Use the fact that the result teloscopes.

9. Use the geometric series formula to express

$$
\sum_{n=2}^{\infty}(-1)^{n} \frac{3^{n+1}}{5^{n-1}}
$$

as a simple, finite combination of fractions.
10. Use the geometric series formula to express $0.21 \overline{12}$ as a simple, finite combination of fractions.

