Calc III - Review 2

- 1. Find the TNB frame for $\vec{p}(t) = \langle 2\sin(3t), 0, 2\cos(3t) \rangle$,
- 2. Find the TNB frame for $\vec{p}(t) = \langle \cos(t^2), t^2, \sin(t^2) \rangle$
- 3. Find the arc length of one "coil" of the helix:
- 4. Find the TNB frame for $\vec{p}(t) = \langle 2\sin(3t), t, 2\cos(3t) \rangle$.
- 5. Let $f(x, y) = xy^3$.
 - (a) Compute ∇f .
 - (b) From the point (2, 1), in what direction **u** is *f* changing the fastest?
 - (c) From the point (2, 1), is there any direction \boldsymbol{u} so that $D_{\boldsymbol{u}}f(2, 1) = 10$?
- 6. Find and classify the critical points of the function $f(x,y) = x^2 3xy + y^3$.
- 7. Find and classify the critical points of the function $f(x, y) = x^3 2x^2 + xy + y^2 3x$.
- 8. In this problem, we'll use the method of Lagrange multipliers to find the extremes of $f(x, y) = x + y^2$ subject to the constraint $x^2 + y^2 = 1$.
 - (a) Sketch the contour diagram of f together with the constraint curve. The contour diagram of f should be a collection of parabolas and the constraint curve should be a circle. As a contour of f corresponds to an equaiton of the form f(x, y) = c, be sure to label each contour with its c value.
 - (b) Use your contour diagram to find the approximate location of the absolute minimum and absolute maximum of f along the constraint curve.
 - (c) Use the method of Lagrange multipliers to find the exact locations of the points you found in part (b).
- 9. Find the equation of the plane tangent to the graph of $2x^2 y^2 + z^2 = 8$ at the point (2, 1, 1).
- 10. Let $f(x,y) = 3(x-2)^2 + (y+1)^2$.
 - (a) Sketch and label several contours of f.
 - (b) What does part (a) tell you about local maximum and minimum values of f?
 - (c) Sketch the gradient field of f over your contour diagram. Pay special attention to the direction an relative magnitudes of the gradient vectors.
- 11. Use the method of Lagrange multipliers to find the extremes of f(x, y) = 2x + 4y subject to $x^2 + y^2 = 20$.

- 12. Let $f(x, y, z) = y^2 z x^2 y$.
 - (a) Compute ∇f .
 - (b) Find an equation of the plane tangent to the surface f(x, y, z) = 10 at the point (1, 2, 3).
- 13. Match the following functions with the graph or contour plot in figure 1.
 - (a) $f(x,y) = 2x^2 + y^2 + x^2y + 4$
 - (b) $f(x,y) = e^{-(x^2+y^2)}$
 - (c) $f(x,y) = \cos(x^2 + y^2)$
 - (d) $f(x,y) = x^2 y^2$
- 14. Note that the contour plot labeled IV in the figure 1 has several points lying on contour lines. Sketch the gradient vectors at those points. Be sure to pay attention to the direction and relative magnitudes of those vectors.

Figure 1: Some groovy pictures