An archived instance of a Calc II forum

Prove that an improper integral converges

mark

Write down one or two complete sentences explaining why

\int_1^{\infty} \frac{x}{x^4+1} \, dx

converges.

You may assume that

\int_1^{\infty} \frac{1}{x^p} dx

converges whenever p>1.

chowell1
\int^\infty_1\frac{x}{x^4}dx

converges to 0 because the denominator grows faster, therefore

\int^\infty_1\frac{x}{x^4+1}

also converges towards 0.

rstahles

We know the integral:

\int_1^{\infty} \frac{x}{x^p} \, dx

converges as p>1. This, in return, must mean that the integral:

\int_1^{\infty} \frac{1}{x^3} \, dx

converges. So:

\int_1^{\infty} \frac{x}{x^4+1} \, dx

must also converge.

mark

@chowell1 and @rstahles

I think you need to write down an inequality that compares the integrand x/(x^4+1) with 1/x^3. Of course, you know what

\int_1^{\infty}\frac{1}{x^3}dx

does.

knguyen3

\int_1^\infty\frac{x}{x^4+1}dx converges by comparison with \int_1^\infty\frac{1}{x^3}dx, since 0<=\frac{x}{x^4+1}<=\frac{x}{x^4}=\frac{1}{x^3} and \int_1^\infty\frac{1}{x^3}dx converges.

agooch

We know the integral:

\int_1^{\infty} \frac{x}{x^4+1} \, dx

converges by comparison with

\int_1^{\infty} \frac{x}{x^p} \, dx

since

0\leq \frac{x}{x^4+1} \leq \frac{1}{x^p}

and

\int_1^{\infty} \frac{x}{x^p} \, dx

converges when p>1.