
Python lab 2

February 12, 2018

In this lab, we’ll explore root finding a bit further. We’ll play with the functions in the
scipy.optimize package and we’ll explore a challenging situation where things can go awry. In
particular, let’s play with f (x) = x5 − x − 1. We can use the newton command in scipy.optimize

starting the iteration from x = 0 as follows:

In []: from scipy.optimize import newton

def f(x): return x**5 - x - 1

newton(f,0)

Question 1: What do you think of this answer??

As it turns out, the newton command doesn’t actually use Newton’s method when called this
way - it uses the secant method. This makes some sense when you consider the fact that SciPy
is purely numeric and doesn’t really have quick, reliable access to f ′. You can coerce newton into
using, well Newton, buy specifying the derivative in the optional third argument. Thus,

In []: def fp(x): return 5*x**4 - 1

newton(f,0,fp)

Damn! At this point, you should grab some code from our Finding roots of real functions so
we can try to figure out what the hell is going on!

Question 2: Modify our Newton’s method code to print the intermediate values as it goes
along. Then, apply that code to this problem to determine why Newton’s method failed here.

Actually, the result returned from newton(f,0) was much worse; we just get an incorrect an-
swer with no indication that the answer is wrong. One thing that’s cool about SciPy, is that we can
examine the code to try to get a grip on what’s going wrong. You can examine the code for newton
here: https://goo.gl/9V5sys. The portion that defines the Secant Method that is used in this case
starts at line 192. There are two relevant points, if we want to try to diagnose our problem.

1

https://marksmath.org/classes/Spring2018NumericalAnalysis/code/04-RootFinding.html
https://goo.gl/9V5sys

1. If we call newton(f,x0), the second point used for the Secant Method is just a small pertur-
bation of x0. If x0=0, this works out to be 0.0001.

2. The stopping criterion is |xi − xi+1| < 1.48 × 10−8.

Question 3: Modify our secant method code to print the intermediate values as it goes along.
Then, apply that code to this problem to determine why it failed here.

If you look in scipy.optimize, you’ll notice some other techniques - some of which work when
started at x0 = 0. In spite of this, the correct approach is to start the iteration at a reasonable
point.

Question 4: Take a quick look at a graph to get a grip on how many real roots this function has
and choose a good starting point to get one of them. with Newton’s method.

Finally, NumPy has a roots command that finds all the complex roots of a polynomial. Note
that the polynomial must be specified as a list of coefficients. Thus, we can find all the complex
roots of this polynomial like so:

In []: from numpy import roots

roots([1,0,0,0,-1,-1])

2

