An archived instance of a Discrete forum

Truth table

mark

Use a truth table to show that p⇒q is logically equivalent to ¬p∨q.

I’ll get you started: Fill out the following truth table:

p q ¬p ¬p∨q p⇒q ¬p∨q⇔p⇒q
T T ? ? ? ?
T F ? ? ? ?
F T ? ? ? ?
F F ? ? ? ?

Note that you can type that sort of thing into the forum using standard Markdown table syntax. Here’s the Markdown that I typed in to generate the table above. You’ve just got to figure out what to replace the question marks with.

|p|q|¬p|¬p∨q|p⇒q|¬p∨q⇔p⇒q|
|:---:|:---:|:---:|:---:|:---:|:---:|
|T|T| ? | ? | ? | ? |
|T|F| ? | ? | ? | ? |
|F|T| ? | ? | ? | ? |
|F|F| ? | ? | ? | ? |
wcshamblin
p q ¬p ¬p∨q p⇒q ¬p∨q⇔p⇒q
T T F T T T
T F F F F T
F T T T T T
F F T T T T
hzoppoth
p q ¬p ¬p∨q p⇒q ¬p∨q⇔p⇒q
T T F T T T
T F F F F T
F T T T T T
F F T T T T
tfields
p q ¬p ¬p∨q p⇒q ¬p∨q⇔p⇒q
T T F T T T
T F F F F T
F T T T T T
F F T T T T
asmith42
p q ¬p ¬p∨q p⇒q ¬p∨q⇔p⇒q
T T F T T T
T F F F F T
F T T T T T
F F T T T T
jbrandy1
p q ¬p ¬p∨q p⇒q ¬p∨q⇔p⇒q
T T F T T T
T F F F F T
F T T T T T
F F T T T T
ssatterw
p q ¬p ¬p∨q p⇒q ¬p∨q⇔p⇒q
T T F T T T
T F F F F T
F T T T T T
F F T T T T
jnarehoo
p q ¬p ¬p∨q p⇒q ¬p∨q⇔p⇒q
T T F T T T
T F F F F T
F T T T T T
F F T T T T