LEON Q. BRIN

Tea Time
Numerical
Analysis

FExperiences in Mathematics, 2" edition

THE FIRST IN A SERIES OF TEA TIME TEXTBOOKS

2 I 8RR |1 GG

SOUTHERN
CONNECTICUT
STATE
UNIVERSITY



ii

@ @ @ 2016. Tea Time Numerical Analysis by Leon Q.

Brin is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

The code printed within and accompanying Tea Time Numerical Analysis electronically is distributed under the
GNU Public License (GPL).

This code is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later
version.

The code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details. For a copy of the GNU General Public License, see GPL.


http://lqbrin.github.io/tea-time-numerical/
http://lqbrin.github.io/tea-time-numerical/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.gnu.org/licenses/

iii

To
Victorija, Cecelia, and Amy



iv




Contents

Preface

About Tea Time Numerical Analysis . . . . . . . . . . . . . . e
Acknowledgments . . . . . ..l e
A note on the language agnostic version . . . . . . . . . . . . L. e e e
Preliminaries
1.1 ACCUTACY  « . v v o ot e e
Measuring Error . . . . . . . L e e e e e e e e e e e e
Sources of Error . . . . . L e e e e e e e e
Key Concepts . . . . o o o o o e
Exercises . . . . L e e e e
1.2 Taylor Polynomials . . . . . . . . . . e e e e
Key Concepts . . . . . o oo o i e e
Exercises . . . . oL e
1.3 Speed . . . . L e
Key Concepts . . . .« v v o i i e
Exercises . . . . e e e

Root Finding

2.1 Bisection . . . . . . e e e
The Bisection Method (pseudo-code) . . . . . . . . . ... e
Analysis of the bisection method . . . . . . . . . L
Exercises . . . . . e e e

2.2 Fixed Point Iteration . . . . . . . . . oL
Root Finding . . . . . . . o o e e e
The Fixed Point Iteration Method (pseudo-code) . . . . . . . . ... .
Key Concepts . . . . . o oo v o e e e
Exercises . . . . o e e

2.3 Order of Convergence for Fixed Point Iteration . . . . . . .. . . ... . ... ... ... ......
Convergence Diagrams . . . . . . . . . . Lo e e e e e
Steffensen’s Method (pseudo-code) . . . . . . . . . L
Key Concepts . . . . . o o o 0 o e e
Exercises . . . . o e e e

2.4 Newton’s Method . . . . . . . . o
A Geometric Derivation of Newton’s Method . . . . . . . . .. . ... ... ... ... ...
Newton’s Method (pseudo-code) . . . . . . . .
Secant Method . . . . . . . . . L e
Secant Method (pseudo-code) . . . . . . ..o
Seeded Secant Method (pseudo-code) . . . . . . . ..
Key Concepts . . .« v v i i e e e
Exercises . . . . o e e

2.5 More Convergence Diagrams . . . . . . . . . .o e e e



vi CONTENTS
Exercises . . . . o e e e 61

2.6 Roots of Polynomials . . . . . . . . . e 65
Synthetic division revisited . . . . . . . Lo 65
Finding all the roots of polynomials . . . . . . . . . .. 66
Newton’s method and polynomials . . . . .. .. . . . L 69
Miiller’s Method . . . . . . . . . e e e e e 69

Key Concepts . . . . o . o o o e e 71
Exercises . . . . e e e e 71

2.7 Bracketing . . . . . . . e 74
Bracketing . . . . . . L 74
Inverse Quadratic Interpolation . . . . . . . . .. L L e 7
StOPPING . . - . o e 80

Key Concepts . . .« v v i it e e e 81
Exercises . . . . o e e e 81
ANSWETS © . o o o 81

3 Interpolation 83
3.1 A root-finding challenge . . . . . . . . . . . e 83
The function f and its antiderivative . . . . . . . . . L L oL 83

The derivative of f and more graphs . . . . . . . . . . . . . 86

3.2 Lagrange Polynomials . . . . . . . . . . e 89
An application of interpolating polynomials . . . . . . . . . . ... ... 93
Neville’s Method . . . . . . L o o o e 94
Uniqueness . . . . . o o o e e e e e e e e 96

Key Concepts . . . . o o o o o e e 97
Exercises . . . . e e e e e 98

3.3 Newton Polynomials . . . . . . . . .. e 100
Sidi’'s Method . . . . . . . e e e e e 102
More divided differences . . . . . . . . Lo 104

Key Concepts . . . . o o oot o e e e e 105
Exercises . . . . o e e 105
ANSWETS . . . . o o e e e e e e e e 107

4 Numerical Calculus 109
4.1 Rudiments of Numerical Calculus . . . . . . . . . . . . . . . . e 109
The basic idea . . . . . . . . L e e 109
ISsues . . . e e e 111
Stencils . . . oL e 113
Derivatives . . . . . Lo e e e 114
Integrals . . . . . o L e 115

Key Concepts . . . . o o o o o e 116
Exercises . . . . o e e e 116
ANSWETS . . o o 118

4.2 Undetermined Coefficients . . . . . . . . . . . . e e e e 119
The basic idea . . . . . . oL e 119
Derivatives . . . . . . L e e e e e e 119
Integrals . . . . . . L e e e e e 121
Practical considerations . . . . . . . . . L L e e e e e 122
Stability . . . . . e e 124

Key Concepts . . . . . o oo v i e e e 125
Exercises . . . . o e e 125

4.3 Error Analysis . . . . . .. e 127
Errors for first derivative formulas . . . . . . ... L o 127
Errors for other formulas. . . . . . . . . L e e 128
Gaussian quadrature . . . . . . . oL L e e e 130
Some standard formulas . . . . . ... L e e e e 133

Key Concepts . . . . o o oo v e e 133



CONTENTS vii
Exercises . . . . o e e e e 138

4.4 Composite Integration . . . . . . . . oL L e 142
Composite Trapezoidal Rule . . . . . . . . . . . . . e 142
Adaptive quadrature . . . . . . .. L. L e e 143

Key Concepts . . . . . o o o o o s 145
Exercises . . . . o e e 146

4.5 Extrapolation . . . . . . . L e 148
Differentiation . . . . . . . . Lo e 151
Integration . . . . . L L e 151
Key Concepts . . . . o o oo o o e e e 153
Exercises . . . .o e e 153
ANSWETS . . o o e 155

5 More Interpolation 157
5.1 Osculating Polynomials . . . . . . . . . 157
Bezier Curves . . . . . oL e e e 159

Key Concepts . . .« v v i i e e e 163
Exercises . . . .o 163

B.2 Splines . . . . . L e 166
Piecewise polynomials . . . . . .. L 167
SPHNes . . . . e e e e 167
Cubic splines . . . . . . o 168

An application of natural cubic splines? . . . . . . . . .. ... 170
Exercises . . . . o e e e 171

6 Ordinary Differential Equations 173
6.1 The Motion of a Pendulum . . . . . . . . o . e 173
A brief history . . . . o o e 173

The equation of motion . . . . . . . . . L L 174
Forces in a free body diagram . . . . . . . .. ..o e 175
Solutions of ordinary differential equations . . . . . . . . .. L Lo 176
Initial Value Problems . . . . . . . . . . Lo 176

Key Concepts . . . . . o oot i e e e e 178
Exercises . . . . o e e 178

6.2 Taylor Methods . . . . . . . . . L e e 181
Euler’'s Method (pseudo-code) . . . . . . . . . 183
Higher Degree Taylor Methods . . . . . . . . . .. . e 183
Taylor’s Method of Degree 3 (pseudo-code) . . . . . . ... ... .. 183
Reducing a second order equation to a first order system . . . . .. ... oL oL oo 184

Key Concepts . . . . . . o o o e 185
Exercises . . . . o e e e 185

6.3 Foundations for Runge-Kutta Methods . . . . . . . .. .. . 187
Exercises . . . .o e 192
ANSWETS . . . o o o e e e 193

6.4 Error Analysis . . . . . . L 197
A Note About Convention and Practice . . . . . . . . . . . e 202
Higher Order Methods . . . . . . . . . o L e e 202

Key Concepts . . .« v v v i v e e e e 205
Exercises . . . .o e e e 206

6.5 Adaptive Runge-Kutta Methods . . . . . . . . . . . 207
Adaptive Runge-Kutta (pseudo-code) . . . . . . . .. L 210
General Runge-Kutta Schemes . . . . . . . .. 0. 0 211

Key Concepts . . .« v v i i e e e 214
Exercises . . . .o e e e 214
Bibliography 218

Index

220



viii CONTENTS




Preface

About Tea Time Numerical Analysis

Greetings! And thanks for giving Tea Time Numerical Analysis a read. This textbook was born of a desire
to contribute a viable, completely free, introductory Numerical Analysis textbook for instructors and students
of mathematics. When this project began (summer 2012), there were traditionally published (very expensive
hardcover) textbooks, notably the excellent Numerical Analysis by Burden and Faires, which was in its ninth
edition. As you might guess by the number of editions, this text is a classic. It is one of very few numerical
analysis textbooks geared for the mathematician, not the scientist or engineer. In fact, I studied from an early
edition in the mid 1990’s! Also in the summer of 2012 there were a couple of freely available websites, notably the
popular http://nm.mathforcollege.com/, complete with video lectures. However, no resource I could find included
a complete, single-pdf downloadable textbook designed for mathematics classes. To be just that is the ultimate
goal of Tea Time Numerical Analysis.

The phrase “tea time” is meant to do more than give the book a catchy title. It is meant to describe the general
nature of the discourse within. Much of the material will be presented as if it were being told to a student during tea
time at University, but with the benefit of careful planning. There will be no big blue boxes highlighting the main
points, no stream of examples after a short introduction to a topic, and no theorem. .. proof...theorem. .. proof
structure. Instead, the necessary terms and definitions and theorems and examples will be woven into a more
conversational style. My hope is that this blend of formal and informal mathematics will be easier to digest, and
dare I say, students will be more invited to do their reading in this format.

Those who enjoy a more typical presentation might still find this textbook suits their preference to a large extent.
There will be a summary of the key concepts at the end of each conversation and a number of the exercises will be
solved in complete detail in the appendix. So, one can get a closer-to-typical presentation by scanning for theorems
in the conversations, reading the key concepts, and then skipping to the exercises with solutions. I hope most
readers won’t choose to do so, but it is an option. In any case, the exercises with solutions will be critical reading
for most. Learning by example is often the most effective means. After reading a section, or at least scanning
it, readers are strongly encouraged to skip to the statements of the exercises with solutions (marked by Flor 1),
contemplate their solutions, solve them if they can, and then turn to the back of the book for full disclosure. The
hope is that, with their placement in the appendix, readers will be more apt to consider solving the exercises on
their own before looking at the solutions.

The topical coverage in Tea Time Numerical Analysis is fairly typical. The book starts with an introductory
chapter, followed by root finding methods, interpolation (part 1), numerical calculus, interpolation (part 2), and
the second edition introduces a chapter on differential equations. The first five chapters cover what, at SCSU,
constitutes a first semester course in numerical analysis. As this book is intended for use as a free download or
an inexpensive print-on-demand volume, no effort has been made to keep the page count low or to spare copious
diagrams and colors. In fact, I have taken the inexpensive mode of delivery as liberty to do quite the opposite. I
have added many passages and diagrams that are not strictly necessary for the study of numerical analysis, but
are at least peripherally related, and may be of interest to some readers. Most of these passages will be presented
as digressions, so they will be easy to identify. For example, Taylor’s theorem plays such a central role in the
subject that not only its statement is presented. Its proof and a bit of history are added as “crumpets”. Of course
they can be skipped, but are included to provide a more complete understanding of this fundamental theorem of
numerical analysis. For another example, as a fan of dynamical systems, I found it impossible to refrain from
including a section on visualizing Newton’s Method. The powerful and beautiful pictures of Newton’s Method as a

ix


http://nm.mathforcollege.com/

X Preface

dynamical system should be eyebrow-raising and question-provoking even if only tangentially important. There are,
of course, other examples of somewhat less critical content, but each is there to enhance the reader’s understanding
or appreciation of the subject, even if the material is not strictly necessary for an introductory study of numerical
analysis.

Along the way, implementation of the numerical methods in the form of computer code will also be discussed.
While one could simply ignore the programming sections and exercises and still get something out of this text, it
is my firm belief that full appreciation for the content can not be achieved without getting ones hands “dirty” by
doing some programming. It would be nice if readers have had at least some minimal exposure to programming
whether it be Java, or C, web programming, or just about anything else. But I have made every effort to give
enough detail so that even those who have never written even a one-line program will be able to participate in this
part of the study.

In keeping with the desire to produce a completely free learning experience, GNU Octave was chosen as the
programming language for this book. GNU Octave (Octave for short) is offered freely to anyone and everyone! It
is free to download and use. Its source code is free to download and study. And anyone is welcome to modify or
add to the code if so inclined. As an added bonus, users of the much better-known MATLAB will not be burdened
by learning a new language. Octave is a MATLAB clone. By design, nearly any program written in MATLAB will
run in Octave without modification. So, if you have access to MATLAB and would prefer to use it, you may do so
without worry. I have made considerable effort to ensure that every line of Octave in this book will run verbatim
under MATLAB. Even with this earnest effort, though, it is possible that some of the code will not run under
MATLAB. It has only been tested in Octave! If you find any code that does not run in MATLAB, please let me
know.

I hope you enjoy your reading of Tea Time Numerical Analysis. It was my pleasure to write it. Feedback is
always welcome.

Leon Q. Brin
brinll@southernct.edu

Acknowledgments

I gratefully acknowledge the generous support I received during the writing of this textbook, from the patience
my immediate family, Amy, Cecelia, and Victorija exercised while I was absorbed by my laptop’s screen, to the
willingness of my Spring 2013 Seminar class, Elizabeth Field, Rachael Ivison, Amanda Reyher, and Steven Warner
to read and criticize an early version of the first chapter. In between, the Woodbridge Public Library staff, especially
Pamela Wilonski, helped provide a peaceful and inspirational environment for writing the bulk of the text. Many
thanks to Dick Pelosi for his extensive review and many kind words and encouragements throughout the endeavor.

A note on the language agnostic version

First - a huge thanks to Leon Brin for producing a great, liberally licensed numerical analysis text! In the spirit of
the Creative Commons license, I decided to make some minor changes. I certainly agree that Octave is a natural
choice to use in a numerical methods course because it’s freely available and it’s very easy to transition from Octave
to Matlab - which is so widely used in industry. Octave is not, however, the only reasonable choice. In fact, there
are many other possibilities including Python, Julia, C, Fortran, and Matlab. Thus, I prefer a text that is language
agnostic and have modified the text accordingly.

In my teaching, I'll be using Python and the extensive set of numerical libraries available in the SciPy ecosystem.
Sample code is available on my class webpage:

https://www.marksmath.org/classes/Spring2018NumericalAnalysis/.

Mark McClure
Department of Mathematics
University of North Carolina at Asheville


https://www.marksmath.org/classes/Spring2018NumericalAnalysis/

Chapter

Preliminaries

1.1 Accuracy

Measuring Error

Numerical methods are designed to approximate one thing or another. Sometimes roots, sometimes derivatives
or definite integrals, or curves, or solutions of differential equations. As numerical methods produce only approx-
imations to these things, it is important to have some idea how accurate they are. Sometimes accuracy comes
down to careful algebraic analysis—sometimes careful analysis of the calculus, and often careful analysis of Taylor
polynomials. But before we can tackle those details, we should discuss just how error and, therefore, accuracy are
measured.

There are two basic measurements of accuracy: absolute error and relative error. Suppose that p is the value
we are approximating, and p is an approximation of p. Then p misses the mark by exactly the quantity p — p, the
so-called error. Of course, p — p will be negative when p misses low. That is, when the approximation p is less
than the exact value p. On the other hand, p — p will be positive when p misses high. But generally, we are not
concerned with whether our approximation is too high or too low. We just want to know how far off it is. Thus,
we most often talk about the absolute error, |p — p|. You might recognize the expression |p — p| as the distance
between p and p, and that’s not a bad way to think about absolute error.

The absolute error in approximating p = 7 by the rational number p = % is 2—72 — 7| & 0.00126. The absolute
error in approximating 7° by the rational number 1655425 is |1655425 — m| = 0.00116. The absolute errors in these
two approximations are nearly equal. To make the point more transparent, 7 ~ 3.14159 and % =~ 3.14285, while
7° & 306.01968 and 1655425 ~ 306.01851. Each approximation begins to differ from its respective exact value in the
thousandths place. And each is off by only 1 in the thousandths place.

But there is something more going on here. 7 is near 3 while 7° is near 300. To approximate 7 accurate to the
nearest one hundredth requires the approximation to agree with the exact value in only 3 place values—the ones,
tenths, and hundredths. To approximate 7° accurate to the nearest one hundredth requires the approximation
to agree with the exact value in 5 place values—the hundreds, tens, ones, tenths, and hundredths. To use more
scientific language, we say that % approximates 7 accurate to 3 significant digits while 1655—425 approximates m°
accurate to 5 significant digits. Therein lies the essence of relative errors—weighing the absolute error against the
magnitude of the number being approximated. This is done by computing the ratio of the error to the exact value.

22
Hence, the relative error in approximating 7 by 2—72 is 7|| ~ 4.02(10)~* while the relative error in approximating
™
16525 _ 5|
7 by 16325 js 54| & ~ 3.81(10) 5. The relative errors differ by a factor of about 100 (equivalent to about
0

two significant digits of accuracy) even though the absolute errors are nearly equal. In general, the relative error in
P — pl
Pl

approximating p by p is given by

Sources of Error

There are two general categories of error. Algorithmic error and floating-point error. Algorithmic error is any error
due to the approximation method itself. That is, these errors are unavoidable even if we do exact calculations at



2 CHAPTER 1. PRELIMINARIES

every step. Floating-point error is error due to the fact that computers and calculators generally do not do exact
arithmetic, but rather do floating-point arithmetic.

Crumpet 1: IEEE Standard 754

Floating-point values are stored in binary. According to the IEEE Standard 754, which most computers use, the
mantissa (or significand) is stored using 52 bits, or binary places. Since the leading bit is always assumed to
be 1 (and, therefore, not actually stored), each floating point number is represented using 53 consecutive binary
place values. Now let’s consider how 1/7 is represented exactly. In binary, one seventh is equal to 0.001001001 . ..

because % = 21 G0 = % + 6%1 + 5% + ---. To see that this is true, remember from calculus that

o]

22—31' _ i(2—3)i

i=1 i=1

But in IEEE Standard 754, % is chopped to

1.0010010010010010010010010010010010010010010010010010 x (2)73
or Z;il 273" which is exactly %. The floating point error in calculating 1/7 is, therefore,

2573485501354569 1| _ 1  7.63(10)~2
18014398509481984 7| 126100789566373888 ‘

References [35, 11]

In floating-point arithmetic, a calculator or computer typically stores its values with about 16 significant digits.
1

For example, in a typical computer or calculator (using double precision arithmetic), the number = is stored as
about 0.1428571428571428, while the exact value is 0.1428571428571428.... In the exact value, the pattern of
142857 repeats without cease, while in the floating point value, the repetition ceases after the third 8. The value
is chopped to 16 decimal places in the floating-point representation. So the floating point error in calculating 1/7
is around 5(10)7!7. I say “around” or “about” in this discussion because these claims are not precisely true, but
the point is made. There is a small error in representing 1/7 as a floating point real number. And the same is true
about all real numbers save a finite set.

Yes, there is some error in the floating-point representation of real numbers, but it is always small in comparison
to the size of the real number being represented. The relative error is around 107!7, so it may seem that the
consideration of floating-point error is strictly an academic exercise. After all, what’s an error of 7.93(10)~!® among
friends? Is anyone going to be upset if they are sold a ring that is .14285714285714284921 inches wide when it
should be .14285714285714285714 inches wide? Clearly not. But it is not only the error in a single calculation (sum,
difference, product, or quotient) that you should be worried about. Numerical methods require dozens, thousands,
and even millions of computations. Small errors can be compounded. Try the following experiment.

Experiment 1

Use your calculator or computer to calculate the numbers pg, p1, po, ..., p7 as prescribed here:
® Ppo=T
e p1 =10py — 31
e p2 = 100p; — 41



1.1. ACCURACY 3

e p3 = 100p2 — 59
e py = 100p3 — 26
e p5 = 100py — 53
e pg = 100ps — 58
e pr =100ps — 97

According to your calculator or computer, p7 is probably something like 0.93116. However, a little algebra will
show that
p7 = 100000000000007 — 31415926535897

exactly (which is approximately 0.932384). Even though py is a very accurate approximation of m, after just a
few (carefully selected) computations, round-off error has caused p; to have only one or two significant digits of
accuracy!

This experiment serves to highlight the most important cause of floating-point error: subtraction of nearly equal
numbers. We repeatedly subtract numbers whose tens and ones digits agree. Their two leading significant digits
match. For example, 10m —31 = 31.415926...—31. 107 is held accurate to about 16 digits (31.41592653589793) but
107 — 31 is held accurate to only 14 significant digits (0.41592653589793). Each subsequent subtraction decreases
the accuracy by two more significant digits. Indeed, p7 is represented with only 2 significant digits. We have
repeatedly subtracted nearly equal numbers. Each time, some accuracy is lost. The error grows.

In computations that don’t involve the subtraction of nearly equal quantities, there is the concern of algorithmic
error. For example, let f(x) = sinz. Then one can prove from the definition of derivative that

iin . sin(l+h) —sin(l — h)
F) = Jim 2h '

Therefore, we should expect, in general, that p(h) = is a good approximation of f’(1) for small

values of h; and that the smaller A is, the better the approximation is.

sin(14+h)—sin(1—h)
2h

Experiment 2

Using a calculator or computer, compute p(h) for h = 1072, h = 1073, and so on through h = 10~7. Your results
should be something like this:

h p*(h)
10~2 | 0.5402933008747335
1072 | 0.5403022158176896
10=* | 0.5403023049677103
107 | 0.5403023058569989
107% | 0.5403023058958567
10~7 | 0.5403023056738121

The second column is labeled p*(h) to indicate that the approximation p(h) is calculated using approximate
(floating-point) arithmetic, so it is technically an approximation of the approximation. Since f/(1) = cos(1) =
.5403023058681398, each approximation is indeed reasonably close to the exact value. Taking a closer look, though,
there is something more to be said. First, the algorithmic error of p(1072) is

|p(1072) — f/(1)| = ‘50 (sin (183) — sin (f(i))) — cos(l)’
~ 9.00(10)~°

accurate to three significant digits. That is, if we compute p(1072) using exact arithmetic, the value still misses
f'(1) by about 9(10)~%. The floating-point error is only how far the computed value of $(1072), what we have
labeled $*(1072) in the table, deviates from the exact value of 5(10~2). That is, the floating-point error is given by

" = bl:

_ /101 99\ _ 1
0.5402933008747335 — 50 <81n<100> s1n(100>>‘~1.58(10) ,



4 CHAPTER 1. PRELIMINARIES

as small as one could expect. The absolute error |p*(1072) — f/(1)] = |0.5402933008747335 — cos(1)] is essentially
all algorithmic. The round-off error is dwarfed by the algorithmic error. The fact that we have used floating-point
arithmetic is negligible.

On the other hand, the algorithmic error of $(10~7) is

1 1
’5000000 (sin <OOOOOO> — sin <9999999>) - cos(l)‘

~ 1077 ! 1
p(1077) — f(1)] 10000000 10000000

9.00(10) 16

Q

accurate to three significant digits. But we should be a little bit worried about the floating-point error since

10000001 9999999
in (22999991 0.841471 in [ 2%
m (10000000) 0-8414710388 and sin (10000000

whose five leading significant digits match! Indeed, the floating-point error is, again [p* — p|, or

. (10000001 . 9999999 N —10

) ~ .8414709307 are nearly equal. We are subtracting numbers

Perhaps this error seems small, but it is very large compared to the algorithmic error of about 9(10)~6. So, in
this case, the error is essentially all due to the fact that we are using floating-point arithmetic! This time, the
algorithmic error is dwarfed by the round-off error. Luckily, this will not often be the case, and we will be free to
focus on algorithmic error alone.

Crumpet 2: Chaos

Edward Lorenz, a meteorologist at the Massachusetts Institute of Technology, was among the first to recognize
and study the mathematical phenomenon now called chaos. In the early 1960’s he was busy trying to model
weather systems in an attempt to improve weather forecasting. As one version of the story goes, he wanted to
repeat a calculation he had just made. In an effort to save some time, he used the same initial conditions he
had the first time, only rounded off to three significant digits instead of six. Fully expecting the new calculation
to be similar to the old, he went out for a cup of coffee and came back to look. To his astonishment, he
noticed a completely different result! He repeated the procedure several times, each time finding that small
initial variations led to large long-term variations. Was this a simple case of floating-point error? No. Here’s a
rather simplified version of what happened. Let f(z) = 4z(1 — z) and set po = 1/7. Now compute p1 = f(po),
p2 = f(p1), p3 = f(p2), and so on until you have pso = f(ps9). You should find that pso =~ 0.080685. Now set
po=1/7+ 10712 (so we can run the same computation only with an initial value that differs from the original
by the tiny amount, 10~*?). Compute as before, p1 = f(po), p2 = f(p1), p3 = f(p2), and so on until you have
pao = f(pso). This time you should find that psp ~ 0.91909—a completely different result! If you go back and
run the two calculations using 100 significant digit arithmetic, you will find that beginning with po = 1/7 leads
to pao ~ .080736 while beginning with po = 1/7 + 1072 leads to pso = 0.91912. In other words, it is not the
fact that we are using floating-point approximations that makes these two computations turn out drastically
different. Using 1000 significant digit arithmetic would not change the conclusion, nor would any more precise
calculation. This is a demonstration of what’s known as sensitivity to initial conditions, a feature of all chaotic
systems including the weather. Tiny variations at some point lead to vast variations later on. And the “errors”
are algorithmic. This is the basic principle that makes long-range weather forecasting impossible. In the words
of Edward Lorenz, “In view of the inevitable inaccuracy and incompleteness of weather observations, precise
very-long-range forecasting would seem non-existent.”

References [19, 14, 1]

Experiment 3

Let a = 77617 and b = 33096, and compute

333.750% + a2(11a2b? — b5 — 121b* — 2) + 5.5b5 + 2%



1.1. ACCURACY 5

You will probably get a number like —1.180591620717411(10)?! even though the exact value is

54767
——— & —.8273960599468214.
66192
That’s an incredible error! But it’s not because your calculator or computer has any problem calculating each term
to a reasonable degree of accuracy. Try it.

333.750° = 438605750846393161930703831040
a®(11a®b? — b5 — 1216* —2) = —7917111779274712207494296632228773890
550 = 7917111340668961361101134701524942848
a 77617
— = ——— ~1.1726039400531
50 56192 72603940053179

The reason the calculation is so poor is that nearly equal values are subtracted after each term is calculated.
a’(11ab? — b5 — 121b* — 2) and 5.5b% have opposite signs and match in their greatest 7 significant digits, so
calculating their sum decreases the accuracy by about 7 significant digits. To make matters worse, a?(11a?b? —b® —
1216* — 2) 4+ 5.50% = —438605750846393161930703831042, which has the opposite sign of 333.756% and matches it in
every place value except the ones. That’s 29 digits! So we lose another 29 significant digits of accuracy in adding
this sum to 333.7565. Doing the calculation exactly, the sum 333.756% + a?(11a%b? — % — 121b* — 2) + 5.5b% is —2.
But the computation needs to be carried out to 37 significant digits to realize this. Calculation using only about
16 significant digits, as most calculators and computers do, results in 0 significant digits of accuracy since 36 digits
of accuracy are lost during the calculation. That’s why you can get a number like —1.180591620717411(10)2! for
your final answer instead of the exact answer 55 — 2 ~ —.8273960599468214.

What may be even more surprising is that a simple rearrangement of the expression leads to a completely
different result. Try computing

(333.75 — a2)bS + a2(11a2b* — 1216* — 2) + 5.50° + %

instead. This time you will likely get a number like 1.172603940053179. Again the result is entirely inaccurate, and
the reason is the same. This time the individual terms are

(333.75 — a®)b® = —7917110903377385049079188237280149504
a?(11a®b? — 121b* —2) = —437291576312021946464244793346
5505 = 7917111340668961361101134701524942848
a 77617
— = — ~1.1726039400531
5 56192 72603940053179

so the problem persists. We still end up subtracting numbers of nearly equal value. The difference between this
calculation and the last is rounding. In the first case, rounding caused two of the large numbers to disagree in their
last significant digit, so they added up to something huge. In the second case, the sum of the first three terms turns
out to be 0 because the large numbers agree in all significant digits. Note that in the second case, the final result
is simply the value of ;.

As these examples show, sometimes floating-point error and sometimes algorithmic error can spoil a calculation.
In general, it is very difficult to catch floating-point error, though. Algorithmic error is much more accessible. And
most of the algorithms we will explore are not susceptible to floating point error. In almost all cases, the lion’s
share of the error will be algorithmic.

References [28, 18]

Key Concepts

p The exact value being approximated.
p An approximation of the value p.

Absolute error: [ — p| is known as the absolute error in using p to approximate the value p.

15— p
Ip|

Relative error: is known as the relative error in using p to approximate the value p.



CHAPTER 1. PRELIMINARIES

Accuracy: We say that p is accurate to n significant digits if the leading n significant digits of p match those of

p. More precisely, we say that p is accurate to d(p) =

significant digits.

Floating-point arithmetic: Arithmetic using numbers represented by a fixed number of significant digits.

Algorithmic error: Error caused solely by the algorithm or equation involved in the approximation, |p — p| where

p is an approximation of p and is computed using exact arithmetic.

Truncation error: Algorithmic error due to use of a partial sum in place of a series. In this type of error, the tail

of the series is truncated—thus the name.

Floating-point error: Error caused solely by the fact that a computation is done using floating-point arithmetic,
|p* — p| where p* is computed using floating-point arithmetic, p is computed using exact arithmetic, and both
are computed according to the same formula or algorithm.

Round-off error: Another name for floating-point error.

Exercises

1.

7.

8.

9.

Besides round-off error, how may the accuracy of a nu-
merical calculation be adversely affected?

Compute the absolute and relative errors in the approx-
imation of 7 by 3

Calculate the absolute error in approximating p by p.

(a) p=123; p= 11906 18]
(b) p=1; p=.3666
(c) p=2' $=10000
(d) p=24; p=48

(€ p=nT p=10""F
(f) " p=(0.062847)(0.069234); p = 0.0042

Calculate the relative errors in the approximations of
question 3. 5]

. How many significant digits of accuracy do the approx-

imations of question 3 have?

. Compute the absolute error and relative error in ap-

proximations of p by p.
(a) p= V2, p= 1414
(b) p=10", p = 1400
(c) p=9! p=V18r(9/e)’

1103v/8
9801

Calculate using the computer.

The number in question 7 is an approximation of
1/m. Using the computer, find the absolute and rela-
tive errors in the approximation.

Using the computer, calculate

|1n(234567) |

o n(234567)]

lcos(3) — {/In(3)]

farctan(?») — €3]

10. Find f(2) using the computrer.

(a) flz) = e B
(b) f(x) = sin (e”)
(¢) f(z)=tan " (z — 0.429)
(d) f(z) =x — tan™ (0.429)
(e) f(z)=10%/5!
(f) flz)=5!/a"
11. All of these equations are mathematically true.

Nonetheless, floating point error causes some of them
to be false according to the computer. Which ones?
HINT: Use the boolean operator == to check. For ex-
ample, to check if sin(0) = 0, type sin(0)==0 into
the computer. ans=1 means true (the two sides are
equal according to the computer—mno round-off error)
and ans=0 means false (the two sides are not equal ac-
cording to the computer—round-off error).

(a) (2)(12) =92 —4(9) — 21

(b) 31In(2) _ -8

(c) In(10) = In(5) + In(2)

(d) (H'f) = % where g(x) = V22 2
(e) |153465/3| = 153465/3

(f) 3 +7n% —2r +8= (3 + T)m — 2)mr + 8

12. Find an approximation p of p with absolute error .001.

@ p=nt

(b) p=+5

(c) p=1In(3) ©

(d) p=v23""

(€ p= iy

(f) p=tan(1.57079)

13. Find an approximation p of p with relative error .001
for each value of p in question 12.

14. p approximates what value with absolute error .00057

(a) p=.2348263818643 [*!



1.1. ACCURACY 7
(b) p=23.89627345677 21. Find values for p and p so that the relative and abso-
(c) p = —8.76257664363 lute errors are equal. Make a general statiment about
conditions under which this will happen. !
15. Repeat question 14 except with relative error .0005. 92. Find values for p and § so that the relative error is
16. p approximates p with absolute error &5 and relative greater than the absolute error. Make a general state-
error %. Find p and p. [4] ment about conditions under which this will happen.
17. p approximates p with absolute error % and relative 23. Find values for p and p so that the relative error is
error ﬁ Find p and p. less than the absolute error. Make a general statement
18. Suppose p must approximate p with relative error at about conditions under which this will happen.
most 107°. Find the largest interval in which j must 24. Calculate (i) p* using a calculator or computer, (ii)
lie if p = 900. the absolute error, |p* — p|, and (iii) the relative error,
19. The number e can be defined by e = > (1/n!). \plpf‘pl. Then use the given value of p to compute (iv)
Compute the absolute error and relative error in the the algorithmic error, |p—p| and (v) the round-off error,
following approximations of e: |p* — Bl
) 25: 1 (a) Let f(z) = z*+72° —632%—2952+350 and let p =
a — ~ _ —Ty_t(_9_10-T7
—~ n! f'(=2). The value p = f(=2+10 2(%0){(7 2-1077)
10 is a good approximation of p. p is exactly
1 8.99999999999999. 14!
) Yo
n=0 (b) Let f'(z) = €%sin(10z) and f(0) = 0
and let p = f(1). It can be shown that
. 1+E . . I B - 10
20. The golden ratio, 5 1 found in nature and in p = tare(sinl0 10cos10) + o1 Eu-

mathematics in a variety of places. For example, if F,,
is the n'® Fibonacci number, then
Fn+1

lim *1—’_\/5
nooo Fn 2

Therefore, F11/Fi0 may be used as an approximation
of the golden ratio. Find the relative error in this ap-
proximation. HINT: The Fibonacci sequence is defined
by FO = 1, F1 = 1, Fn = I'n-—1 +Fn,2 fOI"n,Z 2.

ler’s method produces the approximation p =
1—10 Zgl e/ sini. Accurate to 28 significant dig-
its, p is 0.2071647018159241499410798569.

(c) Let ap = % and an+1 = 4an(1 —ayn), and con-
sider p = as1. It can be shown that p = as1 =
%. The most direct algorithm for calculating
as1 is to calculate a1, a2, as,...as1 in succession,
according to the given recursion relation. Use this
algorithm to compute p* and p.



8 CHAPTER 1. PRELIMINARIES

1.2 Taylor Polynomials
One of the cornerstones of numerical analysis is Taylor’s theorem about which you learned in Calculus. A short
study bears repeating here, however.

Theorem 1. Suppose that f(x) has n+ 1 derivatives on (a,b), and xo € (a,b). Then for each x € (a,b), there
exists a &, depending on x, lying strictly between x and xy such that

f(j) (o) j Fe(g) n+1
f(®) +Z< (z — o) +m($*$o) :
Proof. Let I be the open interval between x and =g and I be the closure of I. Since I C IC (a,b) and f hasn+1
derivatives on (a,b), we have that f, f’, f”,..., f) are all continuous on I and that f("*1) exists on I. We now
define 0
n fu .
F(z)=f(x) = f(z) =) (z—2)
j=1
and will prove the theorem by showing that F(x¢) = (x( ?{L,Jrlf(”"’l)(f) for some £ € I. Note that F'(z), a

telescoping sum, is given by

N S ST

= (=1
(nt1)(,
- 1o~ | e - )]
(nt1)(,
R IC

n!

n+1
Now define g(z) = F(z) - ( Loz ) F(xp). Tt is easy to verify that g satisfies the premises of Rolle’s theorem.

T—xo
Indeed, g(xg) = g(x) = 0 and the continuity and differentiability criteria are met. By Rolle’s theorem, there exists

¢ € I such that ¢/(€) F'(€) + (n+ 1)~ F(x). Hence,

(x—z0)™ 1

_ n+1
_ f(n+1)(€) (:E —r )n+1
T onlln+1) 0
(n+1)
f(n + 1()5!) (o = a0,
This completes the proof. O

We will use the notation ,
7,(0) = 1)+ 30 (L2000
n - 0 st j' 0
j:
and call this the n*" Taylor polynomial of f expanded about zy. We will also use the notation

)

() = 05

(z — xo)" T

and call this the remainder term for the n** Taylor polynomial of f expanded about .

Crumpet 3: &

¢ is the (lower case) fourteenth letter of the Greek alphabet and is pronounced ksee. It is customary, but, of
course, not necessary to use this letter for the unknown quantity in Taylor’s theorem. The capital version of £ is
=, a symbol rarely seen in mathematics.




1.2. TAYLOR POLYNOMIALS 9

It will not be uncommon, for sake of brevity, to call T},(x) the n** Taylor polynomial and R, () the remainder
term when the function and center of expansion, xq, are either unspecified or clear from context.

In calculus, you likely focused on the Taylor polynomial, or Taylor series, and did not pay much attention to the
remainder term. The situation is quite the reverse in numerical analysis. Algorithmic error can often be ascertained
by careful attention to the remainder term, making it more critical than the Taylor polynomial itself. The Taylor
polynomial will, however, be used to derive certain methods, so won’t be entirely neglected.

The most important thing to understand about the remainder term is that it tells us precisely how well T, (x)
approximates f(z). From Taylor’s theorem, f(x) = T,,(z) + R, (), so the absolute error in using T,,(x) to approxi-

mate f(z) is given by |T,,(z) — f(x)| = |Rn(2)|. But |R,(2)| = ’f((n:i),f)( — o)™ for some ¢ between z and z.
Therefore,
f(n+1) (5) n+1
T () = fz)] = [Ru(2)] < max m(x — o)
x — x|t n
_ (n—|—l)! mgax‘f( +1)(§)‘.

We learn several things from this observation:

1. The remainder term is precisely the error in using T, (x) to approximate f(x). Hence, it is sometimes referred
to as the error term.

2. The absolute error in using T),(z) to approximate f(x) depends on three factors:

(a) o — ol
b) Gy
(© £ (9|

3. We can find an upper bound on |T,(z) — f(z)| by finding an upper bound on ‘f(”H)(f)’.

Figure 1.2.1: For small n, T}, (x) is a good approximation only for small z.

3 I
T4
T10 ———
2 - cos(x) ——

-10 -5 0 5 10

Because |R,(x)| measures exactly the absolute error |T,,(x) — f(x)|, we will be interested in conditions that force
|R,,(z)| to be small. According to observation 2, there are three quantities to consider. First, |z —zo|""!, or |2 —x¢],
the distance between x and xg. The approximation T, (x) will generally be better for x closer to xy. Second, sk
This suggests that the more terms we use in our Taylor polynomial (the greater n is), the better the approximation
will be. Finally, |f*+D(¢)|, the magnitude of the (n + 1)** derivative of f. The tamer this derivative, the better
T, (x) will approximate f(x). Be warned, however, these are just rules of thumb for making |R,,(z)| small. There

are exceptions to these rules.



10 CHAPTER 1. PRELIMINARIES

Figure 1.2.2: The actual error |T,(z) — f(x)| is often much smaller than the theoretical bound.

al T2(x) i
T11(x)
In(x)
3 |- -
(€2,2)
2 |- -
1 |- -
0 |- -
_1 | | | | | | | |

To see these factors in action, consider f(z) = In(z) expanded about zo = e2. According to Taylor’s theorem,

r—e?  (zv—e?)? 1 o3
To(z) =2+ R and Ro(x) = @(:E—e )7
Z 1/~ Ha —e?) —1 2y12
T11 =2+ ( ]623 ) and Rll(l’) = @(l‘ — € ) .

After you have convinced yourself these formulas are correct, suppose that we are interested in approximating In(x)
with an absolute error of no more than 0.1. Since [£ 73| and €712 are decreasing functions of ¢, they attain their
maximum values on a closed interval at the lower endpoint of that interval. Hence, for z > e%, we have |Ry(x)| <
MaXee(e2 4] ‘%(1‘—62)3 = 355(z — €?)®. But for 0 < 2 < €, we have |Ry(z)| < maxee(y ez %(1‘—62)3 =

I3 (62 —x)3. To determine where these remainders are less than 0.1, we need to solve the equations 15 (z—e?)* = 0.1

and 313 (e? — 2)® = 0.1. The values we seck are z = <1 + ¢ 1%) e? ~12.33 and z = 3—“310121\@) 2~ 4.427. So

Taylor’s theorem guarantees that T5(z) will approximate In(z) to within 0.1 over the entire interval [4.427,12.33].
Since e? ~ 7.389, Ty(x) approximates In(z) to within 0.1 from about 3 below €2 to about 5 above e?. In other
words, as long as x is close enough to 2y = e?, the approximation is good. A similar calculation for Ry;(z) reveals
that T11(x) is guaranteed to approximate In(x) to within 0.1 over the interval [3.667,14.89]. In other words, for a
larger value of n, x doesn’t need to be as close to zy to achieve the same accuracy.
But remember, these are only theoretical bounds on the errors. The actual errors are often much smaller than
1

the bounds. For example, our analysis gives the upper bound |Ry(3)| < z5z(e* — 3)® ~ 1.05 where the actual

error, [T2(3) — In(3)| = |2 + 3;—2‘} - % - ln(S)‘ ~ .131. The bound is about 8 times the actual error. If we

take this point a bit further, the graphs of T5(x) and T11(x) versus In(z) (and a bit of calculation we will discuss
later) reveal that T5(z) actually approximates In(z) to within 0.1 over the interval [3.296,13.13] and T () actually
approximates In(x) to within 0.1 over the interval [0.9030, 15.33]. These intervals are a bit larger than the theoretical
guaranteed intervals. See Figure 1.2.2. This figure reveals something else too. T5(18) does a much better job of
approximating In(18) than does T71(18). It’s not always the case that more terms means a better approximation.

We now turn our attention to perhaps the most often analyzed Taylor polynomials-—those for the sine and cosine
functions. They provide examples with beautiful visualization and simple analysis. The n‘" Taylor polynomial for
f(z) = cos(z) expanded about 0 is

de COb(.’E)) 4
T.(x) = cos(0 +Z —””:0(95—0)3
0 in(0 0
0o S O )
_ Lo 14
= 1 2:0 +24$



1.2. TAYLOR POLYNOMIALS 11

and its remainder term is

Enleos(o)] 1
—sin(§) whennmod4=0
x| —cos(¢) when n mod 4 =1

(n+1)! | sin(¢) when n mod 4 =2
cos(§) when n mod 4 = 3
Since the sine and cosine functions are bounded between —1 and 1 we know that
|$|n+1 |$|n+1

(n+ 1)

ey < o) <

There are two ways this remainder term will be small. First, if x is close to 0, then |z| is small, making R, (x)

small. Second, if n is large, then m is small, making R, (z) small. In other words, for small values of n, the

remainder term is small for small values of z. T, (x) is a good approximation of cos(x) for such combinations of
z and n. On the other hand, for large values of n, the remainder term is small even for large values of x. For
example, |Re1(z)| < %, s0 |Rg1(2)| will remain less than 1 for all z with magnitude less than %/62! ~ 23.933.
Figures 1.2.1 and 1.2.3 illustrate these points.

Figure 1.2.3: For large n, T,,(x) is a good approximation even for large .

T
T60
cos(x)

-30 -20 -10 0 10 20 30

Key Concepts

Rolle’s theorem: Suppose that f(x) is continuous on [a, b] and differentiable on (a,b). If f(a) = f(b), then there
exists £ € (a,b) such that f'(£§) = 0.

Taylor’s theorem: Suppose that f(x) has n 4+ 1 derivatives on (a,b), and z¢ € (a,b). Then for each = € (a,b),
there exists &, depending on x, lying strictly between = and z( such that

FO(E)
(n+1)!

f(j)(a:o
4!

(x — xo)" .

Fla) = Flao) + g (E - aup ) +

nt" Taylor polynomial: T, (x) = f(z¢) + Z;;l (%(w — xo)j).

Maclaurin polynomial: A Taylor polynomial expanded about zg = 0 is also called a Maclaurin polynomial.

Remainder term: R, (z) = f((n:_ll))(,g) (x — o)™ T is precisely — (T, (z) — f(x)).




12 CHAPTER 1. PRELIMINARIES

Error term: Another name for the remainder term.

Crumpet 4: The original theorem of Brook Taylor

The original theorem of Brook Taylor was published in his opus magnum Methodus Incrementorum Directa &
Inversa of 1715. In Methodus, it appears as the second corollary to Proposition VII Theorem III, bearing faint
resemblance to any modern statement of the theorem.

PRORVH THEORIH

Sint = & % quantitates due wrubtle.r, quarum: = tmgfarmter :

uggmr per dasa increments z, & fif nz =v, v—2z2= vy

v—z =, ‘& fic porrd.  Tum . dico quod quo tem-

pore z crefeendo fit = 4+ w, x item crefendo fier

LA RIS .
x' + ; 3 +§l.zz:" ‘ i !:.2.35:'. + &C.
COROLL, I - - -

. Si pro Incrementis evanefcentibus feribantur fluxiones ipfis pro-
portionales, faltis jam omnibus v, v, v, v, v, &c. zqualibus

quo témporez uniformiter fluendo fit z + v fiet , x4 é._z +
1z

e V2 v3
- x
’.‘;:1."2:,' b 1.2, 3".’

&c. vel _t'lmt‘ago‘ﬁgno ipfius v, guo' tem-

- pore zdecrefcendo fit =1, x decrefcepdoﬁet Lo ,,-—— +
1%

1

o oei- e a1 . .

P TS . TF om0
s_v ;- +&c. G . PROP
e 12 55

There is no mention of a remainder term. There is no use of the familiar f(z)-type function notation. It’s written
in Latin. And there is no laundry list of hypotheses.

Here is the original statement of Taylor’s theorem in English as translated by Ian Bruce. PrRoposiTION VII.

THEOREM III: There are two variable quantities, z & x, of which z is regularly increased by the given increment

AN \
z,and nz = v, v —2z = v, v —z = v, and thus henceforth. Moreover, I say that in the time z increases to z +v,

W A\
increases likewise to become = + x % 12 +T155 2Z2 +z 1”2“3” = + &c. COROLLARY II: If for the evanescent increments,

AREEAY
the fluxions of the proportionals themselves are written, now with all the v, v, v, 1/1, /’U/ , &c. equal to the time

z uniformly flows to become z + v, x becomes = + 7% + £ 1552 222 + T 323 + &c ...




1.2.

TAYLOR POLYNOMIALS

13

Crumpet 5: Interpretation of the original theorem of Brook Taylor

Unfortunately, the English translation of Taylor’s theorem is only moderately helpful to anyone who is not well
acquainted with early 18" century mathematics. In 1715, function notation was still 20 years in the making.
Today, we would interpret the declaration of the two variables as declaring that z is a function of z. The claim

\ A\
in Theorem III is that we can rewrite z(z +v) as = + % + T35z 222 + z 1”2”3”3 + &c. Just as z should be
interpreted as a function of z so should z, z, and z. More premsely7 x means z(z + z) — z(z), the amount x is

incremented as z is incremented by z. Likewise, = is the amount z is incremented as z is incremented by z, so

z=z(z+2)—x(z) = [w(z +2z) —x(z+ z)} — [m(z +z) — m(z)} = x(z+2z) — 2z(z + z) + x(2). Similarly, x is
the amount z is incremented as z is incremented by z. Now would be a good time to break from reading to verify
that ¢ = z(2+32) —3x(2+22) +3z(2+2) —x(z), that = z(2+42) —4x(2+32) +6x(2+22) —dx(z+2) + z(2),

. . . . 0 1 A A\
and so on. With this understanding and the conventions z for x, x for x, x for x, v for v, v for v, v for v, and
0 1 2 "

so on, it is then an algebraic exercise to see that

pz+nz) = 1-2-3

This calculation is essentially Taylor’s proof of Theorem III.

Corollary II (which we would consider the theorem) is not proved by Taylor beyond the “obvious” application
of Newton’s theory of fluxions. In today’s language, corollary II follows by applying the limit as n — oo to the

expression from Theorem III. It makes for another nice exercise to verify that lim, .o zik = Jz(k)(z), the kt"

derivative of z. And one final exercise to see that limn_,oof) = v. As Taylor took these results for granted, so
3
shall we. Applying them to Theorem III, we see that z(z +v) = 2(z) + 2'(2) 5 + 2" (2) 5 ° + " (z2)% +---. In

the notation of Taylor Z is the first derivative of x, ;5 is the second derivative of z, and so on. So we in fact

have x + 275 —i—mm + xw + &c as claimed.

It is interesting that Theorem III is true for any function x defined on the interval [z, z + v]. No matter if
x is differentiable, or even continuous. It is a statement about finite differences. It is the corollary that requires

many more assumptions because that is where we pass to the limit.

Exercises

1. Find T3(z) and Rs(x) for the function expanded about
xo.

[N
=
@
-
~
—~
&
I
N
8
I
)
8
+
o
8
I

(a) Find T5(z) and Rs(x) expanded about zo = 0.
(b) Find T3(z) and Rs(z) expanded about zo = 2.
(c) Make a conjecture based on your answers to parts
(a) and (b). Can you prove it?
3. Find the 36" Maclaurin Polynomial for f(z) = e®.

4. Suppose f(zx) is a function whose fourth derivative ex-
ists on the whole real line, (—o0, 00), and that f(2) = 3
f(2)=-1, f"(2) =2, and f"(2) = -1.

(a) Write down the third Taylor polynomial for f(z)
expanded about xzg = 2.

(b) Use the Taylor polynomial to approximate f(4).



14

CHAPTER 1. PRELIMINARIES

(¢) Find a bound on the absolute error of the approx-
imation using the fact that

—3< M) <s

for all £ € [2,4].

5. Compute the 3" Taylor Polynomial for f(z) = z° —

22t + 2 -9 +x—1 expanded about xp = 1.
6. Find the second Taylor Polynomial for f(z) = cscx ex-

panded about zp = % Here are some facts you may

find useful:
! = — CSC|(Xx) cot(x CSC(\T) = L
#(x) = cse(z)(1 + 2cot(z))  cot(x) = Zif((;’))

7. The hyperbolic sine, sinh(z), and hyperbolic cosine,
cosh(z), are derivatives of one another. That is,

d, .
a(smh(w)) = cosh(x)

and

d .
T (cosh(z)) = sinh(z).

Find the remainder term, R43, associated with the 4374
Maclaurin polynomial for f(z) = cosh(z).

8. Use an inline function to evaluate the Taylor poly-
ﬁ)mial Ti(z) = 1— 12+ L a* at the given value of x.
S
(a) 0
(b) 3
(c) 1
(d) =
9. Use an inline function to evaluate the Taylor poly-
nomial T3(z) = 1+ + $2° + £2° at the given value of

—~ o~
o

NN N

N njw O

o [4]

10. Write and run a .m file that finds all the answers for
exercise 8. [

11. Write and run a .m file that finds all the answers for
exercise 9.

12. Find £(z) as guaranteed by Taylor’s theorem in the fol-
lowing situation.
(a) f(z)=cos(z), zo=0,n=3, z=m. ©*
(b) flx) =e€",
(¢) f(z)=In(z),zo=1,n=4,z=2.

13. Let f(z) = .

z0o=0,n=3, x=1n4.

(a) Find the second Taylor polynomial, P>(z), about
o = 0.

(b) Find the remainder term, R2(0.5), and the actual
error in using P»(0.5) to approximate f(0.5).

(c) Repeat part (a) using zo = 1.

(d) Repeat part (b) using the polynomial from part

(c).

14. Find the second Taylor polynomial, P»(z), for f(z) =
e® cosx about zg = 0.

(a) Use P2(0.5) to approximate f(0.5). Find an up-
per bound on the error |f(0.5) — P2(0.5)| using
the remainder term and compare it to the actual
error.

(b) Find a bound on the error |f(z) — P2(z
the interval [0, 1].

(c) Approximate fl f(x)dz by
[ Pt

(d) Find an upper bound for the error in (c) using
Jo 1Bolx
0

tual error.

)| good on

calculating

) dz instead.

)| dz and compare the bound to the ac-

15. Let f(z) =e”

(a) Find the n'"* Maclaurin polynomial P, (z) for
().

(b) Find a bound on the error in using P4(2) to ap-
proximate f(2).

(¢) How many terms of the Maclaurin polynomial
would you need to use in order to approximate
f(2) to within 107°? In other words, for what n

does P, (2) have an error bound less than or equal
to 107197

16. Find the fourth Taylor Polynomial for Inz expanded
about zg = 1.

17. What is the 50™" term of Tigo(e®) expanded about
Xo = 6?

18. The Maclaurin series for the arctangent function con-
verges for —1 < < 1 and is given by

“m 3 -

i=n+1

7,+1 (E

t = lim Py(
arctanz = lim 5 1"

n—00

Use the fact that tan(w/4) = 1 to determine the num-
ber of terms, n, of the series that need to be summed
to ensure that |[4P,(1) — 7| < 1075,

19. Exercise 18 details a rather inefficient means of ob-
taining an approximation to w. The method can
be improved substantially by observing that 7/4 =
arctan% + arctan% and evaluating the series for the
arctangent at % and at % Determine the number of
terms that must be summed to ensure an approxima-

tion to 7 within 107°.
20. For f(x) = tan™'(x),

gy = 49
10 = {1y

if n is even
if n is odd.

Find the n* Maclaurin polynomial P, (z) for f.



1.2. TAYLOR POLYNOMIALS 15

21. How many terms of the Maclaurin Series of sinz are (g) Sketch graphs of f(z) and T2(x) on the same set
needed to guarantee an approximation with error no of axes for x € [1, 26].
more than 1072 for any value of z between 0 and 27? 10

o . 28. Suppose f(z) is such that —3 < f(19(z) < 7 for all

22. Suppose you are approximating f(z) = e* using the x € [0,10]. Find lower and upper bounds on the ab-
tenth Maclaurin polynomial. Find the largest interval solute error in using Ty(z) expanded about zo = 3 to
over which the approximation is guaranteed to be ac- approximate
curate to within 1073,

23. Find a bound on the error in approximating e'® by (a) £(0).
using the twenty-fifth Taylor polynomial of g(x) = €” (b) f(10).
expanded about x¢p = 0.

. . . 29. Suppose you wish to approximate the value of —e*sin 4

24. Find a bound on the error of the approximation . - .

using separate Maclaurin polynomials (Taylor polyno-
2 1.5 1,5 1 4 1 5 mials expanded about zo = 0) for the sine and exponen-
L2+ 5(2) + 6(2) + ﬂ(Q) + ﬁo(m tial functions instead of a single Maclaurin polynomial
) , ) for the function f(x) = —e®sinz. How many terms of
according to Taylor’s Theorem. Compare this bound each would you need in order to get accuracy within
to the actual error. 1072°? Ignore round-off error.
(8) _ =z . .

25. Suppose f(z) = e cos T for some .funcuon f. Find 30. Find a theoretical upper bound, as a function of z, for
a bound on the error in approximating f(z) over the the absolute error in using T4(z) to approximate f(z).
interval [0, /2] using T7(z) expanded about zo = 0.

26. Let f(z) = ¢, and 2o =5. (a) e®sinz; zo = 0.

Find T>(x).
Find R2(z).
Use T2(z) to approximate f(1) and f(9).

Find a theoretical upper bound on the absolute
error of each of the approximations in part (c).

(e) Find a theoretical lower bound on the absolute
error of each of the approximations in part (c).

(f) Find the actual absolute error for each of the ap-
proximations in part (c¢). Verify that they are
indeed between the theoretical bounds.

(g) Sketch graphs of f(z) and T2(z) on the same set
of axes for z € [1,9].

27. Let f(x) =In(l1+ z) and zo = 0.

(a) Find Ts(z).

(b) Find Rs(x).
) Use T5(z) to approximate f(1) and f(26).
)

Find a theoretical upper bound on the absolute
error of each of the approximations in part (c).

(e) Find a theoretical lower bound on the absolute
error of each of the approximations in part (c).

(f) Find the actual absolute error for each of the ap-
proximations in part (c). Verify that they are
indeed between the theoretical bounds.

31.

32.

(b) 67952; 20=0. 0
(¢) L +sin(10x); o = 7.

—x

The Maclaurin Series for f(z) =e™7 is

(D 1, 1,
; 7 m—l—x+§x —gac + ...

Find a bound on the error in approximating 1/e by
1-14+1/2-1/6+1/24.

The Taylor series for f(z) = e’ s
1 1 1 1
T(z) = 1+x+5x2+§x3—|—@x4+5m5+---.

This series converges to f(z) for all values of z. In
particular, for x = 1, this means that
1

FO=TM)=1+1+5(1)°+

1

3 (1)* 4

(1)° +

Simplifying this equation, we see that
—1+1+1+1+i+i+
= 276" 24 " 120

Use Taylor Series to find infinite sums that sum to

(a) In(2)

(b) 2/3

(c) m/4
)

(@) v2



16 CHAPTER 1. PRELIMINARIES

1.3 Speed

Besides accuracy, there is nothing more important about a numerical method than speed. There is almost always a
trade-off between one and the other, however. Fast computations are often not particularly accurate, and accurate
calculations are often not particularly fast. There are certain algorithms that produce accurate results quickly,
however. Deriving them, or identifying them once derived is what numerical analysis is all about.

The first type of numerical method we will encounter produces a sequence of approximations that, when ev-
erything is working, approach some desired value, say p. With these methods, we will get a sequence (p,) with
lim;, 00 P = p- You should be familiar with the concept of the limit of a sequence from Calculus, but the purpose
there was much different from ours here. Generally, you were concerned with whether a given sequence converged
at all. And when it did converge, and you were very lucky, you were able to determine the limit. In numerical
analysis, we know certain sequences converge, and are only interested in how quickly they do so.

Simple observation (and a little common sense) can tell you which cars on a highway are traveling faster than
which. Simple observation (and a little common sense) will also often tell you which sequences converge faster
than which. Consider the sequences in Table 1.1 which all converge to e ~ 2.71828182845904. (t,) is accurate

Table 1.1: Some sequences that converge to e.

dn

Tn

Sn

ln

5 © 000U W= O3

3
2.9436563656918
2.89858145824525
2.86252153228801
2.83367359152222
2.81059523890958
2.79213255681947
2.77736241114739
2.76554629460972
2.75609340137958
2.74853108679547

3
2.86799618929986
2.78315514435127
2.73974041668143
2.72324781752852
2.71899828870116
2.71833715075158
2.71828369688657
2.71828184959225
2.71828182851528
2.71828182845907

3
2.82129001274358
2.73850656616954
2.71973377603211
2.71830229432561
2.71828184916891
2.71828182845934
2.71828182845904
2.71828182845904
2.71828182845904
2.71828182845904

3
2.78177393100014
2.72150682612711
2.71829014894701
2.71828182851442
2.71828182845904
2.71828182845904
2.71828182845904
2.71828182845904
2.71828182845904
2.71828182845904

to 15 significant digits by the sixth term; (s,) is accurate to 15 significant digits by the eighth term; (r,) is still
not accurate to 15 significant digits by the eleventh term, but seems likely to gain 15 significant digits of accuracy
on the twelfth term; and (g,) is only accurate to 2 significant digits by the eleventh term, so seems likely to take
considerably more than twelve terms to gain 15 significant digits of accuracy. Since they all started at 3, it seems
reasonable to say that, ordered from fastest to slowest, they are (t,,), (sn), (rn), {gn). And that is correct as we will
see soon. But just like knowing which cars are faster than which is different from knowing how fast each is going,
knowing which sequences converge faster than which is different from knowing how quickly each one converges. To
measure the speed of a given car, you need access to its speedometer or a radar gun. To measure the order of
convergence (speed) of a sequence, you need a definition and a little algebra.

Order of convergence of a sequence

Suppose the sequence (p,) converges to p. Then we say (p,) converges with order o > 1 if

=
n—oo |pn —p‘

for some real number A > 0.
Let’s see how to use this definition to calculate the orders of convergence of the sequences in Table 1.1. According

to the definition, «, should it exist, gives the speed (or order) of convergence of a sequence. Now assuming that «
|Prt1—pl —

Ton—p]® A, so for large enough n,

does exist, we have that lim,, ,,,

[Pns1 —pl P2 —p|
a a ™ A
lpn — D |Pnt1 — D



1.3. SPEED 17

Pn42—P
Pn+1—P

Pnt1—P
Pn—P

In particular, we can solve for « to find o =
In

Crumpet 6: Order of Convergence Less than or equal to 17

B

T A for some
n

There is no such thing as an order of convergence less than one because if lim,_ o
0 < a<1,then
lim PPl Ipn+1 b Y

a—1
Pn — Pl

|Pn+1—p]
[pn—pl

|‘“1 is large. Hence, lim;, 0

a contradiction. On the one hand, the ratio test implies that lim,, o exists and is less than or equal to 1.

On the other hand, « <1 = a—1 < 0 so for |p, —p| small, |p, — 'f’;;%l;lﬂ |pn —

p\o‘fl does not exist. To be rigorous, let M be any real number. Then there exists an N1 such that n > N; implies
0. 9)\>
M

l'> 0.9) and |pn —p|*~* > %. Hence, for

Ipnt1—p] > 0.9X\. There also exists N2 such that n > N implies \pn p| < (

a—1 M
[prn—p|® , SO ‘pn _p‘ > 0.9\ °

Letting N = max{N1, N2} we have that n > N implies both ‘p"“
n > N, we have

lpnt1—p| [Py —p| |
|pn — pl [pn — p|*

- M
Y — 0.9N - = — M.
pn—pl" > 0.9\

Therefore, limy,— o % does not exist. When « = 1, it must be that A < 1 because otherwise the ratio test

implies that {|p, — p|) diverges, and, therefore, (p,) diverges.

In | 2=c 1 ‘2.898&@ In | o=c I | 2:7485—c
q1—e 2.9436—¢ qo—e 2.7560—e .
For example, ~ ~ 1 and = ~ 1. And if we try other sets of three
In | L2=¢ In 2.9436—¢ In | 92=¢ 1 2.7560—e¢
qo—e 3—e gs—e 2.7655—e¢

consecutive terms of (g, ), we get the same results. The order of convergence of (g, ) is about 1. Of course, we would
need a formula for |¢, — e| to determine whether the limit were truly 1, but we have some evidence. Repeating
the calculations for (r,), (s,), and (t,), we get approximate orders of convergence 1.322, 1.618, and 2, respectively.
Again we see that, ordered from fastest to slowest, they are (t,), (sn), (rn), (gn)-

If you attempted to calculate the orders of convergence yourself, you may have noticed that more information is
needed to use s,, with n > 6 or ¢,, with n > 4. All of these terms in the table are equal, so the formula for « fails to
produce a real number! A more useful table for calculating orders of convergence is one listing absolute errors: In

Table 1.2: Absolute errors.

n |gn — € |7 — e |5 — €] |tn — e

0 [ 2.817(10)~F 2.817(10)~T  2.817(10)~F  2.817(10)7!
1 | 2.253(10)~1  1.497(10)~!  1.03(10)7! 6.349(10) 2
2 | 1.802(10)'  6.487(10)72  2.022(10)~2  3.224(10)73
3 | 1.442(10)7'  2.145(10)2  1.451(10)=®  8.32(10)~°
4 | 1.153(10)~!  4.965(10)=3  2.046(10)~°  5.538(10)"1!
5 | 9.231(10)72  7.164(10)"* 2. 07(10)— 2.453(10)~2!
6 | 7.385(10)72  5.532(10)~°  2.953(10)~'%  4.817(10)"*2
7 | 5.908(10)"2  1.868(10)7%  4.263(10)~2!  1.856(10)~%3
8 | 4.726(10)72  2.113(10)~%  8.777(10)3*  2.757(10)~166
9 | 3.781(10)~2  5.623(10)"!1  2.608(10)7>*  6.084(10)~332
10 | 3.024(10)72  2.22(10)7'*  1.595(10)=%7 2.961(10)~¢63

addition to making it easier to calculate «, this chart makes it painfully obvious that our common sense conclusion



18 CHAPTER 1. PRELIMINARIES

about which sequences converge faster than which was quite right. Just compare the accuracy (absolute errors) of
the eleventh terms.

So now we can calculate orders of convergence, but what does it all mean? What does the order of convergence
‘\Z;T;tlplgl
Apn — p|*. So, roughly speaking, convergence of order & means that, for large enough n, the approximation p;,1
is about A|p,, — p|*~! times closer to the limit p than is p,. To rephrase in terms of significant digits of accuracy, a
little bit of algebra:

tell us about successive terms in the sequence? Solving the approximation ~ )\ gives us that |pp41 — p| =~

|pn+1 7p‘ ~ A‘pn 7p|a

pn+1—p‘ ~ alP —po‘_lp'a_l
b
«
—log N p‘ ~ —log P flog()\|p|°‘*1)

d(ppt1) ~ ad(p) —log (Alp|*~").
Based on this calculation, we conclude these rules of thumb:

1. for linear convergence (o = 1), d(pp+1) = d(pn) — log A, so each term has a fixed number more significant
digits of accuracy (approximately equal to —log A\) than the previous;

2. for quadratic convergence (o = 2), d(pn1+1) =~ 2d(p,) — log (A|p|), so each term has double the number of
significant digits of accuracy of the previous, give or take some;

3. for cubic convergence (a = 3), d(pn+1) ~ 3d(pn)—log (A|p|?), so each term has triple the number of significant
digits of accuracy of the previous, give or take some;

and so on. Summarizing, for large n, you can expect that each term will have — log ()\|p|o‘_1) more than a times
as many significant digits of accuracy as the previous term. We can see this claim in action by calculating A for
the sequences (ty), (sn), (rn), and (g,). Using the fact that A\ = %, we find that A = 0.8 for each sequence.
Therefore, {(g,) should show each term having —log 0.8 ~ .1 more significant digits of accuracy than the previous.
More sensibly, this means the sequence will show about one more significant digit of accuracy every ten terms.
This is borne out by observing that gy has error about 3(10)~! while gjo has error about 3(10)~2. For (r,), we
should expect each term to have about —log(0.8 - e32?) ~ —0.04 more than 1.322 times as many significant digits

of accuracy as the previous. For example, r3 has about log ‘Welo)—?’ ~ 2.1 significant digits of accuracy while

r4 has about 1.322(2.1) — .04 ~ 2.73 significant digits of accuracy, r5 has 1.322(2.73) — .04 ~ 3.57 significant digits
of accuracy, and so on until rg has about 8.1 significant digits of accuracy. Again this is borne out by the table

as log | =% ~ 8.1. Though we can do a similar calculation for (¢,), it’s easier just to eyeball it

rg—e

= log ‘ 2.1132810)78
since all we need to see is that the exponent in the scientific notation doubles, give or take a little, from one term
to the next. Indeed it does as it goes from 1 to 2 to 3 to 6 to 11, and so on.

Note that in all this analysis, we have ignored the requirement that n be “large”. That was acceptable in this
case since these sequences were contrived so that even n = 0 was large enough! In practical applications this will
not be the case.

To appreciate just how much faster one order of convergence is over another, consider the relation

d(pn1) = ad(p,) — log (A|p|*~1)

again. Now suppose we know that d(p,,) = dp, for some particular ng large enough that the approximation is
reasonable. Then it can be shown that, for a > 1,

d(pno+k) ~ (dno - C)ak +C

log (A[p|*~1)

where C' =
a—1



1.3. SPEED 19

Crumpet 7: Solving a Recurrence Relation

The relation d(pn+1) = ad(pn) — log (A|p|a71) is an example of a recurrence relation. In particular, a first order
linear nonhomogeneous recurrence relation with constant coefficients since it has the form

Gnt1 = kian + k2

where k1 and ko are constants. Linear nonhomogeneous recurrence relations can be solved by summing a homo-
geneous solution and a particular solution. For the particular solution, we seek a solution of the form a, = A
(for all n) by substituting this assumed solution into the recurrence relation. Doing so gives A = k1A + k2, so
A= 52 i s such a solution. For the homogeneous solution, we seek a sequence of the form a,, = r™ that satisfies
Gn+1 = k1an + 0. Substituting our assumed solution into the modified (homogeneous) recurrence relation gives
7" = k1™, Rearranging, 7" (r —k1) = 0 so r = 0 or r = k;. Notice that Bk} is also a solution for any constant
B. This includes the solution a,, = 0 which would arise from setting » = 0. Finally, putting the particular and
homogeneous solutions together, the solution of any1 = kian + k2 is ap = BkT + for any constant B. In

log(xlp\‘* )

k2
=
the case of d(pn+1) = ad(p,) — log ()\\p|a 1) k1 = a and ks = — log ()\\p\o‘ 1) S0 d(pn) Ba™ +
The value of B is determined by substituting any known element of the sequence into this formula and solvmg

o a—1 o a—1
for B. Supposing d(pn,) = dn, yields d(pn) = (dno — M) a” + M.

a—1 a—1

The important thing to see here is that d(pp,+%) is an exponential function when o > 1. The number of significant
digits of accuracy grows exponentially with base a. As we saw before, for a = 1, the number of significant digits
grows linearly. In calculus you learned that any exponential function grows much faster than any polynomial
function, so it is reasonable and correct to conclude that sequences converging with orders greater than 1 are
markedly faster converging than are sequences converging with linear (aw = 1) order.

But be careful. Based on this same memory of calculus, you would also conclude that the sequence (27™)
converges to 0 much faster than does (n=2). By some measures, that’s true, but not by all measures. Consider the
orders of convergence of these two sequences. We seek values a7 and as such that

o—(n+1) _ —
lim | 0 =\ and lim M

n— 00 |2*” — 0|0‘1 n— 00 |n — O|O‘2

=\

for some real numbers A1 and Ay. A little bit of algebra will lead to solutions:

|27(n+1) _ 0‘ _ 9—n—1

_ _ 2(a171)n71
|2—n _ O‘(xl 9—ain
while
(n+1)"2—0] n2o2

In=2 —0le2  n242n+1

The only way lim,, o 2(®* Y"1 will be a nonzero constant is if a; = 1. The only way lim,,_, oo % will be a

nonzero constant is if the leading coefficients of the numerator and denominator are equal. That means ae must be
1 as well. So (27") and (n~2) both converge to zero with linear order. They are equally extremely slow to converge
by this measure! Still, something should not feel quite right about claiming that (27") and (n~2) converge at the
same speed.

Rate of Convergence of a Sequence

For sequences that converge with linear order, we need a finer measure than order to determine which is faster than
which. Recall from calculus,

—-n TL2
lim — = lim —
n—oo N n—oo 21
_ 2n
=T
2
= h a5 — O7

n—oo 27 (In 2)?



20 CHAPTER 1. PRELIMINARIES

indicating that (27") approaches 0 much faster than does (n~=2). You may also recall comparisons between power
functions:
n=P
lim — =0
n—oo N4

whenever p > ¢ > 0; and between exponential functions:

whenever a > b > 1; and between the two:

whenever a > 1. In other words, sequences of the form <a1> converge to zero faster than sequences of the form

<n—1p> whenever a > 1. The sequence <ai> converges to zero faster than <bi> whenever a > b > 1. The sequence

<n—1p> converges to zero faster than <%> whenever p > ¢ > 0. Not all functions are as simple as these, but we can
use these as our yard sticks. Suppose (p,,) converges to p, (b,) converges to 0 and |p,, —p| < Alb,| for some constant
A and all sufficiently large n. Then we say that (p,) converges to p with rate of convergence O(b,,), read “big-oh of
b,”. Since we are familiar with sequences of the forms <a%> for some constant a > 1 and <n%> for some constant

p > 0, and they are simple enough, typically (b,) will be one of them. For example, <2"+1

) converges to 3, and

4an
2okl 1|1 _11
4n 2| 4n — 4 n’
S0 <%> converges with rate O(%) We may also say that 22:1 = % + O(%) to convey exactly the same message.

Normally, when we find a rate of convergence, we try to find the fastest converging sequence from our stock of
simple examples that satisfies the definition. In this case, there is none faster.
Basically all the sequences studied in any depth in calculus converge with linear order. So what does it take to
converge with a higher order? Let’s have a look at <e*2n>.
- ‘6_2714»1 _ O| . 6_2'271

lim ——— = — =1

n—00 ‘6*2 — 0|a n—oo e~ a2
when o« = 2. So <e%n> is quadratically convergent. Essentially, it takes an exponentially growing exponent to
converge with an order greater than 1.

Crumpet 8: Approximating m

The sequence
1103 - 2%/2 1130173253125 1029347477390786609545
9801 ’ 313826716467 -27/27 1116521080257783321 - 223/27 """
converges to % Its terms are given by the formula

V38 z": (47)1(1103 + 263905)
9301 < (1) - 3964
j=0 n=0,1,2,3,...

of Srinivasa Ramanujan. For all practical purposes, it converges very quickly. The first term already has about
8 significant digits of accuracy:
1103 - 2%/2
9801

~ 0.31830987844047012321768445317

L
s

Q

0.31830988618379067153776752674,

and the second has about 16:
1130173253125 1

- Z| ~6.48(10)7""
313826716467 -27/2 1 B0 ’
double the accuracy of the first term. The third term is already more than double-precision accurate.

It’s tempting to believe, or hope, the sequence is quadratically convergent, but it is not. The third term has
an accuracy of about 24 significant digits. Each term in the sequence is approximately 8 significant digits more
accurate than the previous—the hallmark of a linearly convergent sequence.




1.3. SPEED 21

Key Concepts

Order of convergence: The sequence (p,) converges to p with order of convergence o > 1 if

lim |Pns1 — D] \

- =
n— oo |pn — p‘
for some real number A > 0.

Absolute error: For a sequence (p,) that converges to p with order «, the absolute errors of consecutive terms
are related by the approximation
[Pn+1 — pl = Alpn — p|*
for large enough n.

Significant digits of accuracy: For a sequence (p,,) that converges to p with order «, the numbers of significant
digits of accuracy of consecutive terms are related by the approximation

d(pn+1) ~ ad(pn) - IOg (>\|p|a71)
for large enough n. In closed form (for a # 1)
d(pnii) = (dn — C)a* +C

log (Alp[*~)

where C =
a—1

Rate of convergence: The sequence (p,) converges to p with rate of convergence O(b,,) if (b,) converges to 0 and

|pn _p| S )‘lbn|
for some constant A and all sufficiently large n.
: [Pn41—p| [Pn+1—p| |Prt1—p|
Exercises " ‘ [pn —p[1-2 ‘ [Pn—p[13 | [pn—p[t-2
o ) 25 | 9.07(10)°° .0110 13.39
1. S(?me convergent sequences and their limits are given. 26 | 1.88(10)~7 00303 48.65
Find the order of convergence for each. 27 | 1.01(10)~° | .000530 277 8
28
n!
(a) <n7> —0 6. Some linearly convergent sequences and their limits are
1 given. Find the (fastest) rate of convergence of the form
(b) < — > oM 0] (n%,) or O (ﬁ) for each. If this is not possible, sug-
3 gest a reasonable rate of convergence.
22" -2 66 6 6
Y e ) 10 6, =, —, —=, —— 0
© <22 +3> (@) 6,7 39" 343 2001
1In—2
2 (b) < >% 1
n
d 1 (4] n—+3
@ <1+n2>ﬁ sinn
(8]
on (c) < NG > =0
(@ (=)0
10" 4 35n + 9
2. Show that the sequence <n + 1> converges to 1 lin 4 o
. - - B _>
n—1 ©) <10”735n79>
early.
2n
n (A]
3. Show that the sequence p, = 2'72" is quadratically (®) < 2 —|—3n> —2
convergent. ® <5n _ 2> o
4. Give an example of a sequence which converges to 0 & 5" + 3
with order a = 10. (h) (Vn+47—/n) -0 ¥
5. Approximate the order of convergence of the sequence . n? 1
pn, and explain your answer. M 3n?+1 - 3



22

CHAPTER 1. PRELIMINARIES

n3 +1
8n? n
3
m) (3712 3n+10> -
2n? + 3n
—9 [A]
(n) 1—n2 >

3n° — 5n
—_— ) —> -3
(0) < 1—nb >
7. Find the rates of convergence of the following sequences
as n — o0o.

1
(a) lim sin— =0
n—00 n

1
(b) lim sin— =0

n— oo n2

(¢) lim

2
(sin l) =0
n—o0o n

(d) li_{n [In(n+1) —In(n)] =0
For questions on this page- on the current page, use the
following definition for rate of convergence for a func-
tion. For a function f(h), we say limj,—, f(h) = L with
rate of convergence g(h) if | f(h) — L| < A|lg(h)| for some
A > 0 and all sufficiently small |h — al.

8. Use a Taylor polynomial to find the rate of convergence
of
lim (2 — e") = 1.
e
9. Use a Taylor polynomial to find the rate of convergence

of _ .
lim sin(h) —e" +1 _0
h—0 h

10. Find rates of convergence for the following functions as

h — 0.
sin h
li =1
(2) hlg}) h
1 ——cosh
b) lim —— =
() Jim —3
() }llin%) smhfhhcosh -0
.
1—¢l
d) li =-1
(d) h% h

11. Find the rate of convergence of

. h?4cosh—el
lim ——M = —1.
h—0 h

12. Show that
(sinh)(1 — cosh) = 0+ O(R®).
13. Write computer code (.m file) that uses a loop and

the disp() command to produce the following output
(powers of 7).

14.

15.

16.

17.

18.

19.

1

7

49

343

2401
16807
117649
823543
5764801
40353607

Write computer code (.m file) that uses a loop and
the disp() command to output the first 10 powers of
5 starting with 5°.

Write computer code (.m file) that uses a loop, an
array, and the disp() command to find the values of
22" —

2 s
fln) = forn=0,1,2,4,6,10. ©

22" +3
Write computer code (.m file) that uses a loop, an
array, and the disp() command to find the values of

2
f(n) = " for n=0,2,5,10, 100, 1000, 20000.

Vn? +3n
The following code is intended to calculate the sum
30
1
>
k=1
but it does not. Find as many mistakes in the code as
you can. Classify each mistake as either a compilation
error (an error that will prevent the program from run-
ning at all) or a bug (an error that will not prevent the

program from running, but will cause improper calcu-
lation of the sum).

sum=1;

for k=1:30
sum=sum+1.0/kx*k;

end

disp (sum)

Some sequences do not have an order of convergence.
Let pn, = 277
(a) Show that limp—eo pn = 0.

(b) Show that lim,, o0 % —0.

(c) Show that < ‘ﬁm;‘ > diverges for any o > 1.
Use the rules of thumb for order of convergence to
approximate the number of iterations it will take to
achieve 12 significant digits of accuracy of 7 for each
order of convergence. Assume each sequence starts with
one significant digit of accuracy.

(a) a=1,A=0.8
b) a=1,1=05"0
(c) a=1,A=0.1
(d) a=1.5

(e) a =2

) a=



1.3. SPEED

23
20. Prove that the order of convergence of a sequence is (b) 20,19,18,17,16,15,14,13
unique.
(c) 12,12.333,12.667,13,13.333,13.667, 14
21. Write a for loop that outputs the sequence of num-
bers. (d) 1,9,25,49,81,121, 169,225, 289, 361, 441
(a) 7,8,9,10,11,12,13,14,15 (e) 1,.5,.25,.125,.0625,.03125,.015625



24

CHAPTER 1.

PRELIMINARIES




Chapter

Root Finding

2.1 Bisection

In Section 1.2 (page 10), we claimed that “Ty(x) actually approximates In(z) to within 0.1 over the interval
[3.296,13.13]”, with a promise that we would discuss the calculation later. It is now later. First, we rephrase
the claim as “the distance between T5(z) and In(z) is less than or equal to 0.1 for all x € [3.296,13.13].” In other
words,

1
|T2(x) — In(x)| < 0 for all x € [3.296,13.13].

One way to begin solving this inequality is to consider the pair of equations T5(z) — In(z) = :l:ll—o. With a focus on
solving

1
T: —1 = — 2.1.1
»(2) — In(a) = 1, (211)
recall that Th(z) =2 + "”;262 - (”56642)2. We are thus looking to solve the equation
r—e?  (v—e?)? 1
2 - -1 =_—.
+ e? 2¢et n(z) 10

Finally, having written the equation in full detail, it should come as no surprise that we will not be solving for
x exactly. There is no analytic method for solving such an equation. Generally, equations with both polynomial
terms and transcendental terms will not be solvable. However, from the graph in Figure 1.2.2, we can get a first
approximation of the solution. We are looking for the place where Th(z) exceeds In(z) by 0.1. Since the two
graphs essentially overlap at © = 6, we might aver that T5(6) exceeds In(z) by less than 0.1 there. Since there is a
reasonably large gap between the graphs at o = 2, we might also aver that T5(2) exceeds In(z) by more than 0.1
there. In other words, T5(2) —In(2) > {5 while T3(6) —In(6) < {5. Since T»>(z) — In(x) is continuous on the interval
2, 6], the Intermediate Value theorem guarantees there is a value ¢ € (2,6) such that Ty(c) — In(c) = 5. It is this
value of ¢ we are after. And we know it is between 2 and 6. It’s a start, but we can do better!

What about 47 Well, T5(4) — In(4) =~ .04986 < 0.1, so now we know T5(4) exceeds In(4) by less than 0.1. Now
the Intermediate Value theorem tells us that ¢ is between 2 and 4 (T2(2) exceeds In(x) by more than 0.1). Shall we
check on = = 3?7 Yes. T»(3) —In(3) ~ .131 > 0.1, so now we know T5(3) exceeds In(3) by more than 0.1. Recapping,
T5(4) —1n(4) < 0.1 while T5(3) In(3) > 0.1. By the Intermediate Value theorem again, we know c is between 3 and
4. And we may continue the process, limited only by our patience. This is the process we call the bisection method:

1. Identify an interval [a, b] such that either a or b overshoots the mark while the other undershoots it.
2. Calculate the midpoint, m, of the identified interval.

3. If a and m both overshoot or both undershoot the mark, the desired value lies in [m, b].

4. If b and m both overshoot or both undershoot the mark, the desired value lies in [a, m].

5. Return to step 2 using the newly identified interval.

25



26 CHAPTER 2. ROOT FINDING

1

Figure 2.1.1: + indicates Tb(z) — In(z) > {5 and — indicates Th(z) — In(z) < 15.

N+

| |
| |
3.25 3.5 4 6

Using a + sign for values of & for which T5(z) — In(x) overshoots the desired value 15 and a — sign for values of &

for which T»(z) — In(z) undershoots the desired value 1, we may diagram this procedure, including the next two

iterations, as in Figure 2.1.1. We might also reproduce the calculations in a table:

a m b To(a) —Iln(a) Ta(m)—1In(m) To(b) — In(b)
2 4 6 3116 .04986 .002582

2 3 4 .3116 0.131 .04986

3 35 4 0.131 0.0824 .04986

3 325 35

No matter how the procedure is understood, the sequence of approximations
4, 3, 3.5, 3.25, ...

is produced. What is the next value? Answer on page 30.

Not only do we have a sequence of numbers approaching the solution, we know for certain that 4 is accurate to
within 2 units of the exact value. 3 is accurate to within 1 unit. 3.5 is accurate to within 0.5 units. And 3.25 is
accurate to within 0.25 units. In general, each approximation is accurate to within half the length of the interval
from which it was computed as midpoint. After all, the exact value is guaranteed to lie within the interval. The
farthest the midpoint can possibly be from the exact value is half the length of the interval.

Though the method works perfectly well as described, normally the equation to be solved is simplified so that
one side is zero. In that way, the other side can be thought of as a function whose roots are desired. Plus, it
simplifies the implementation of the method slightly. For example, we would consider solving the equation

1
To(x) — In(x) — 0= 0
instead of 2.1.1. Then the procedure boils down to finding a root of f(z) = Tx(z) — In(z) — {5. This is why this
method is called a root-finding method. It is used to find zeros, or roots, of functions. In this light, we might

summarize the first 8 iterations of this procedure as follows:

a m b fla) f(m) f(b)
2 4 6 >0 <0 <0
2 3 4 >0 >0 <0
3 3.5 4 >0 <0 <0

3 3.25 3.5 >0 >0 <0
3.25 3.375 3.5 >0 <0 <0
3.25 3.3125 337 >0 <0 <0
3.25 3.28125 33125 >0 >0 <0

3.28125 3.296875 3.3125

Notice two things. The actual values of f(a), f(m), and f(b) are not needed. Only their sign is important because
all we need to do is maintain one endpoint where the function is greater than 0 (overshoots) and one where the
function is less than 0 (undershoots). Furthermore, the f(a) and f(b) columns are not strictly necessary either. If
the procedure is carried out faithfully, they will never change sign. In fact, that’s what it means to carry out the
procedure faithfully! In steps 3 and 4, you choose which subinterval to keep by maintaining opposite signs of the
function on opposite endpoints.

As the last line indicates, the desired value is approximately 3.296 as promised. The other value, 13.13, is
determined by finding a root of the function g(z) = Tz(z) — In(z) + 5. Give it a shot! Start with a = 10 and
b = 14, for example. Solution on page 30.

Though it works, the only real point of carrying out the procedure using a table is to make sure you understand
exactly how it works. If we were actually to use the method in practice, we would write a short computer program



2.1. BISECTION 27

instead. Computers are very good at repetitious calculations, something at which humans are not particularly
adept. In this procedure, we need to calculate a midpoint, decide whether this midpoint should then become the
left or right endpoint, make it so, and repeat.

That leaves only one question—how many repetitions, or iterations, should we compute? And that depends on
the user. Perhaps an answer to within 1072 of the exact value will suffice, and maybe only 10~% accuracy will do.
The program we write should be flexible enough to calculate the answer to whatever accuracy is desired, within
reason. With that in mind, here is some pseudo-code for the bisection method.

The Bisection Method (pseudo-code)

Though technically not necessary for coding, when we can, we will preface each method’s pseudo-code with math-
ematical assumptions that guarantee success. The implication is that if the method is run in a situation where the
assumptions are not met, then the method should not be expected to provide dependable results. It may or may
not give useful information. The old adage “garbage in...garbage out” applies!

Assumptions: f is continuous on [a,b]. f(a) and f(b) have opposite signs.

Input: Interval [a,b]; function f; desired accuracy tol; maximum number of iterations N.
Step 1: Set err = |b—al; L = f(a);

Step 2: For j =1...N do Steps 3-5:

Step 3: Set m = < M = f(m); err = err/2;

Step 4: If M = 0 or err < tol then return m;
Step 5: If LM < 0 then set b = m; else set a = m and L = M,

Step 6: Print “Method failed. Maximum iterations exceeded.”

Output: Approximation m within tol of exact root, or message of failure.

As noted earlier, this method should calculate a midpoint (Step 3), decide whether this midpoint should then
become the left or right endpoint (Step 5), make it so (Step 5), and repeat some number of times (Steps 1, 2, and 4).
Much of the code is dedicated to determining when to stop. This is typical of numerical methods. The calculations
are half the battle. Controlling the calculations is the other half. If we didn’t have to worry about stopping, the
pseudo-code might look something like this:

Step 1: Set L = f(a);

Step 2: Set m = “t2; M = f(m);

Step 3: If LM < 0 then set b = m; else set a = m and L = M;
Step 4: Go to Step 2.

There would be no need for j, err, tol, or N, making the algorithm quite a bit simpler. Of course, programmed
this way, the program would never stop, so j, err, tol, and N, are indeed necessary. Nonetheless, this pseudo-code
without the ability to stop is important. It can be thought of as the guts of the program. This is the code that
executes the method. Sometimes it is easiest to start with the guts and then add the controls afterward.

As for determining whether the midpoint should become the left or right endpoint, Step 5 (Step 3 of the
guts) uses a somewhat slick method. By slick, I mean short, efficient, and not immediately obvious. The sign of
LM = f(a) - f(m) is checked. If it is negative (LM < 0) then m should become the right endpoint (should replace
b) because this means f(a) and f(m) have opposite signs. That’s the only way LM can be negative. On the other
hand, if LM > 0 then we know f(a) and f(m) have the same sign, so m should become the left endpoint (should
replace a). In Step 3 the midpoint is calculated without any fanfare.

The rest of the code is there to make sure the program doesn’t do more than necessary and doesn’t end up
spinning its wheels indefinitely. It is important to be able to separate, at least in your mind, the guts of the program
from the stopping logic. As for the stopping logic, in Step 4, we stop if err < tol as we should. But we also check
the unlikely event that M = 0 in which case we happened to hit the root exactly so should quit. Though it could
be argued overkill to set a maximum number of iterations, NV, in this program, it’s a good habit to get into. Some
numerical methods provide no guarantee the required tolerance will ever be reached. For these methods, a fallback
exit criterion is needed. Also, if tol were accidentally set to a negative value, it would certainly never be reached.
The algorithm would have no way to stop without N.



28 CHAPTER 2. ROOT FINDING

Analysis of the bisection method

There are two good reasons to study the bisection method. First, its assumptions for guaranteed success are much
simpler to verify than those of other methods. Even so, be somewhat cautious. Faithful execution of any numerical
method is subject to proper programming, accurate computation, and proper input. Programmers and users are
not infallible. Nor are computers. Remember the lessons of Section 1.1. At the same time you should be wary of
the results, you should temper your skepticism with a good dose of confidence in the method. It is only in rare
circumstances that the computer will be the source of any problems.

Second, error analysis is straightforward. Let m; = “TH’, the midpoint of [a,b]. Let succeeding midpoints be
ma, ms, my, and so on. Then the Intermediate Value theorem guarantees \mj —p| < b;—ja for some root p of
f(z). As we learned in section 1.3, this means the sequence (m,) converges to p with linear order, and rate of
convergence O (2%) This method should be considered slow to converge because it does so with linear order. But
among those methods with linear order, it should be considered fast. The error decays exponentially—faster than
any polynomial decay.

Key Concepts

The Intermediate Value Theorem: Suppose f is a continuous function on [a, b] and y is between f(a) and f(b).
Then there is a number ¢ between a and b such that f(c) = y.!

Iteration: (1) Repeating a computation or other process, using the output of one computation as the input of the
next.

Iteration: (2) Any of the intermediate results of an iteration. Also called an iterate.

The bisection method: Produces a sequence of approximations (m;) that converges to some root in [a, b].

Error bound for the bisection method: The error of approximation m; is no more than b;ja. That is, |m; —

p| < &2 for some root p of f(z).

Convergence for the bisection method: The bisection method converges with linear order and has rate of
convergence O ().

Exercises 5. Use the bisection method to find mgs for the given func-
) ) ] o tion on the given interval. Do this without a computer
1. Write computer code 1mplement%ng the bisection program. Just use a pencil, paper, and a calculator.
method as shown on page 7?. Save it as a .m file for You may check your answers with a computer program
future use. if you wish. [
2. Use the Intermediate Value Theorem to show that the
function has a root in the indicated interval. (a) f(z) =z —cosz on [0,1]
b =3 Dz —H(z—-1 —1.25,2.5
(b) g(z) = 3z* — 22° — 3z + 2; [0,1] 6. Use the Bisection Method to find ma4 for g(x) =
(©) g(x) = 30" — 22 — 3z +2; [0,0.9] sinz +1 on [9,10].
() h(z) = 10 — cosh(); [~3, —2] 7. Use the bisection methoq to find ms for the equation
© () TTE o5 6 _5 zcosz —Inz = 0 on the interval [7, 8].
e t) =4+ 5sint — 2.5; |[—6, —
f 512 tan s [[g] ] 8. Use the bisection method to find a root of g(z) =
(f) g(t) = =1=52+; [21.5,22.5] sin z — 22 between 0 and 1 with absolute error no more
(g) h(t) =In(3sint) — ; [1,2] than 1/4.
() f(r)=e™" —r; [—20,20] 9. Approximate the root of g(z) = 2+ x — ¢® between 1
. o o and 2 to within 0.05 of the exact value using the bisec-
(0) g(r) =sin(e") +7; [-3,3] tion method.
() hlr) =277 =377 {1, 3] 10. There are 21 roots of the function f(z) = cos(z) on the
3. Create a table showing three iterations of the bisection interval [0, 65]. To which root will the bisection method
method with the function and starting interval indi- converge, starting with a = 0 and b = 657 [A]
cated in question 2. 11. Find a bound on the number of iterations needed to
4. Use your bisection.m code to find a root of the func- achieve an approximation with accuracy 1072 to the
tion in the interval of question 2 to within 1078, V solution of 2° + 2 — 4 = 0 on the interval [1, 4] using

IThe word “between” in this theorem can be interpreted as inclusive or exclusive of the endpoint values as long as the same
interpretation is made for each instance of the word.



2.1. BISECTION 29
the bisection method. Do not actually compute the 20. 4 is a root of g(z) = | sin(wz)| that can not be found
approximation. Just find the bound. F! by the bisection method.

12. mei a bound on .the rllumbe.r of iterations riieded to (a) Use a graph of the function near 4 to explain why.
achieve an approximation with accuracy 10™° to the
. 3 ] . You may use the code below to produce an appro-
solution of z° — x — 1 = 0 on the interval [1,2] using siate eraph
the bisection method. Do not actually compute the P graph.
approximation. Just find the bound. (b) Run the bisection method on f over the interval
3.5,4.5 . What h instead of find-
13. The graph of f(z) over the interval [0.75,2] is shown [ » 4.5] anyway ab happens istead of An
. R ing the root?
below. Notice f(x) has three roots on this interval:
approximately .795, 1.06, and 1.59. To which of the x=3.5:.05:4.5;
three roots does the bisection method converge if we f=inline("abs(sin(pi*x))");
let a = .75 and b = 27 How do you know? plot(x,f(x))
21. Let f(x) = sin(2?). f is continuous on [4,5], but
100 ] f(4) < 0 and f(5) < 0, so the assumptions of the bi-
so 1 , section method are not met. Nonetheless, using the
bisection method as described in the pseudo-code on f
0 over the interval [4, 5] does produce a root. Explain. I
50 | 1 22. The functions in questions 2e, 2f, and 2g all fail to meet
100 | | the assumptions of the bisection method on the interval
w s : w w w [—4, —0.5]. For each one, explain how so.
0.8 1 12 1.4 1.6 18 2
) 23. Write computer code called collatz that takes one
14. Suppose you are trying to find the root of f(z) = integer input, n, and returns 3n+1 if n is odd and n/2
x — e~ using the bisection method. Find an integer a if n is even. Save it as a collatz.m file. Use an if
such that the interval [a, a + 2] is an appropriate one in then else statement in your function. HINT: Use the
which to start the search. ceiling function. If ceil(n/2) equals n/2, then n must
15. Find a lower bound on the number of iterations it would be even (no remainder when divided by 2). Use your
take to guarantee accuracy of 1072° in question 6. collatz function to calculate [*]
16. How many steps (iterations) of the bisection method (a) collatz(17)
are necessary to guarantee a solution with 107! accu- b 11atz(10)
racy if a root is known to be within [4.5,5.3]7 [*] (b) collatz
17. Suppose you are using the bisection method on an in- (c) collatz(109)
terval of length 3. How many iterations are necessary (d) collatz(344)
to guarantee accuracy of the approximation to within
106 24. Write your own absolute value function called
18. Suppose a function g satisfies the assumptions of the absval (abs is .already defined on the computer, so it is
. . . . . . best to use a different name) that takes a real number
bisection method on the given interval. Starting with . .
. ; . input and returns the absolute value of the input. Use
that interval, how many iterations are needed to ap- . . . .
roximate the root to within the given tolerance? an if then else statement in your function. Save it
P ) as absval.m and test it on the following computations.
(a) [_7a 10]; 1076 (a) | _ 3|
(c) [9,15]; 1071 (c) |7r—
(d) [~6,—1]; 107'% (assume the computer calculates (d) [10 — 72|
with 300 significant digits so round-off error is not
a problem) 25. f(x) = sin(2?) has five roots on the interval [7,8].
f(7) <0, f(8 > 0, and f is continuous on [7,8], so
19. 1is a root of f(z) = In(z*—2°—72? 4+ 13z—5) that the assumptions of the bisection method are met. The
can not be found by the bisection method. method will converge to a root.
(a) Use a graph of the function near 1 to explain why. (a) Use your bisection.m file (Exercise 1) to deter-
You may use the code below to produce an appro- mine which one. [
priate graph. (b) Find 4 different intervals for which the bisection
(b) Run the bisection method on f over the interval method will converge to the other four roots in
[0.8,1.2] anyway. What happens instead of find- [7,8].
ing the root? . .
26. The function shown has roots at approximately 2.41,

x=0.8:.01:1.2;
f=inline("log(x. 4-x
plot(x,f(x))

.T3-T*x."2+13%x-5)") ;

4.11, 5.62, 7.01, 8.32, 9.57, 10.78, and 11.94. To which
root will the bisection method converge with the given
starting interval?



30 CHAPTER 2. ROOT FINDING
29. Use the following pseudo-code to write a slightly differ-
e ent implementation of the bisection method. Refer to
0d Table 77 if you are unsure how to program the quan-
02 tity [(In(b — a) — In(TOL))/In2]. The while loop is
discussed on page ?77.
,(,:4 \/ Input function f, endpoints a and b; tolerance TOL.
Return approximate solution p and f(p) and the
number of iterations done Np.
(a) [2,3] Step 1 Set ¢ = 1; FA = f(a); No = [(In|b — a| —
(b) [6,8] In(TOL))/In2];
(c) [2,6] Step 2 While ¢ < Ny do Steps 3-6.
(d) [5,9] Step 3 Set p=(a+b)/2; FP = f(p);
(e) [10,12] Note: the assumptions of the bisection are Step 4 If FP =0 then
not met on this interval. Nonetheless, the method Return(p, f(p), No); STOP.
as outlined in the pseudo-code will converge to a Step 5 Set i =i+ 1;
!
root: Step 6 If FA-FP > 0 then
27. Find an interval of length 1 over which the bisection Set a =p; FA = FP;
method may be applied in order to find a root of else
f(z) = 2* — 7.67462> — 40.7477022x2 4 200.98944342 + Set b = p;
319.0914281. Step 7 Return(p, f(p), No);
28. The following algorithm is one possible incarnation of STOP.
the bisection method. ) ) )
(a) Discuss the advantages/disadvantages of this al-
Assumptions: f is continuous on [a,b]. f(a) and f(b) gorithm compared to the one on page 77.
have opposite signs. (b) Where does the calculation No = [(In(b — a) —
Input: Interval [a,b]; function f In(TOL))/In2] come from?
Step 1: For j =1...15 do Steps 2 and 3: ) )
Step 2: Set m = £%; 30. Use the code you wrotfsfor question 29.to find solutions
accurate to within 107° for the following problems.
Step 3: If f(a)f(m) < 0 then set b = m; else set
a =m; (a) —2"=0on [0,1]
Step 4: Print m. (b) e —x? +3z—2=0on [0,1]
Output: Approximation m. (¢) 2z cos(2z)—(z+1)*> =0on [-3,—2] and on [—1, 0]
(a) Apply this algorithm to the function f(z) = . . . L 4
(z)(x — 2)(x + 2) over the interval [—3,3]. Which 31. Fl%ld an ap[')roxllmatlon of V3 co.rrect to within 10
. . . . using the bisection method. Write an essay on how
root will this algorithm approximate? ; ; .
) i ) you solved this problem. Include your bisection code,
(b) How accurate is the approximation guaranteed to what function and what interval you used and why.
be according to the formula
32. A trough of length L has a cross section in the shape
pn — | < b—a, of a semicircle with radius . When filled with water to
" - 2n within a distance h of the top, the volume V of water
(¢) How accurate is the approximation in reality? 8
Compare this to the bound in (b). V=L [0.57”2 2 aresin (ﬁ) Sy hQ]
(d) Modify the algorithm so it will approximate a dif- T
ferent root using the same starting interval. Suppose L = 10 ft, r = 1 ft, and V = 12.4 ft*. Find
(e) Modify the algorithm so it does not use multipli- the depth of the water in the trough to within 0.01 ft.
cation. Note: Use asin(x) for arcsin(z) and pi for 7.
Answers

What is the next value?: T5(3.25) — In(3.25) ~ .10429, which overshoots the mark. So 3.25 becomes the new
left endpoint, and the next value is % = 3.375, the midpoint of 3.25 and 3.5.

The right endpoint is 13.13: Starting with a = 10 and b = 14, note that g(a) ~ .088 > 0 and g(b) ~ —.044 < 0,
so g of the left endpoint should always be positive and g of the right endpoint should always be negative:



2.1.

BISECTION

31

a m b g(m)

10 12 14 .044 = m becomes left endpoint

12 13 14 .006 = m becomes left endpoint

13 13.5 14 —.017 = m becomes right endpoint

13 13.25 13.5 —.005 = m becomes right endpoint

13 13.125 13.25 .0004 = m becomes left endpoint
13.125 13.1875 13.25 —.002 = m becomes right endpoint
13.125 13.15625 13.1875 —.0009 = m becomes right endpoint
13.125  13.140625 13.15625 —.0002 =- m becomes right endpoint
13.125 13.1328125 13.140625



32 CHAPTER 2. ROOT FINDING

2.2 Fixed Point Iteration

Grab your calculator. Anything with a cosine button will do nicely. Presuming you have a simple scientific
calculator, press the all-clear button, usually marked AC or just C. The screen should now display 0. Press the
cosine button, which should be marked cos. The screen should display 1. Press the cosine button again. The
screen should display 0.540302.... Repeat. Repeat again. In fact, continue pressing the cosine button until you
notice a pattern.

If you have a fancier calculator with a previous-answer button, usually marked Ans, press 0 and then Enter or =.
Then press the cosine button and then the previous-answer button. Then press Enter or = to do the computation.
The first time around, the screen should display 1 (just as with a scientific calculator). To repeat, however, just
press Enter or = again. This will repeat the last computation. In this case, the cosine of the previous answer. The
screen should display 0.540302. ... Now repeat until you notice a pattern.

After about 30 repetitions, or, as we will call them, iterations, your calculator should display a number like
0.739083847.... And no matter how many times you repeat, or iterate, the calculation, it won’t change much. In
fact, once it reaches 0.7390851332.. . ., it won’t change at all (unless your calculator shows more decimal places—after
about 90 iterations, a calculator showing 15 decimal places will display 0.739085133215161 and it won’t change from
there). What that means is cos(0.7390851332...) = 0.7390851332.... And we call 0.7390851332. .. a fixed point of
the cosine function. The value is fixed (does not change) when the cosine function is applied. Put another way, at
0.7390851332. . ., the input and output of the cosine function are equal. See a simulation of this iteration online at
the companion website.

Perhaps a whole series of questions now comes to mind. Why does this work? What if we start with a number
other than 07 Does this work with any function? Can we predict when it will or won’t work? Can we find roots
this way? Is convergence fast? In this section and the next, we will give at least partial answers to all of these
questions. We start with “Why does this work?”.

Consider solving the system

y = cos(z)
y==x

One way to do so is by the method of substitution. If we substitute y = z into y = cosz we get © = cosz or
cosz = x. The solutions of the system coincide exactly with the fixed points of the cosine function, for any solution
of cosx = x is a value x that is fixed by the cosine. Since systems of two equations in two unknowns can be solved,
at least approximately, by graphing, this suggests that we might take a look at the graph of the system in order to
learn more about what is happening during iteration.

Figure 2.2.1: Finding the fixed point of cos(z).

(a) (b)

1 [ B .
1k 7
.739085 E ' -
0.5 -
0 - oL |
| | | . I
0 0.5 1 0 .739085 1

Figure 2.2.1(a) shows the graphs of y = cos(z) and y = x over the interval [0, 1]. We can see the intersection at
around (0.75,0.75) so we should think that the fixed point is around 0.75 (which of course we know is true from our
calculator experiment). Figure 2.2.1(b) illustrates the exercise of computing cos(0), cos(1),cos(0.540302...),. ...
Following the vertical line segment from (0,0) to (0,1) represents calculating cos(0). Following the horizontal
continuation from (0,1) to (1,1) and subsequently the vertical line segment from (1,1) to (1,0.540302...) rep-
resents calculating cos(1). Following the horizontal line from (1,0.540302...) to (0.540302...,0.540302...) and
subsequently the vertical line from (0.540302...,0.540302...) to (0.540302...,0.857553...) represents calculating


http://lqbrin.github.io/tea-time-numerical/ancillaries.html

2.2. FIXED POINT ITERATION 33

c0s(0.540302. . .), and so on. With each pair of line segments, one going horizontally from the graph of y = cos(x)
to the graph of y = x followed by one going vertically from the line y = x to the graph of y = cos(x), another
iteration is shown. Figure 2.2.1(b) is sometimes called a web diagram [2], and is commonly used to illustrate the
concept of iteration. That the path of the web diagram tends toward (0.739085...,0.739085...) is an unavoidable
consequence of the geometry of the graph of cos(x).

What if we start with a number other than 07 Using figure 2.2.1, you should be able to convince yourself that
convergence to the point (0.7390851332...,0.7390851332...) is assured for any initial value between 0 and 1. Try
it. Start anywhere on the line y = x. Proceed vertically to the graph of y = cos(x). Then horizontally to the line
y = z. And repeat. You should find that the path of the web diagram always tends toward the intersection of the
graphs. Now consider starting with any real number, r. The cosine of any real number is a number in the interval
[—1,1] so cos(r) € [-1,1]. And the cosine of any number in the interval [—1,1] is a number in the interval [0, 1] so
cos(cos(r)) € [0,1]. That is, the second iteration is in the interval from 0 to 1. So after only two iterations, any
initial value will become a value between 0 and 1. And our web diagram implies that further iteration will lead to
the fixed point. So, regardless of the initial value, iteration leads to the fixed point. And the preceding argument
forms the seed for a proof of this fact.

Not all functions are so well behaved, however. For example, 1> = 1. In other words, 1 is a fixed point of
the function y = 2. However, iteration starting with any number other than 1 or —1 does not lead to this fixed
point. If we start with any number greater than 1 and square it, it becomes greater. And if we square the result, it
becomes greater still. And squaring again only increases the value, without bound. Hence, iteration starting with
any value greater than 1 (or less than —1) does not lead to convergence to the fixed point 1. Nor does iteration
starting with any number of magnitude less than 1. Figure 2.2.2 illustrates iteration of y = x? with initial value 0.9.

Figure 2.2.2: Visualizing the iteration of f(x) = 2.

=

0 1

Follow the web diagram from the point (0.9,0.9) vertically to the graph of y = 22 and then horizontally back to
the line y = x, and so on, to check for yourself. This is a nice illustration of the fact that the square of any number
between 0 and 1, exclusive, is smaller than the number itself. With starting values between —1 and 1 exclusive
of +1, iteration gives a sequence converging to 0, not 1. To summarize, excepting —1 and 1, no initial value will
produce a sequence converging to 1 under iteration of the function y = 22.

There is a fundamental difference between the fixed point 0.7390851332. .. of f(x) = cos(x) and the fixed point
1 of g(x) = 2%. Fixed point iteration converges to 0.7390851332. .. under f(z) = cos(z) for any initial value. Fixed
point iteration fails to converge to 1 under g(z) = 22 for all initial values but £1.2 Examining the graphs of f(z)
and g(x) each superimposed against the line y = 2 in the neighborhood of their respective fixed points can give a
clue [Figure 2.2.3] as to the difference. True, f(z) has a negative slope at its fixed point while g(x) has a positive
slope at its fixed point. You can see this from the graphs or you can “do the calculus”. The important difference,
though, is more subtle. It’s not the sign of the slope at the fixed point that matters. It’s the magnitude of the
slope at the fixed point that matters. For smooth functions, neighborhoods of points with slopes of magnitude
greater than 1 tend to be expansive. That is, points move away from one another under application of the function.

2For a third type of behavior, fixed point iteration converges to 0 under g(x) for initial values near 0, but not for others!



34 CHAPTER 2. ROOT FINDING

Figure 2.2.3: Left: f(z) = cos(z) and y = z. Right: g(z) = 2% and y = .

1 2
0.9 - -
15 |
0.8 - -
1 - —
0.7 - -
06 | | o5t |
0.5 1 1 1 1 0 | | |

05 06 0.7 08 09 1 0 0.5 1 1.5 2

However, neighborhoods of points with slopes of magnitude less than 1 tend to be contractive. That is, points move
toward one another under application of the function.

Proposition 2. If h(z) is differentiable on (a,b) with |h'(x)] < 1 for all x € (a,b), then whenever x1,x2 € (a,b),
|h(z2) — h(z1)| < |2 — 1]

Proof. Let x1, 24 € (a,b) and, without loss of generality, let 25 > 21 so that we may properly refer to the interval
from z1to 5. Since h(z) is continuous on [z, z2] and differentiable on (x1, z3), the mean value theorem gives us
¢ € (z1,22) C (a,b) such that h'(c) = ‘M . But h/(¢) < 1 by assumption, so h'(c) = ‘M < 1, from

To2—x1 T2—xT1
which we immediately conclude that |h(z2) — h(z1)| < |22 — 21/

Moreover, a function whose derivative has magnitude less than 1 can only cross the line y = x one time. Once it
has crossed, it can never “catch up” because that would require a slope greater than 1, the slope of the line y = x.

Proposition 3. Suppose h(x) is continuous on [a,b], differentiable on (a,b) with |W'(z)| < 1 for all z € (a,b), and
h([a,b]) C [a,b]. Then h has a unique fized point in [a,b].

Proof. Tf h(a) = a or h(b) = b, we have proved existence, so suppose h(a) # a and h(b) # b. Since h([a,b]) C [a, b] it

must be the case that h(a) > a and h(b) < b. Tt immediately follows that h(a) —a > 0 and h(b) — b < 0. Since the

auxiliary function f(z) = h(z) —z is continuous on [a, b], the Intermediate Value Theorem guarantees the existence

of ¢ € (a,b) such that f(c) = 0. By substitution, h(c) — ¢ = 0, implying h(c) = ¢, so c is a fixed point of h. The

existence of a fixed point is established. Now suppose ¢1 € [a,b] and ¢y € [a, b] are distinct fixed points of h. Then
h(C1) — h(Cg) C1 — C2

= :1.
C1 — C2 C1 — C2

By the mean value theorem, there exists c3 between ¢; and ¢y such that h'(c3) = 1, contradicting the fact that
|h'(z)] < 1 for all x € (a,b). Hence, it is impossible that ¢; and ¢o are distinct. O

Hence, we can reasonably expect that when the derivative at a fixed point has magnitude less than 1, iteration is
a viable method for approximating (finding) the fixed point, but when the derivative at a fixed point has magnitude
greater than 1, iteration is not a viable method of approximating the fixed point. We must be careful, though,
not to take this rule of thumb as absolute. It only applies to so-called well-behaved functions. In this case, that
the function has a continuous first derivative in the neighborhood of the fixed point is well-behaved enough. The
following theorem establishes that fixed point iteration will converge in a neighborhood of a fixed point if the
magnitude of the function’s derivative is less than 1 there.

Theorem 4. (Fized Point Convergence Theorem) Given a function f(x) with continuous first derivative and fized
point &, if | f'(2)| < 1 then there exists a neighborhood of & in which fixed point iteration converges to the fixed point
for any initial value in the neighborhood.

Proof. By continuity, there exists e > 0 such that |f'(z)] < 1 for all x € (& —¢,2 +¢). Let 0 < § < ¢ and set

M = [m%x . |f'(x)|. Now suppose x is a particular but arbitrary value in (# — 6,2 + ). As in proposition 2,
ze[z—0,2+

= f@)=f(z0)

i*l’o

the Mean Value Theorem is applied. This time, we are guaranteed ¢ € (£ — §,2 + ) such that f/(c)



2.2. FIXED POINT ITERATION 35

Figure 2.2.4: Convergence behavior when the derivative at the fixed point is 1.

1

0.5 0.5 0.5

o 0 o
0.5 \Q 0.5
-1 -1 -1

ARE 0 0.5 1 ’ 1 05 0 0.5 1 1/ -0 0 0.5 1

But |f'(¢)] < M so |f(&) — f(zo)] < M|Z — xo|. Furthermore & is a fixed point, so f(&) = &, from which it
follows that |& — f(zo)] < M|& — z9|. Now we define x, = f(zr_1) for all £ > 1 and prove by induction that
| — x| < MF|& — 20| for all k& > 1. Since 1 = f(x0), we have already shown |# — z1| < M|# — x|, so the
claim is true when k& = 1. Now suppose |# — x| < MF¥|# — x| for some particular but arbitrary value k > 1.
Note that |# — x| < M¥|# — 20| implies x), € (& — J§,% + ) so we apply the Mean Value Theorem as before and
conclude that |# — f(xg)| < M|Z — x| Substituting zx41 for f(zx) and using the inductive hypothesis, we have
|# — 2py1]| < M- MF|2 — x| = M¥1|3 — 24|. Hence, we have 0 < |2 — x| < M*|# — zg|. Of course lem 0 =0 and
o0

lim M*|# — x| = 0, so by the squeeze theorem, lim |& — x| = 0. O
k—o0 k—oo

As suggested earlier, we should not expect fixed point iteration to converge when the derivative at a fixed
point has magnitude greater than one. In fact, more or less the opposite happens. There is a neighborhood of
the fixed point in which fixed point iteration is guaranteed to escape the neighborhood for any initial value in the
neighborhood not equal to the fixed point itself. Given that fact, it is tempting to think that perhaps the Fixed
Point Convergence Theorem could be strengthened to a bi-directional implication, an if-and-only-if claim. And it

“almost” can. What can be said here has direct parallels to the ratio test for series. Recall, for any sequence of real
o0

Ak+1

helps determine the convergence of Z ay, in the following way:
ag

k=0

numbers ag, a1, as, ..., the limit L = lim
k—o0

o« If L <1, then Zak converges (absolutely).
k=0

o If L > 1, then Z ay, diverges.
k=0

o0
o If L =1, then Z ax, may converge (absolutely or conditionally) or may diverge.
k=0

Analogously, for any function f(z) with continuous first derivative and fixed point &, the derivative f'(&) helps
determine the convergence of the fixed point iteration method in the following way:

o If |f/(2)| < 1, then fixed point iteration converges to & for any initial value in some neighborhood of #.

o If |f'(2)] > 1, then fixed point iteration escapes some neighborhood of & for any initial value in the neighbor-
hood other than z.

o If |f(%)] = 1, then fixed point iteration may converge to & for any initial value in some neighborhood of #;
or may escape some neighborhood for any initial value in the neighborhood other than Z; or may have no
neighborhood in which all initial values lead to convergence and no neighborhood in which all values other
than & escape.

The graphs in Figure 2.2.4 of functions with derivative equal to one at their fixed point help illustrate this last case.



36 CHAPTER 2. ROOT FINDING

For one of these functions, fixed point iteration converges for all values in a neighborhood of the fixed point. For
another of these functions, fixed point iteration escapes some neighborhood of the fixed point for all initial values in
the neighborhood except the fixed point itself. And for the third of these functions, fixed point iteration converges
to the fixed point for some initial values and escapes a neighborhood of the fixed point for others (and every
neighborhood of the fixed point will have both types of initial values). Can you tell which is which? Figure it out
by creating web diagrams for each. Answer on page 41.

The proof of the Fixed Point Convergence Theorem can easily be extended to include initial values in any
neighborhood of the fixed point in which the magnitude of the derivative remains less than 1. The size and
symmetry of the interval are not important. For example, f(z) = %x?’ — 22+ 2x +1 has a fixed point at £ = 2. The
proof of the Fixed Point Convergence Theorem establishes convergence to 2 in a symmetric interval about 2 such
as [1.9,2.1]. But this interval is far from the largest neighborhood of initial values for which fixed point iteration
converges to 2. We can find bounds on the largest such interval by solving the equation |f/(z)| = 1. To that end:

§x2—2x+2 = +1
322 —162+16 = +8

322 —1624+24=0 or 32°—16x+8=0
8 +i2/2 8 +24/10
r= ——— r= ——
3

3
%sz.E)E)S and %\/ﬁ

so we should expect fixed point iteration to converge to 2 on any closed interval contained in

<8—2\/E8+2\/m>
3 7 3 :

or

~ 4.775,

Now, if we have the computer execute fixed point iteration for a large number of evenly spaced initial values, say
100, on the interval [—2, 8] and record the results on a number line where we color an initial value black if it does
not converge to 2 and green if it does converge to 2 (we will call such diagram a convergence diagram), we get

i

which shows that fixed point iteration converges to 2 on approximately [—0.5,6.5]. Indeed, the experiment confirms

that fixed point iteration converges on any closed interval contained in (8_2?)@, %‘/ﬁ as predicted. But the

diagram shows convergence on an even larger set. We can conclude that the Fixed Point Convergence Theorem
gives sufficient but not necessary conditions for convergence in a neighborhood of a fixed point.

A graph of the function f(x) superimposed on the line y = x (Figure 2.2.5) gives some insight as to why the
bounds % do not tell a complete story. By imagining the web diagram for any initial value between the two
fixed points other than 2, that is —0.61 and 6.61, you should be able to convince yourself that fixed point iteration
converges to 2 for any initial value in the interval (—0.61,6.61). Can you prove it? Graphs like those in Figures
2.2.3, 2.2.4, and 2.2.5 are indispensable and should always be consulted when trying to understand fixed point
iteration, but they should not be relied upon as proof. For that, we need to rely on theorems like the Fixed Point
Convergence Theorem.

Crumpet 9: One interesting quadratic

Trying to find roots of the logistic equation

g(z) = (o — Dz — az®

by applying fixed point iteration to the corresponding function f(z) = = + g(z) = ax(l — x) is a famous exercise
in dynamical systems which has a nasty habit of not working! Complete the following investigation to see what
happens.



2.2. FIXED POINT ITERATION 37

Figure 2.2.5: f(z) = 12% — 22 4 22 + 1 and the line y = =

8

N
6
4
2
0
(-0.61, -0.61) J
- —}/-0.5 0 05 1 15 2 25 3 35 4 45 5 55 6 65 7

1. Show that f(z) = az(1l — z) as claimed.
2. For each of the values a = 2.5, a = 3.2, a = 3.833, and a = 4, do the following.
(a) Find the positive fixed point of f (root of g) analytically (using a pencil, paper, and some algebra).

(b) Set xop = 0.1 and use a computer program to calculate xg7s through z1000-

(c) Examine the 26 iterations of part (b) and describe what you see.

3. Draw a connection between your results from part 2 and the following diagram.

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 I I I I I I I
2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

4. Use the diagram to predict a value of a for which you would expect fixed point iteration to lead to zg7s
through x1000 cycling through 4 different values. Check your prediction.

Root Finding

When successful, fixed point iteration finds solutions of an equation of the form f(z) = z. A root finding problem
requires the solution of an equation of the form g(xz) = 0. However, the equation f(z) = x has exactly the same
solutions as the equation f(x)—a = 0, so finding fixed points of f(x) is equivalent to finding roots of g(x) = f(z) —x.
Indeed, we can rephrase the example of finding fixed points of f(x) = %x3 — 22 4 22 + 1 as the problem of finding
roots of g(z) = f(x) —x = %:ﬁ — 22 + 2 + 1. But it is the opposite problem that is much more common. We have
the question of finding the roots of a function and need to rephrase it in terms of a fixed point problem.

Suppose we want the roots of g(x) = —x3 + 522 — 42 — 6. We can rephrase the question of solving g(x) = 0 as



38 CHAPTER 2. ROOT FINDING

Figure 2.2.6: Convergence diagrams for 6 functions with the same fixed points.

-2 -1 0 1 2 3 4 5

f
J—

X -2 -1 0 1 2 3 4 5
Ja:

. -2 -1 0 1 2 3 4 5
I3

X 2 1 0 1 2 3 4 5
fa

fs: 2 1 0 1 2 3 4 5
5.

fe: 2 1 0 1 2 3 4 5
6.

black: does not converge; green: converges to 3; red: converges to 1+ v/3; blue: converges to 1 — /3

the problem of finding the fixed points of many different functions! But you will have to ignore some sage advice of
your algebra teacher to derive them! The key is to use algebra to rewrite the equation —z3 + 522 — 42 — 6 = 0 as
an equation of the form z = f(z). The simplest way is to add x to both sides of the equation. This manipulation
and several others are shown in the following list.

o — 234522 -4 —-6=0=—23+52°—-3x—-6==z

. —1:3—1—5302—430—6:O:>—x3+5x2—6:4x$%:x
. _x3+5w2_4$_6:0:>_w3_4$—6=—5132#%:ﬁ:i\/@:x

o — 234522 -4z —6=0=522—-dz—-6=23= Vb2 —dz—6==z

Can you see what has been done for each one? Thus, we have five candidates for fixed point iteration, fi(z) =

—23 4+ 522 — 3z — 6, fo(x) = %, fa(x) = %, falz) = —\/%, and f5(z) = V/5x2 — 4z — 6,

all of which will potentially give roots of g(z). There is a sixth function we will discuss in much more detail later:

fo(z) = %3. The roots of g(x) are 1 — /3 =~ —0.73, 1 4+ /3 ~ 2.73, and 3, so we will consider convergence
diagrams over the interval [—2, 5]. Fixed point iteration converges to different fixed points for the different functions
despite the fact that all 6 functions have exactly the same three fixed points. The convergence diagrams of Figure
2.2.6 are color-coded to reflect this fact. Black indicates lack of convergence just as before. Green, red, and blue
indicate convergence to 3, 1 + /3, and 1 — v/3, respectively. Notice that only fs provides convergence for, as far
as we can tell, every initial value in [—2,5], and is also the only one for which fixed point iteration converges to
different fixed points for different initial values. See if you can understand why each function has the convergence
behavior it does by looking at the graphs of fi, fa,..., fe. Pay special attention to the graphs around 1 + v/3 and
3. Looks can be deceiving in that area because the two fixed points are so close together. Also, see if you can find
two initial values in [—2, 5] for which fixed point iteration on fs does not converge. What happens instead? For an
extra challenge, see if you can find a third point in [—2, 5] for which fixed point iteration on fg does not converge.
Hint: you may need to use a computer algebra system to find such a point exactly or use fixed point iteration to
approximate it! Answers on page 41.

3By calculating fe(1 — v/3), fo(1 4 /3), and fg(3), you can verify that fg has these three values as fixed points as well.



2.2. FIXED POINT ITERATION 39

The Fixed Point Iteration Method (pseudo-code)

Though we spent a lot of time talking about how to determine whether we should expect the fixed point iteration
method to converge or not, none of that information is strictly relevant to coding the method. Any implementation
of the method should allow the user to try fixed point iteration for any function with any initial value. It is the user’s
responsibility to understand that when the assumptions are not met, the results are unpredictable. Remember,
“garbage in...garbage out.”

The fixed point iteration method presents a problem that the bisection method did not. In the bisection method,
there was a simple and convenient formula for an upper bound on the error. To provide something similar in the
fixed point iteration method, one would have to sacrifice simplicity or convenience or both, but the benefits do
not outweigh the sacrifice. Instead, a more general stopping criterion is used. When two consecutive iterations are
closer to one another than a given tolerance, the method stops. At this point, the difference between iterations,
say ) and xgy1, is smaller than the tolerance. For a sequence derived from fixed point iteration, xx+1 = f(zk), so
|2p+1 — zk| = | f(ag) — x| When |xg41 — x| is smally |f(z) — zx| is small, so f(x) = zg.  is “almost” a fixed
point.

Assumptions: f is differentiable. f has a fixed point Z. z( is in a neighborhood (& — §,2 + 0) where the
magnitude of f’ is less than one.
Input: Initial value xg; function f; desired accuracy tol; maximum number of iterations N.
Step 1: For j =1...N do Steps 2-4:
Step 2: Set x = f(x);
Step 3: If |z — x¢| < tol then return x;
Step 4: Set zg = z;
Step 5: Print “Method failed. Maximum iterations exceeded.”

Output: Approximation x near exact fixed point, or message of failure.

Key Concepts
Fixed point: z is a fixed point of the function f(z) if f(xg) = xo.

Fixed point iteration: Calculating the sequence xg, 21 = f(x0), 22 = f(21),23 = f(22),... given the function f
and initial value zg.

Attractive fixed point: A fixed point is called attractive (or attracting) if there is a neighborhood of the fixed
point in which fixed point iteration converges for all initial values in the neighborhood.

Repulsive fixed point: A fixed point is called repulsive (or repelling) if fixed point iteration escapes some neigh-
borhood of the fixed point for any initial value in the neighborhood other than the fixed point itself.

Mean Value Theorem: If f is continuous on [a,b] and has a derivative on (a,b), then there exists ¢ € (a,b) such
that f'(c) = 7f(bl);f(a).

Fixed Point Convergence Theorem: Given a function f(z) with continuous first derivative and fixed point Z,
if | f/(2)|] < 1 then there exists a neighborhood of # in which fixed point iteration converges to the fixed point
for any initial value in the neighborhood.

Exercises (d) h(z) =10 — cosh(z); [-3, —2] ¥
1. Write an implementation of the fixed point iteration (e) f(t)=+v4+5sint —2.5; [-6,—5]
thod. S it .m file f fut . 2 tan S
metho ave it as a .m file for future use (f) g(t) = 3t1jt t: [20,23] [
2. (i) Decide whether or not the hypotheses of the Mean B . 3t (4]
Value Theorem are met for the function over the inter- () h(t) =In(3sint) — 5 [2,4]
val. (ii) If the hypotheses are met, find a value ¢ as (h) f(r) =e™" —r; [—20,20] ¥
guaranteed by the theorem. (i) g(r) = sin(e”) + 75 [~3, 3]
(a) f(z) =3 —=z —sinz; [2,3] (G) h(r) =277 = 3°=7; [1, 3]

— 4 3 .
(b) g(z) = 32" — 22" — 3z +2; [0,1] 3. Find the fixed point(s) of the function exactly. Use
(¢) g(x) = 3z* — 22° — 32+ 2; [0,0.9] FI algebra.



40 CHAPTER 2. ROOT FINDING
(@) f(z) =23 —22 -z 12. Show that the fixed point iteration method applied to
(b) flz) = f(z) = ¥8—4x will converge to a root of g(z) =
2 2® 4 4z — 8 for any initial value zo € [1.2,1.5].
(c) f(z)=log(z? —3z) —1+=x “ 13. Show that fixed point iteration is guaranteed to con-
(d) g(x) =32>+5c+1 " verge to the fixed point of
(e) g(x) =z + 52%05 — 2500 fl@) = (V2)*
(f) g(z) = en@+b=3 for any zo € [1,3]. HINT: f'(z) = $In(2) - (V2)".
(g) h(z)= 42?4z + 1 14. Let g(x) = 2® — 3z — 2.
(h) h(z) =2z —10+3"+25.37°" (8] (a) Find a function f on which fixed point iteration
(i) h(z) = 2 + 6 — 3logs (22) . Eﬂl converfge to a rootﬁofdg. f )
se your function to find a root of g to within
4. Find at least two candidate functions, fi(z) and fa2(z), 1073 of the exact value.
for finding roots of g(x) via fixed point iteration. In (c) State the initial value you used and how many
other words, convert the problem of finding a root of g iterations it took to get the approximation.
into a problem of finding a fixed point of fi or fa.
15. Use fixed point iteration with po = —1 to approximate
(a) g(x) =72% 4+ 52 — 9 a root of g(z) = 2® — 3z + 3 accurate to the nearest
-4
(b) g(z) =z + cosx 1077
16. Use a fixed point iteration method to find an approx-
_ a5 2 g [A]
(¢) g(z) = 62" + 12z 8 imation of v/3 that is accurate to within 10~%. What
(d) g(z) = 2? — 3t (5] function and initial value did you use?
(e) g(z) = 7z — 3cos(mx — 2) + In|22% + 4z — § 17. The function f(z) = z* 4 22? — 2 — 3 has two roots.
1) o) % 5o+l _ g-a?—5a-1 [4] One of them is in [—1,0] and the other is in [1,2].
g(z) = -
(a) In preparation for finding a root of f(z) using
5. Compute the first 5 iterations of the fixed point itera- fixed point iteration, one way to manipulate the
tion method using the given function and initial value. equation z* + 222 — 2 — 3 = 0 is to add z to both
Based on these 5 iterations, do you expect the method sides. This gives
to converge?
& r=a"422" -3
(@) fz)=3—sinz; 20 =2 Draw appropriate graphs to determine whether it-
— _ . — _9q1s] : B _ 4 2 .
i
(b) g(z) =10+ z — cosh(z); o = —3 eration of the function g(z) = z*+2z*—3 will find
(c) h(t) =In(3sint) + 2; to = 1 (A] the ro.ot in [—1,0]. How about the roo.t in [1,2]?
) xplain how you came to your conclusions.
(@) wlr) = 277 3 g = 1 . e e
o R (b) Manipulate the equation z* + 22° —x — 3 =0 in
6. Use your function from question 1 with the function such a way that. fixed point iteration does work
and initial value in question 5. Set the tolerance to to find the root in [—1,0]. Draw Fhe graphs that
107!% and the maximum iterations to 100. Does the demonstrate that your method will work.
method converge within 100 iterations? If so, to what (c) Does the same manipulation allow you to find the
value? Report at least 10 significant digits. '/ root in [1,2]? If not, find another manipulation
7. Construct a web diagram for each function /initial value t?att thﬂ ) ¢ Again, S?}? “:i th.en grapltl s that demon-
pair in question 5. (4] strate that your method will work.
. . (d) Use your method(s) from parts 17b and 17c¢ to
8. Compar.e the results from quleStIOIl 6 with the results find the two roots accurate to 3 decimal places.
of question 7. Are they consistent with one another?
. . . . . . . — 3/ 3 _ 2 _ .
9. Use proposition 3 to show that g(z) = 2z(1 — z) has a 18. Fixed point iteration on f(:c) 220 -t —w “,’111
unique fixed point on [0.3,0.7] not converge to a fixed point. However, fixed point
q p2 R iteration on the function g(z) = /22 +z will con-
10. Let f(z) = 362;41. 5] verge to app{g(})ximately 1.618033988749895 for any xo
in [0.5, 3.5].
(a) Show that f has a unique fixed point on
[—4,-0.9]. (a) How many iterations does it take to achieve 10™*
L . o accuracy using g(z) with xg = 2.57
(b) Use fixed point iteration to find an approximation ]
to the fixed point that is accurate to within 1072. (b) Expltaln why f(z) and g(z) have the same fixed
points.
11. Let g(z) = 7 + 0.5sin(z/2).

(a) Show that g has a unique fixed point on [0, 27].

(b) Use fixed point iteration to find an approximation
to the fixed point that is accurate to within 1072

19.

Find a zero (any zero) of g(x) = z* 4+ 10 cos = accurate
to within 10™* using fixed point iteration. State

(a) the function f to which you fixed point iteration

(b) the initial value, xo, you used



2.2. FIXED POINT ITERATION 41
(¢) how many iterations it took graphs that demonstrate that your choice of c is
appropriate.
20. Le.t ¢bea nonzeroc‘r(?i)l Pumber. Argue that any fixed (c) Use the function from part 24b with the value of
point of f(z) = ze®9'* is a root of g. .
¢ you have determined to find a root of g(z) ac-
21. Approximate v/3 using the method suggested by ques- curate to within 10™*. State the value you used
tion 20. for po. Show the last 3 iterations. How many
. . 1 9
22. Suppose ¢g(Z) = 0 and ¢ has a continuous first deriva- iterations did it take!
tive. Argue that there exists a value ¢ for which fixed 25. Prove that for f(z) = cosz, fixed point iteration con-
point iteration on f(z) = x + cg(x) will converge to & verges for any initial value.
on some neighborhood of .
26. The Fixed Point Convergence Theorem can be
23. Find a value of ¢ for which fixed ppint iteration is guar- strengthened. The requirement that the first deriva-
anteed to.convergfa 1.80.1“ the function f(z) = = + C(l’._ tive be continuous can be replaced. Modify the proof
i]cos z) with any initial value zo € [0,7/2]. Explain. in the text to show the following claim.
Given a differentiable function f(x) with fized point %,
24. Let g(z) =3 + £ —107°. if 1f'(z)] < M <1 for all z in some neighborhood of
Z, then fized point iteration converges to the fixed point
(a) Show that if g(z) has a zero at p, then the func- for any initial value in the neighborhood.
tion f(x) = 2 + ¢g(v) has a fixed point at p. 27. Create three graphs similar to those in Figure 2.2.4 to
(b) Find a value of ¢ for which fixed point iteration analyze the situation when the derivative at the fixed
of f(z) will successfully converge for any start- point equals —1. Does the situation differ from that
ing value, po, in the interval [16,17]. Sketch the when the derivative at the fixed point equals 17
Answers

Figure 2.2.4: From left to right: every neighborhood of the fixed point will have both types of initial values;

point iteration converges for all values in a neighborhood of the fixed point; fixed point iteration escapes some
neighborhood of the fixed point for all initial values in the neighborhood except the fixed point itself

Figure 2.2.6: When its denominator is zero, fg(z) will be undefined (there is a vertical asymptote in the graph),

so we solve 3r2—10x + 4 = 0 to find two initial values for which fixed point iteration will fail (since the

first iteration will be undefined). They are z = &Sﬂ ~ .4648 and 2.868. To find a third point for which

5+v/13 (
5

fixed point iteration will fail, we solve the equation fs(z) = we could just as easily have solved

fo(x) = @ instead). Then the second iteration will be undefined since the first iteration will be M‘f;/ﬁ
The only real solution is approximately 1.055909763230534, which can be found by fixed point iteration on

E _ 10132z _ 50 | 413 | 38
v/ Yoo 41002 3 5 755 Prove it. Note, though, the claim that fixed point iteration will fail is

based on the assumption of exact arithmetic. The fact that any reasonable implementation of the fixed point
iteration method will involve floating point arithmetic might provide just enough error for the method to
converge even for these initial values.




42 CHAPTER 2. ROOT FINDING

2.3 Order of Convergence for Fixed Point Iteration

Suppose f is a function with fixed point & and f/(2) exists. Let xo,x1,x2,... be a sequence derived from fixed
point iteration (xg+1 = f(zk) for all k£ > 1) such that klim xp =2 and x, # & for all k =0,1,2,.... Then
—00

fns — 8] _ ‘fm) - (@)

|x, — 2] Tpn — T
e flan) = £(&)
. Tn) — €T _ (2,
JLH;Q’M = £ @) (23.1)

Therefore, fixed point iteration is linearly convergent as long as f’(Z) # 0. The following proposition could be
presented as a corollary to the Fixed Point Convergence Theorem since much of the argument simply repeats what
was noted there, but we choose to present it as a separate claim based on equation 2.3.1. To be more precise, we
have the following result.

Proposition 5. (Fized Point Error Bound) Let f be a differentiable function with fized point & and let [a,b] be an
interval containing &. If |f'(z)| < M < 1 for all x € [a,b] and f([a,b]) C [a,b], then for any initial value xo € [a,b],

fized point iteration, with xpr1 = f(xk) for all k > 0, gives an approximation of & with absolute error no more than
Mk |JCQ - Zf‘ .

Proof. An elementary induction proof (requested in the exercises) will establish that zj € [a,b] for all & > 0. We
proceed to prove the error bound. The absolute error in approximating & by zg is |zo — 2| = M°|x¢ — #| so the
claim is true for £ = 0. Now suppose the claim is true for some particular but arbitrary k£ > 0. By the Mean Value
Theorem, there is a ¢ in the interval from & to xj, such that f'(c) = % Since & and zj, are both in [a, b], s
is c. Tt follows that |f/(c)| < M, so |f(zx) — f(&)| < M|z, — &|. But & is a fixed point of f, so f(&) = &, from Wthh
it follows that |f(x) — | < M|xy — £|, and, therefore, that |z — &| < M|z, — &|. By the inductive hypothesis,
|z, — 2| < MF|lzg — 2, s0 |wpyy — 2| < M - MF¥|zg — 2| = M*+zy — 2. O

When f'(2) = 0, equation 2.3.1 shows that fixed point iteration does not converge linearly. For any sequence

|pni1i—p| _

(pn) converging to p, if lim,, o =

faster than linear.

Consider the functions f(z) = §2°—2?+2x+1and fi(z) = —23+52? —32—6 from section 2.2. Recall 2 is a fixed
point of f and 3 is a fixed point of f; and observe that f/(2) = %-22—2-2+2 = —1and f{(3) = —3-32+10-3-3 =0
Consequently, we should expect fixed point iteration of f1 to converge to 3 faster than that of f converges to 2. With
S0,51,82,... = 175, f(175)7 f(f(175)), ... and to, t17 tg, . = 275, f1 (275), fl (fl (275)), ceey table 2.1 shows the

= 0 we say the sequence is superlinearly convergent or that convergence is

Table 2.1: Comparing order of convergence for fixed point iteration when the derivative at the fixed point is not
zero (sy,) to that when the derivative at the fixed point is zero (¢,).

n |2 — sp] |3 — tn]

0 | 2.5(10)71 2.5(10) 71

1 | 1.074(10)~1  2.343(10)7!
2 | 5.644(10)72  2.068(10)7!
3 | 2.740(10)72  1.623(10)~!
4 | 1.388(10)"2  1.010(10)~!
5 | 6.894(10)73  3.984(10)~2
6 | 3.459(10)7*  6.286(10)~3
7 | 1.726(10)73  1.578(10)74
8 | 8.640(10)~*  9.966(10)~®
9 | 4.318(10)~* 3.973(10)~ 14
10 | 2.159(10)~*  6.317(10)27

relative speeds of convergence. (s,) is converging linearly as expected, and (¢,,) seems to be converging quadratically.
The last four exponents in the |3 —¢,| column are —4, —8, —14, —27, indicating that the number of significant digits
of accuracy is approximately doubling with each iteration. In other words, the error of one term is roughly the
square of the previous error (meaning o = 2 in the definition of order of convergence).



2.3. ORDER OF CONVERGENCE FOR FIXED POINT ITERATION 43

Table 2.2: Accelerating the convergence of a linearly converging sequence.

n Cn an len — ¢ la, — | St 7|ra:j;|§‘
0 1 728010 2.609(10) T 1.107(10) 2 .0934  .0110
1| 5403 733665 1.987(10)"! 5.419(10)~% 0630  44.19
2 | 8575 .736906 1.184(10)"! 2.178(10)"% .0400  74.17
3 | .6542 .738050 8.479(10)72 1.034(10)73 .0274 217.9
4 | .7934 .738636 5.439(10)72 4.490(10)74 .0180 419.4
5| .7103 738876 3.771(10)2 2.085(10)* .0122 1034
6 | 7630 738992 2.487(10)"2 9.289(10)° 0081

71 .7221

8 | .7504

Taylor’s theorem will provide the proof we need that this convergence really is quadratic. Suppose f has a
third derivative in a neighborhood of #. Define e,, = & — x,. Then according to Taylor’s theorem, & = f(&) =
flan +en) = flzn) +enf (zn) + %e%f”(wn) +0(ed). But f(x,) = zp11 S0 we get

1
F—Tpr1 = enr1 = enf (zn) + 56% "(x,) +O(ed). (2.3.2)

Also from Taylor’s theorem, f/'(2) = f'(zn + €n) = f'(xn) + enf”(xn) + O(e2). But f/(2) =0 so
f'(xn) = —enf"(xn) = O(eh). (2.3.3)

Substituting 2.3.3 into 2.3.2,

et = enl—enf" (@) — () + 547" (#) + O(E)
= () + O(ED).

Py, 1
Hence, (””L_QJT*)E = % = —5f"(x,) + O(ey,) and

- 1
lim E= Tl o 5f" (@) + Olen)

n—oo | — x,|? n—o0 ’

1 (2,
= ’2f (2)

showing that convergence is at least quadratic. If f”/(Z) happens to be 0, then the convergence is superquadratic.
To summarize, on the off-chance that, at a fixed point &, f/'(#) = 0, fixed point iteration is successful and fast
for initial values near &. But when f’(%) # 0, fixed point iteration may fail to converge to &, and when it does
converge, the convergence is slow. There is a quick fix (quick to implement, not quick to explain) for some of this
deficiency when f’(&) # 0, however. We will first concentrate on the speed of convergence.
Let the sequence (c,) be defined by

co = 1
¢, = cos(cp—1), k>0.

You should be able to verify that the first few terms of this sequence are (approximately)
1,.5403, .8575,.6542,.7934, . ..

This is exactly the sequence you created in the calculator experiment on page 32 of section 2.2. Define a new
sequence {a,) by

(CnJrl - Cn)2
Cn+2 — 2Cn-l—l +cn ’

ap = Cp —

Table 2.2 shows the first few terms of each sequence along with some error analysis. As promised, the sequence

an—c
Cp—C

(ay) is converging more quickly than (c,), evidenced by the fact that is tending to zero. The last column of

the table indicates that the convergence of (a,,) to ¢ is not quadratic, however.



44 CHAPTER 2. ROOT FINDING

More generally, suppose (p,,) is any sequence that converges linearly to p. Then we have lim “";f’i;fll‘ =A#0,
n—oo

n

t [P—Pnt2| ~ [P—Pnt1]
[P—Pnt1l [pP—pn]
Assuming p — p,12 and p — p,, have the same sign for large n*, we can remove the absolute values to find

so we should expec ~ ) for large enough n, from which we get |(p—ppn+2)(p—pn)| = [p—Dns1|*

(P—DPas2)P—Dpn) =~ (P—Pnt1)’
P> — (P2 + Pn)D + Pryapn P* = 2pnap+ Po s
(=Pnt2 + 2Png1 — Pn)p —Pnt2Pn + Doy
Pn+2Pn — p%,+1
Prt2 = 2Pnt1 + Do

Q

Q

p =

Therefore, we may take any three consecutive terms of (p,) and predict p from this formula. For large enough n,
this prediction will be a much better estimate of p than is p,,. But just as we were able to claim |(p—pn12)(p—pn)| =
|p — pni1]?, it must also be the case that p,iop, ~ p%H, so the numerator of our approximation is nearly zero. Of
course, that means the denominator must be nearly zero as well, since the quotient is p, a value that may not be
zero. To avoid some of the error inherent in this calculation, it is advisable to compute the algebraically equivalent
approximation
(Pn+1 = pn)?

Pn+2 — 2pn+1 + Pn

PR Py — (2.3.4)

instead. Let’s go back and revisit the sequence (s,,) and apply this approximation.

(Snt1—5n)>

s 9 s, and consider table 2.3 comparing the two sequences (sn) and (an). {(an)

Define a,, = s, —

Table 2.3: Comparing fixed point iteration when the derivative at the fixed point is not zero, s,, to the Aitken’s
delta-squared sequence, a,.

n Sn |2 — sp] an, |2 — a,]
0 1.75 2.5(10)~1  1.99506842493985  4.931(10)~3
1 2.107421875 1.074(10)~1  1.999022858310434 9.771(10)~*
2 | 1.943559146486223 5.644(10)"2  1.999737171760319 2.628(10)~*
3 | 2.027401559734717  2.740(10)=2  1.999937151202653  6.284(10)°
4 | 1.986114080555812  1.388(10)"2  1.999983969455146 1.603(10)°
5 | 2.006894420349172  6.894(10)~3

6 | 1.996540947531514  3.459(10)~3

converges significantly faster than the linearly convergent sequence from which is was derived, just as before! The
fact that |2 — a,| ~ |2 — s,12/|? is evidence of this claim, but the convergence of (a,,) is still linear. Make sure you
can calculate the a,, in this table yourself before reading on.

On a practical note, there is no sense in calculating all the terms ag, a1, ...,a,—2 as done in the table. The
terms of (a,) are dependent only on those of (s,) so a,—s can be calculated just as well without having calculated
ap,ai,...,an_3. The table shows all of them only for illustrative purposes and so you can get some practice with
formula 2.3.4. The important thing to notice is that a, has approximately twice as many significant digits of
accuracy as does s, 2. Consequently, ay is a much better approximation than is ss.

Crumpet 10: Aitken’s delta-squared method is designed for any linearly convergent sequence, not
just sequences derived from fixed point iteration.

The derivation of 2.3.4, referred to as Aitken’s delta-squared formula, makes no reference to fixed point iteration.
In fact it makes no assumptions about the origin of the sequence. It makes no difference. It may be a sequence of
partial sums, a sequence of partial products, a sequence derived from any recurrence relation, a sequence derived
from number theory, or anything else. The only important characteristics are that the sequence converges and it
does so linearly.

4This will happen in the common events that the & — z,, all have the same sign or the & — x,, have alternating signs, so this is not
an unrealistic assumption.



2.3. ORDER OF CONVERGENCE FOR FIXED POINT ITERATION 45

Table 2.4: Steffensen’s method applied to f(x) = cosz.

n an g(an) 9(9(an)) jan = sl

0 1 .5403023058681398  .8575532158463934 2.609(10)’1 .162

1 | .7280103614676171 .7464997560452203 .7340702837365296 1.107(10)’2 148

2 | .7390669669086738 .7390973701357808 .7390768902228948 1.816(10)_5 148

3 | .7390851331660755  .739085133248225 .739085133192888 4.908(10)_11 148

4 | .7390851332151607 3.063(10)~ 7

The sum % = % + % = % + % —--- converges to 7 linearly so Aitken’s delta-squared method should be helpful.
If we let p, = ZZ:1 % be the n*" partial sum, then py = %, p3 = %, Py = %, and ps = %. Aitken’s
2 2 s 2

extrapolation gives az = 12 — % = 132 and a3 = 1% — % = 289 ‘%:pjil ~ 2.6 and
‘é:p;j ~ 3.5 so extrapolation gives an error less than the square of the error in the original sequence.

Perhaps this fact gives you an idea. Once so is calculated, we can use equation 2.3.4, also known as Aitken’s
delta-squared method, to calculate a better approximation than we already have. And once we have this good
approximation, it seems a bit silly to cast it aside and continue computing s3 = f(s2),s4 = f(s3), and so on. What
if we use ag in place of s3 in our iteration? In other words, we would have s1 = f(sg), s2 = f(s1), 83 = ao, s4 = f(s3),
and so on. That should improve s3,s4, and s5. And once we have s; we again have three consecutive fixed point
iterations, so we can apply Aitken’s delta squared method again. Instead of calculating s¢ = f(s5), we can get what
should be a better approximation by using equation 2.3.4 on s3, s4, and s5. In other words, s¢ = a3, sy = f(s¢),
sg = f(s7). Again, we have three consecutive fixed point iterations, so s9 = ag, and so on. This gives the sequence

1.75, 2.107421875, 1.943559146486222,
1.995068424939850,  2.002459692429676, 1.998768643123618,
1.999997974970982, 2.000001012513483, 1.999999493743001,
1.999999999999658,  2.000000000000170,  1.999999999999914,
1.999999999999999,

which converges to 2 very quickly compared to (s,). If we consider the calculations of sy, s2, $4, S5, S7, g, . . . to be
intermediary and focus on the subsequence sg, s3, Sg, Sg, - . . = Sg, 4o, a3, g, - - . as a sequence itself we have

1.75, 1.995068424939850, 1.999997974970982, 1.999999999999658, 1.999999999999999, ...

which converges very rapidly! The construction of this subsequence as a sequence in and of itself is called Steffensen’s
method and the convergence is quadratic as long as (s,) is convergent. The following is a heuristic argument that
Steffensen’s method gives quadratic convergence. As seen, the error in ss is not significantly different from the error
in sg. But ag has an error approximately equal to the square of the error in s,, so the error in ag is approximately
the square of the error in sg. Similarly, the error in s5 is not significantly different from that in ag = s3. But the
error in a; is approximately the square of the error in ss, so the error in a; is approximately the square of the error
in ag. Similarly, the error in a,41 is approximately the square of the error in a,,.

Applying Steffensen’s method to the function f(x) = cosx with xg = 1, we can accelerate the convergence of the
sequence {(c¢,) dramatically. Table 2.4 shows the first few terms of (a,) with some error analysis. The last column
of the table indicates that

lim M ~ 148
n— oo ‘an _ C|

and, consequently, that the sequence (a,) converges quadratically.

Finally, we have two ways to get quick convergence from fixed point iteration. One, we simply iterate when the
function has derivative zero at the fixed point. Two, we use Steffensen’s method.



46 CHAPTER 2. ROOT FINDING

Figure 2.3.1: Convergence diagrams for 5 functions with the same fixed points—Steffensen’s method.

. -2 -1 0 1 2 3 4 5
Ji:

o— S——

X -2 -1 0 1 2 3 4 5
Ja:

. -2 -1 0 1 2 3 4 5
I3

X 2 1 0 1 2 3 4 5
fa

fs: 2 1 0 1 2 3 4 5
5.

black: does not converge; green: converges to 3; red: converges to 1 + 1/3; blue: converges to 1 — /3

Convergence Diagrams

Speeding up fixed point iteration only takes care of one deficiency of the method. There is still the problem of diver-
gence from fixed points where the derivative of the function has magnitude equal to or greater than 1. Steffensen’s
method helps. Compare Figure 2.3.1 with Figure 2.2.6. The convergence diagrams for Steffensen’s method show
convergence over larger intervals of initial values. Moreover, where f; and fy are concerned, Steffensen’s method
finds all three fixed points, just as fixed point iteration on fg did.

Steffensen’s Method (pseudo-code)

Since Steffensen’s method is particularly prone to floating-point error, we do a preliminary check for convergence
before the Aitken’s delta-squared step. This helps prevent large errors or division by zero in Step 4.

Assumptions: Fixed point iteration converges to a fixed point of f with initial value x.
Input: Initial value xg; function f; desired accuracy tol; maximum number of iterations V.
Step 1: For j =1...N do Steps 2-6:

Step 2: Set x1 = f(xg); z2 = f(21)
Step 3: If |5 — x| < tol then return xo

(x1—20)°
xo—2x1+T0

Step 4: Set v = zg —
Step 5: If |z — x¢| < tol then return z;
Step 6: Set zg = ;

Step 7: Print “Method failed. Maximum iterations exceeded.”

Output: Approximation z near exact fixed point, or message of failure.

Key Concepts

Aitken’s delta-squared method: If (p,) converges to p linearly, the sequence (a,) defined by a, = p, —

(pn+1 71771,)2

Pra—2pn Tpn converges to p superlinearly.

Fixed Point Error Bound: Let f be a differentiable function with fixed point & and let [a,b] be an interval
containing #. If |f'(z)| < M < 1 for all x € [a,b] and f([a,b]) C [a,d], then for any initial value z¢ € [a, b],

fixed point iteration, with xx11 = f(xg) for all £ > 0, gives an approximation of # with absolute error no
more than M*|zg — 2|.



2.3. ORDER OF CONVERGENCE FOR FIXED POINT ITERATION 47

Fixed Point Iteration Order of Convergence: Suppose f is a function with fixed point & and f'(Z) exists.

Let xg,x1,x9,... be a sequence derived from fixed point iteration (zx4+1 = f(xg) for all k& > 1) such that
klim xp =& and zy, # 2 for all k = 0,1,2,.... Then the sequence (z,,) converges linearly to & if f'(2) # 0 and
— 00

at least quadratically if f/(z) = 0.

Steffensen’s method: A modification of fixed point iteration where every third term is calculated using Aitken’s
delta-squared method.

Superlinear convergence: If the sequence pg, p1, p2, - . . converges to p and klim W = 0, then the sequence
—o Pk — P

is said to converge superlinearly.

Superquadratic convergence: If the sequence pg, p1,p2,... converges to p and klim M =0, then the
—oo |Pg — P
sequence is said to converge superquadratically.
Exercises (b) Use fixed point iteration with o = —4 to find an

approximation to the fixed point that is accurate

1. Supply the proof that z) € [a,b] for all k£ > 0 in propo- to within 101, The fixed point is z = —1.

sition 5.
2. Show that (c) Compare the bound to the actual number of iter-
Pn+2Pn — pi“ ations needed.
—2 +
and Pz P14 bn 10. Let g(z) = 7 + 0.5sin(x/2). In exercise 11 of section

2.2, you were asked to show that g has a unique fixed

(Prns1 — Pn)2 .
point on [0, 27].

Pn+4+2 — 2pn+1 + Pn
are algebraically equivalent.

Pn —

(a) Find a bound on the number of iterations required

3. Write a function that implements Steffensen’s method. to achieve 1072 accuracy using fixed point itera-
4. Write a program (.m file) that uses a while loop tion with any initial value in [0, 27].

and the disp() command to output the first 10 powers (b) Use fixed-point iteration with zo = 0 to find an

of 5 starting with 5°. approximation to the fixed point that is accurate

to within 1072, The fixed point is z =???.

5. Write a program (.m file) that uses a while loop, an O within ¢ fixed poit s @

array, and the disp() command to find the values of (C) Compare the bound to the actual number of iter-

22" — . ations needed.
f(n) = T3 forn=0,1,2,4,6,10. F
11. Calculate two iterations of Steffensen’s method for

6. - Write a program (.m file) that uses a while loop, an g(x) = V22 + z with zo = 2.5. ¥

array, and the disp() command to find the values of

m 12. Use Steffensen’s method to find the root of g(z) =
f(n) = VnZ f3n for n =0, 2,5, 10,100, 1000, 20000. xt —22° —42? + 42 + 4 in [2, 3] accurate to five siginif-

icant digits.
7. The function g(x) = /5 — 3z satisfies the hypotheses 8

of proposition 5 over the interval [1,1.3]. Find a bound 13. Compute ao,a1, and az of Aitken’s delta-squared
on the number of iterations required to find the fixed method for the sequence in problem 2 on page 21.
point to within 10~ accuracy starting with initial value Since the sequence has an undefined term at n = 1,
zo of your choice. start the sequence (2t1) with n = 2. In other words,

consider the sequence in problem 2 on page 21 to be

5 3 7 5
3,2,2,5,5---80po =3, p1 =2, p2 = 3, and so on.

8. Fixed point iteration on the function g(z) = V22 + =
will converge to approximately 1.618033988749895 for
any xo in [0.5,3.5]. [4] 14. The following sequences are linearly convergent. Gen-

erate the first five terms of the sequence (a,) using

(a) Find a bound on the number of iterations it will Aitken’s delta-squared calculation.

take to achieve 10~ accuracy with zo = 2.5.

(b) How many iterations does it actually take to (a) po=05,p,=(2—ePr—1 +p2_;)/3forn>1"0

achieve 1074 accuracy with xo = 2.57
(b) po =0.75, pn = \/ePr-1/3 forn > 1

9. Let f(z) = 36112;41. In exercise 10 of section 2.2, you
were asked to show that f has a unique fixed point on 15. Use Aitken’s delta squared method to find p = nh_{I;o Dn
[—4,-0.9]. 15 accurate to 3 decimal places.

(a) Finda b01.1nd on the number'of 1terat.10ns re_qlllnred Po = {—2, —1.85271, —1.74274, —1.66045,
to approximate the fixed point to with 10 ac-
curacy using fixed point iteration with any initial —1.59884, —1.55266, —1.51804,
value in [—4, —0.9]. —1.49208, —1.47261, ...}



48 CHAPTER 2. ROOT FINDING
16. The sequence (a,) of question 13 converges faster than below 0.017 Comment. !
does the sequer?ce 11} problem 2 on page 21. If you 19. Let f(z) =1+ (sinx)2 and po = 1. Find a; and as of
were to apply Aitken’s delta-squared method to the se- Steffensen’s method with a calculator.
quence (an), would you expect the convergence to be
even faster? Explain. (A] 20. Compute the first three iterations of Steffensen’s
17. Recall from -calculus that lim, o nsin (%) = 1. method applied to g(z) = (ﬂ) using po = 3.
Therefore, if we let p, = nsin (%)7 then the sequence 21. Steffensen’s method is applied to a function f(x) using
(p1,p2,ps,...) ~ (.84147,.95885,.98158, ...) converges bo = L If f(f(po)) = 3 and a1 = 0.75, what is f(po)?
to 1, albeit very slowly. Generate the first three terms
of the sequence (a.) using Aitken’s delta-squared cal- 22. Find the fixed point of f(z) = x—0.002(e* cos(z)—100)
culation. Does it seem to be approaching 1 faster than in [5, 6] using Steffensen’s method. [A]
?
does (pn)’ 23. In question 22 you found a fixed point #. For what
18. Fixed point iteration applied to f(z) = sin(z) with

zo = 1 takes 29,992 iterations to reach a number be-
low 0.01 on its way to the fixed point 0. Incidentally,
Tag992 ~ 0.099999. How many iterations does it take
Steffensen’s method with zo = 1 to reach a number

24.

function g(z) is & a root?

Write a while loop that outputs the numbers
1,.5,.25,.125,.0625,.03125,.015625, . . . until it reaches
a number below 1074



2.4. NEWTON’S METHOD 49

2.4 Newton’s Method

In section 2.3 we addressed some of the deficiency in fixed point iteration, but delayed deep discussion of the
mysterious function fg of the root finding investigation on page 37. The time has come to discuss fg in some detail.

We start with some number crunching. Recall that fs(z) = % and let x¢g = 4. Proceeding with fixed point
iteration,

x1 = fo(x0) 35

x9 = fo(z1) 3.217391304347826

x3 = fo(z2) 3.072749058541597

x4 = fo(rs) =~ 3.013730618589344

x5 = fe(xry) =~ 3.000683798275568

z6 = fe(xs) ~ 3.000001860777997

x7 = fo(ws) 3.000000000013848.

You can see two things. The sequence zg, x1, 22, . ..
1. is converging to (the fixed point) 3; and

2. it looks like the convergence is quadratic since, starting with x4 to x5, the number of significant digits is
roughly doubling with each iteration.

In the analysis in section 2.3 on page 42, we found that fixed point iteration converges quadraticly (or better) only
when the derivative at the fixed point is zero. These observations should lead you to believe f}(3) = 0. Let’s check.

First, the derivative f§(x) = 6“*(‘*30;;_*1704;;*)‘?*60 (you should verify this). Evaluating the numerator at the fixed

point, x = 3, we get 6(3)* —40(3)3 + 74(3)% — 4(3) — 60 = 486 — 1080 + 666 — 12 — 60 = 0. So we have convergence
to a fixed point where the derivative of the function is zero, and we indeed have that convergence is quadratic.

Starting with zy = 2, fixed point iteration on fg converges to 1 + /3, and starting with zo = —1, fixed point
iteration converges to 1 — /3. You should be able to verify this from the convergence diagram in Figure 2.2.6 or
from calculating the first several iterations for each yourself. What you do not get from the convergence diagram
is the speed of convergence. For that, you need to look at the iterates. You should do so. Does convergence look
quadratic in these cases too? Answer on page 56.

From the convergence diagram, we see that fixed point iteration will converge for virtually any initial value,
and all three fixed points can be estimated by fixed point iteration. Moreover, from our calculations, it looks like
convergence is quadratic for all three. It’s hard to ask for more from a function. Fast convergence to any fixed
point! So whence did fg come?

Suppose g(x) is differentiable and ¢g(Z) = 0 so g has a root at Z. Counsider f(z) =z — 5,((2)). Z is a fixed point
of f as long as ¢'(£) # 0:

9(%) 0

f@)=2—-=""%5=3— ——=1.
D=0 @
Moreover, as long as g has a second derivative near ,
1(A A _ AN (A
Fla) = A gl(f?) lg(fc)g (2)
g'(2)-g'(2)
LA
I A C)
g'(2)-g'(2)
= 0.

From these calculations, we conclude if g(x) is twice differentiable, g(Z) = 0 and ¢’(£) # 0, then fixed point iteration
of f(x) with initial value in a neighborhood of & will converge quadratically to Z. What a great way to turn a root
finding problem into a fixed point problem!

Now is a good time to recall that fz was just one of 6 candidate functions designed to find the roots of
g(z) = —23 + 522 — 42 — 6 by fixed point iteration. Indeed, ¢'(x) = —322 + 10x — 4 and

glz) —a3 4+ 52% — 4 — 6
g T T 32 1 102 4
2235276
© 322—10z +4



50 CHAPTER 2. ROOT FINDING

g(z)
g'(z)

Using fixed point iteration on fg(z) =z — to find roots of g(x), as done here, is called Newton’s method.

A Geometric Derivation of Newton’s Method

The following figure shows how to compute the first two iterations of Newton’s method on g(z) = —23+ 522 —42—6
with initial value o = —2.5 geometrically.
g(z) = 2’ +52° 4z -6
(x,9(xg)) 50f

401
301
204

101

0
-3 2.5 -2 —1\ —1\\0& 0 05
P ——

To compute z1, the tangent line to g at (xg, g(zo)) is drawn and its intersection with the z-axis is x;. Similarly,
the tangent line to g at (z1,g(z1)) is drawn and its intersection with the x-axis is 3. And so on. For example,
(0, 9(x0)) = (—2.5,50.875) and ¢'(zo) = ¢'(—2.5) = —47.75. Hence, the “rise” (0—>50.875) over the “run” (z;+2.5)

between (—2.5,50.875) and (21,0) must equal —47.75. We thus have Z238% = —47.75 so

—50.875
= ———— — 2.5~ —1.434554 2199.
1 775 ) 3455497382199

In symbols, the “rise” (—g(xo)) over the “run” (z7 — o) must equal ¢’(xg). In other words,

—g\Zo
=900 i) =
T1 — To
—g(zo)
= I — Ty =
9'(%o)
g(o)
r1 = Xog— .
g'(zo)
Similar calculation shows x5 = 1 — 5,(&11)) , and more generally z,,+1 = ©, — gg,((g;’;)) . This recurrence relation describes

g(x)

Newton’s method—iterating the function f(z) =z — )

Newton’s Method (pseudo-code)

Unlike Steffensen’s method, the denominator appearing in Newton’s method is not expected to approach zero as
the iterates converge, so generally there is much less trouble with stability of the calculation and no intermediate
checks are done before computing one iteration from the previous.

Assumptions: g is twice differentiable. g has a root at £. x is in a neighborhood (& — §, % 4+ 6) where the

g'(x)-g"(z)—g(x)g" ()

magnitude of f/'(z) =1— is less than one.

g’ ()9’ ()
Input: Initial value zq; function g and its derivative ¢’; desired accuracy tol; maximum number of iterations
N.
Step 1: For j =1...N do Steps 2-4:
. _ o 9(@o) .
Step 2: Set x = g )

Step 3: If |z — x¢| < tol then return z;
Step 4: Set xy = ;
Step 5: Print “Method failed. Maximum iterations exceeded.”

Output: Approximation z near exact fixed point, or message of failure.



2.4. NEWTON’S METHOD 51

Table 2.5: The secant method applied to g(z) = —23 + 522 — 4x — 6 with 79 = 5 and z; = 2o + g(x) = —21.

n Zn |3 — x|

0 5 2(10)°

1 —21 2.4(10)*

2 4.9415730337078  1.941(10)°
3 4.8869924815972  1.886(10)°
4 4.0502898397912  1.050(10)°
5 3.7088949488497  7.088(10)7!
6  3.412824115541  4.128(10)*
7 3.232292913133  2.322(10)*
8  3.1141957095727  1.141(10)*
9 3.0465011115969  4.650(10)~2
10 3.0132833760752  1.328(10)~2
11 3.0020189248976  2.018(10)~3
12 3.0001014520965  1.014(10)~*
13 3.0000008128334  8.128(10)~7
14 3.0000000003297  3.297(10)~ 10

Secant Method

The greatest weakness of Newton’s method is the requirement that ¢’ be known and used in the calculation.
The derivative is not always accessible or manageable or even known, though. In such a case, it is better to use
Steffensen’s method or the secant method. The secant method is derived by replacing the g’ of Newton’s method
with a difference quotient. In order for this to make any sense, though, we will need to restate Newton’s method in
terms of z,,. In Newton’s method we are iterating f(z) = = — gg,((?) SO Tpi1 = Ty — 5,((2’;)).

Now suppose you have a function g and some iterate z,,_1. That is enough to locate one point on the graph
of g, namely (z,,—1,9(xn—1)). But we need another point in order to form a difference quotient (the slope of

the line through two points). So suppose we have a second value, x,, near x,_;. Then % ~ g (xn)

so we can substitute %i(x_";l) for ¢’(z,) in Newton’s method. This yields the secant method, 2,11 = x, —

g(zn)/ (w), which simplifies to

Tn —Tn-—1

Tp — Tp—1

g(@n) = g(@n-1)’ (2.4.1)

Tnt1 = Tn — g(Tn)

Notice this is not quite a fixed point iteration scheme. Each iteration depends on the previous two values, not one.
The analysis we’ve done so far does not apply, but there’s hope that convergence will be fast since this method is a
reasonable approximation of Newton’s method near a root, assuming g is differentiable near there. Table 2.5 provides
evidence that the secant method indeed converges quickly. In the particular case of g(x) = —a3 + 522 — 4x — 6 with
xo =5 and 1 = 29 + g(xg) = —21, it takes a while to settle in, but after the first 8 iterations or so, convergence is
very fast. Not quite quadratic, but superlinear for sure.

Crumpet 11: The secant method converges with order 1+2‘/5.

Suppose g is a function with root 2, ¢’'(2) # 0, ¢”(2) # 0, and g"’(x) exists in a neighborhood of #. Let

Zo,Z1,%2,... be a sequence derived from the secant method (zn41 = xn — g(mn)% for all k£ > 2) such

that klim xr = &. Define e,, = ©,, — & so x,, = & + e,. Making this substitution into 2.4.1 we have
— 00

€n — €En—1

g(& +en) — g(& + en_1)’

ent1 = en — g(& +en) (2.4.2)

Taylor’s theorem allows g(& + ex) = g(&) + exg (&) + 2erg” (2) + O(e}). Noting that g(&) = 0 and substituting



52 CHAPTER 2. ROOT FINDING

into 2.4.2,

€n+1 = €n — (en - enfl)

(en — en-1)g'(2) + 5(e% — e _1)g"(2) + O(e} 1)
62 e
en + 255 + O(ed)

(enten—1)g" (2) o(e? )
1+ =50 en—en—1)

"0 3 2 o' (%
en <1+ (€n+€7LT{)g (2) + (eO( n—1) ) _ <€n ng (2) —0—0(6%))

29’ (%) —en—1) 29’ ()

(enten)g@) , OC2_))
1+ == Comonei)

En€n— 12g ( + #0(62—1) + O(e%)

€n—€n—1

= = . 2.4.3
1+ (enten—1)g" (&) o(el 1) ( )
29'(2) (en—en—1)
Using equality 2.4.3 to find a value « for which lim,_, w = )\ # 0, we have
lim E= @il fenaal
n—o00 ‘CIE‘*&L’“O‘ n—o00 |6n|(’
e 8 + S0 -) + O(e)
= lim
n—00 1 4 {enten1)g”(@) , Ol e 1)
29’ (2) (en—en—1)
= AX#0O.
But lim, o0 €n = limy oo en_1 = 0. Hence, lim, o0 €4 “en_1 must not be 0 or divergent, for if it were,
limy, 00 % would be 0 or divergent, respectively. Consequently, there is a positive constant C' such that
limn— oo [er *en—1| = liMn—oo ep3Fen| = C = limp—oo lenties/ A7 = ¢V/(1=%) Now we have
fim 2t ) g and tim el gvo-e 4
n— oo |6n|o‘ n— oo |€ |1/0‘ 1)

Since the order of convergence of a sequence is unique (Exercise 20 of section 1.3) it must be that o = 1/(a — 1)

or o® — o — 1 = 0. The quadratic formula supplies the desired result.

So far we have only applied Newton’s method and the secant method to the cubic polynomial g(z) = —a3 +
522 — 4x — 6, a task not strictly necessary. The rational roots theorem, a basic tool from pre-calculus, would give
you the roots exactly. The method would have you check £1, 42,43, and +6 as possible roots of g. Assuming you
did your checks by synthetic division, your work might look something like this:

3|-1 5 -4 —6
6

-3 6
-1 2 2 0
meaning g(z) = (z — 3)(—2? 4+ 2z + 2). The other two roots would then come from the quadratic formula applied
to —x2 + 22 + 2 and would be 2ij 48 1 4 V3.

Crumpet 12: Solving the cubic

The solutions of the quadratic equation az?+bx+c = 0 are given by the well-known quadratic equation. Less well-
known, and significantly more involved, is any formula for the solutions of the cubic equation az®+bz%+cz+d = 0.
One method of solution follows. First, we let
2
p = 3a§a—2 b and
2b° — 9abc + 27a°d
27a3




2.4. NEWTON’S METHOD 53

Then we set
s__9_, /¢ P
YT T
Third, we set w;, w2, and ws to the three possible (complex) values of w. Finally, the three solutions of az® +

bax? + cx +d =0 are

P b .
- — =1,2,3.
3w; 3a’ ‘ T

This is essentially the method of Cardano, published in the 16" century!

Tr; = Wi —

For example, to solve the equation —z> + 5z% — 4z — 6 = 0, we start with

_ 3(=1)(=4) -5 13
p = W —? and
L —9(—1)(B)(—4) + 2T(—1)*(—6) _ 92
27(-1)3 27
Then
3 _ 92 922 133

2.27 \4.212 212
46 922 — 4. 133

27 54
46 =324
T 21 m4
46 i

T o7 3

3 _ 13V13 _i(tan”1(9/46)—x) V13 _i(tan~1(9/46)—7)/3
= o @ 3°€e

In polar form, w SO we may set w1 = , one of the cube roots of
w®. Unfortunately, finding the angle (tan™'(9/46) — 7)/3 exactly amounts to solving a cubic equation! However,
with a calculator in hand, one can get the approximation —0.982793723247329, which in the end will be good
enough. So, the real part of wi is approximately @ cos(—0.982793723247329) ~ .6666666666666667 and the

imaginary part is approximately L sin(—0.982793723247329) ~ —1. w; is suspiciously close to % — 4. And we
8

can check, (2 —4)° = (2)° +3(§) (—i)+3- 2(—i)*+(—i)* = 27—§z 2+4i = —28 — 1. Therefore, wy = 2 —i

27 3
and we let wo = (% —i) (—5 + gz) = 3‘f 44 3+2fz and w (% — ) ( ?z) = # + %z
Finally,
1 = ’w+17+§*w —&-ﬂﬂ-? w+w7+§*3
YT T 9wy T3 T T g T3 TP T T
13 5 13wz | 5 __ 5
= _— - = - = = 1
Z2 w2+9w2+3 wz—s—‘ 23 w2 + W2 + 3 =v3+
5 13wz 5 __ 5
= P — - = - = - = — 1
3 wst gty =Wt gty S ws W+ V3+

For an equation you most likely did not see in pre-calculus, or calculus for that matter, consider

z —e®cosy e — 2 = 0.

You might try to solve this equation exactly, with a pencil and paper, but you would soon run into a dead end. This
equation can not be solved explicitly. The best you can hope for is to approximate the solutions with a numerical
method. To get some idea what we are in for, look at the graph of z — e cos ve2?® — 22 in Figure 2.4.1. The
function oscillates wildly, and only oscillates more wildly as x increases. The graph crosses the x-axis 29 times on
the interval from 0 to 4.5 so has 29 roots there! They are

.3181315052047641, 1.668024051576096, 2.062277729598284,
2.439940377216816, 2.653191974038697, . ..

and can be found by Newton’s method with initial values 0,1.5,2,2.4,2.6,.... Can you find the next root? Answer
on page 56.



54 CHAPTER 2. ROOT FINDING

Figure 2.4.1: The graph of x — e® cos v e2* — 22 crosses the z-axis infinitely many times.
f(z) =2z — e”cos (\/am — .1:3)

1

8

Secant Method (pseudo-code)

A straightforward implementation of the secant method can easily be inefficient due to the number of times g
appears in formula on page 51. The pseudo-code below takes great care not to compute each value of g more than
once. If it seems more complicated than necessary, this is likely the source of the complication.

Assumptions: ¢ has a root at . g is differentiable in a neighborhood of . zg and x; are sufficiently close
to Z.

Input: Initial values xg and x1; function g; desired accuracy tol; maximum number of iterations V.

Step 1: Set yo = g(z0); y1 = g(1)

Step 2: For j =1...N do Steps 3-5:

T1—xg.

Y1—Yo’

Step 4: If |z — 1] < tol then return x;

Step 3: Set x =1 — 1y

Step 5: Set xo = 21; yo = y1; T1 = z; Y1 = g(z1)
Step 6: Print “Method failed. Maximum iterations exceeded.”

Output: Approximation z near exact fixed point, or message of failure.

Seeded Secant Method (pseudo-code)

The greatest drawback to the secant method is the necessity of two initial values. They should be near one another,
but how near, and how do you determine? These are tough questions, and the answers are complicated at best.
One reasonable approach is to let x1 = xg + g(xg). Assuming z( is near a root, g(zg) will be small, so z; will be
near xg. Taking this approach relieves the user from the burden of selecting a second initial value. There are times
when such automated selection is not desirable, so both methods have their place. This method only works well
when the initial approximation is good.

Assumptions: g has a root at Z. g is differentiable in a neighborhood of Z. x( is sufficiently close to .
Input: Initial value zq; function g; desired accuracy tol; maximum number of iterations N.

Step 1: Set yo = g(z0); T1 = 2o + yo; y1 = g(71)

Step 2: For j =1...N do Steps 3-5:

Step 3: Set x =1 — ylﬂ;
Step 4: If |z — x1| < tol then return x;
Step 5: Set xo = 15 Yo = y1; ¥1 = 73 y1 = g(z1)
Step 6: Print “Method failed. Maximum iterations exceeded.”

Output: Approximation z near exact fixed point, or message of failure.



2.4. NEWTON’S METHOD 55

Key Concepts

Rational Roots Theorem: If the polynomial p(x) = ag + ayz + --- + axz® has rational coefficients, then any
rational roots of p are in the set {% : n is a factor of ag and d is a factor of ak}.

Synthetic division: A method for calculating the quotient of a polynomial by a monomial. Example on page 52.

Newton’s method: A root finding method that generally converges to a root of g(z) quadratically, but requires

the use of the derivative. In this method, z¢ is chosen and z,,+1 = z,, — gg,((g;")) is computed for each n > 0.
Secant method: A root finding method that generally converges to a root of g(x) with order approximately
1.618, but does not require the use of the derivative. In this method, xg and x; are chosen and x,4; =

LTp —Tn—1

Ty — g(xn)m is computed for each n > 0.

Seeded secant method: A modification of the secant method where ¢ is chosen and x; = xg + g(xo).

Exercises 11. Compare the secant method and Newton’s method
based on questions 4 and 5. Which finds roots in fewer
1. Write code that implements Newton’s method as a iterations? Which one fails least often? Which is bet-
function. ter?
2. Write code that implements the secant method as a 12. Compute the first three iterations of Newton’s method
function. applied to g(z) = = — (/2)” with 2o = 3.

13. Find a value of z¢ for which Newton’s method will fail

3. Write code that implements the seeded secant
to converge to a root of g(z) =2+ z — e”.

method as a function.
14. Explain why Newton’s method fails to converge for the

4. . Use your secant nlfsthod function f{rom question 2 the function g(z) = 22 + = + 1 with zo = 1.
with a tolerance of 107 to find a solution of )
21In(1 —
o o . 15. Let g(z) = n(—‘,——x)az Using Newton’s method
(a) e +27"4+2cosz —6=0using 1 <z <2. 14 22
) to find a root of g(z) with zo = 5 yields z14 =
(b) In(x — 1) + cos(z — 1) = 0 using 1.3 < zo < 2. 8.6624821192 and with o = 1.2 yields 14 = 0. Com-
(c) 2zcosz — (z —2)> =0 using 2 < o < 3. 4 pare the values of x14 and #14 with the fourteenth iter-
2 ) (] ations from question 9 and explain any similarities or
(d) 2zcosz — (x —2)° =0 using 3 < xzp < 4. differences. [
2 _ -
() (#—-2)" —Inz =0 using 1 <o <2. 16. Let g(z) = €3 — 272% + 27x%e® — 92%e** and let
(f) (zx—2)*> —Inz =0 using e < 29 < 4. po = 4. Find pio using Newton’s method. HINT:
g (x) = 33 — 18(z + 2%)e*™ 4 27(x* + 42%)e” — 16225,
(A]
5. Repeat exercise 4 using your Newton’s method code
from question 1. [A] 17. Newton’s method does not introduce spurious solu-
- . tions. Suppose f(z) =z — ggf(”;)) and ¢'(2) # 0. Prove
6. Repeat exercise 4 using your seeded secant method that & is a root of g if and only if £ is a fixed point of f.
code from question 3. " Hint: one direction is proven in the text of this section.
: _ 4 3
7. Repeat exercise 4 using a tolerance of 1071°. Taking 18. The polynomial g(z) = z° + 22° — 2 — 3 has a root

2 &~ 1.097740792. Find the largest neighborhood (a,b)
of Z such that Newton’s method converges to & for any
initial value zo € (a,b). ¥

this new value as the exact value, did using a tolerance
of 107° give a result accurate to within 107% of the

exact value? [
8. Let g(z) = ‘% sin (12) and 2o = 1.25. Find 21 and 5 19. ' Use Newton’s method to find a negative solution of
of Newton’s method. [ 4 3 2
0=12z" — 132" + 72" + = — 130
9. Let g(z) = 2In(1 + 2?) — z. Find 214 using Newton’s

method with accurate to the nearest 107*. What initial value did
you use? How many iterations did it take?

(a) zo =5 20. Consider the function g(z) = €% + 3(In2)%e* —

(b) zo=1.2M (In8)e*™ — (In2)%. Compute enough iterations of New-

ton’s method with o = 0 to approximate a zero of

10. Let g(z) = 2In(1 + 2?) — 2. Find x> and x3 using the g with tolerance 0.0002. Construct the Aitken’s delta

secant method with squared sequence (ay). Is the order of convergence im-

proved? (A

— — ¢ 8
(a) zo=5and 21 =6 21. As with Newton’s method, the secant method can eas-

(b) o =1 and z1 =2 ily be described geometrically: Draw the line through



56 CHAPTER 2. ROOT FINDING
the two points (zo, f(20)) and (21, f(21)). Find the in- 25. Use your code from question 2 to find a root of
tersection of this line with the z-axis. The z-coordinate the function in the interval of question 2 on page 28
of the intersection is x2. Find x3 by intersecting the to within 1078, Compare your answer to that from
line through (1, f(21)) and (2, f(z2)) with the a- question 4 on page 28. !

is. And . Graph th 1 ial =
a}g{ls e so on rap ¢ bo ‘yr?omla. p(@) 26. The sum of two numbers is 20. If each number is added
z° — 3z + 3, and demonstrate the first iteration of the ) .
. - _ to its square root, the product of the two sums is 172.2.
secant method graphically for xo = —1 and 1 = —2. g o . .
[S] Determine the two numbers to within 107 of their ex-
act values.
22. Suppose you are using the secant method with zo =1 ) ) o ) ,
and 21 = 1.1 to find a root of f(z). 27. Find an example of a situation in which Newton’s
method will fail on the second iteration (i.e., z1 may
(a) Find z2 given that f(1) = 0.3 and f(1.1) = 0.23. be calculated but zz may not). ©
(b) Create a sketch (graph) that illustrates the calcu- 28. Let h(z) = 2.22% — 6.62° + 4.4z and let g(z) = h°(z).
lation. HINT: x> will be located where the line That is, g(z) = h(h(h(z))). Approximate a root of
through (zo, f(z0)) and (x1, f(x1)) crosses the z- J (z).
s 29. For what values of xg, approximately, will Newton’s
23. Use the graph of g to answer the following questions. method converge to —2.57
g has roots at —27, —m, 7, and 2. [A]
1
0.8
0.6
0.4
0.2 \_/ \_/
4fs % 4 =2 0 2 4 6
(a) To which root will Newton’s method converge if 30. For the function shown in question 29, find z2 and z3
xo = 2.57 for the secant method with ¢ = —10 and z1 = 6.
(b) What will happen if zo = 07 31. Let .
(¢) Find a positive integer value of xo for which New- fla)=10— € g
ton’s method will converge to 2. o 1+t
(d) Find a negative value of xo for which Newton’s Approximate the positive root of f. [
method will converge to 2. .
32. Of the root finding methods we have surveyed so far
24. Graph the polynomial p(z) = 2 — 32 + 3, and demon- (Bisection, Fixed Point, Newton’s, Secant, and Stef-
strate Newton’s method graphically for zo = —1. fensen’s), which one do you feel is the best? Why?
Answers

Quadratic convergence?

Tn

Ln

2
2.5
2.666666666666667
2.722222222222227
2.731741086881274
2.732050478023325
2.732050807568503

DU WD~ OS

2.732050807568877

-1
—.7647058823529411
—.7326286052763475
—.7320509933083684
—.7320508075688965

—.7320508075688772

The convergence looks quadratic since the number of significant digits of accuracy roughly doubles with the

last couple of iterations.

Next root? The next root is approximately 2.872257717171606. This can be found using Newton’s method with
xo = 2.81, for example. Note this computation is very sensitive to initial conditions because there are so many
roots near one another. Starting with zy = 2.8, for example, leads to the root at 9.662623060421268!



2.5. MORE CONVERGENCE DIAGRAMS 57

2.5 More Convergence Diagrams

The cubic function g(x) = 1 — 2 has one real root, 1. But it also has two complex roots. If you have studied
complex analysis, you probably know what the other two are. And even if you have not studied complex analysis,
you can figure them out by basic techniques of pre-calculus. Since 1 is a root, you can use synthetic division to
deflate the polynomial:

1/-1 0 0 1

-1 -1 -1

-1 -1 -1, 0

This division shows that g(x) = (z — 1)(—2? — z — 1), so the other two roots are the solutions of the equation
—2%2 — 2 — 1 = 0, thus deflating the problem to a quadratic. The solutions are %F = f% + z§ By the way,
you may also recognize 1 — 2 as one of the special forms of polynomials, the difference of cubes.

Of course this is all fascinating, but what does this have to do with numerical analysis? What may surprise
you is that fixed point iteration (and, therefore, Newton’s method), the secant method, and Steffensen’s method
can all be used to find complex roots just as well as real ones! In fact, the algorithms need no modification! The
programming language used to implement the methods, of course, does need to be able to handle complex number
arithmetic.

First, finding a root of g(x) = 1 — 2% and finding a fixed point of f(x) = 1/2? are equivalent. Why? Answer
on page 64. Setting 2o = —1 + i and applying Newton’s method and the secant method to g(x) = 1 — 23, and
Steffensen’s method to f(x) = 1/2% we get the following:

T
Steffensen’s Secant Newton’s
-1+ -1+ -1+
—0.85+ 0.8¢ —0.66666666 + 0.83333333i —0.66666666 + 0.83333333i

—0.60313824 + 0.67770639¢ —0.55034016 + 0.823764447 —0.50869191 + 0.84109987%
—0.39846066 + 0.84671567: —0.49763752 + 0.855540147  —0.49932999 + 0.86626917:
—0.51660491 + 0.84998590¢  —0.49932718 + 0.86627140¢  —0.49999991 + 0.866024901
—0.49910537 + 0.865433517  —0.50000774 + 0.866025047  —0.50000000 + 0.866025401
—0.50000228 + 0.86602568:  —0.49999999 + 0.86602540¢
—0.50000000 + 0.86602540:  —0.50000000 + 0.86602540¢

0 O ULk W O .

Each sequence quickly converges to the complex root —% + @z And this is not a fluke or a contrived example.

Generally, these methods work just as well in the complex plane as they do on the real line. One can find real roots
starting with complex numbers too. If we change the initial value zg to 1 + ¢, Newton’s method converges to 1, for
example.

Having expanded our view of the methods to include complex numbers, there is a new type of convergence
diagram to consider. We can now look at convergence patterns for the three methods over a host of initial values
in the complex plane, not just the real line. Figure 2.5.1 shows convergence diagrams for Newton’s method with
g(z) = 1 — 23, the seeded secant method with g(z) = 1 — 23, and Steffensen’s method with f(z) = 1/22. Each
diagram covers the part of the complex plane with real parts in [—5, 5] and imaginary parts in [—3.75,3.75]. The top
left corner of each diagram represents initial value —5 4 3.75¢ and the bottom right corner represents initial value
5—3.75i. The center of each diagram represents the initial value 0. The colors correspond to the three roots, red to
1, green to —% + @i, and blue to —% — @z Black corresponds to failure to converge. The different intensities of
red, green, and blue correspond to the number of iterations the method took to converge. The greater the intensity,

the fewer iterations. We can see that for zo = 5 — 3.75i, Newton’s method and the seeded secant method both
V3

converge to f% + 731', because the upper right hand corner of each diagram is colored green. Steffensen’s method,
on the other hand, fails to converge to any root if begun with x¢y = 5 — 3.754, evidenced by the blackness in the
upper right hand corner of the convergence diagram.

The dwell represents the maximum number of iterations allowed, so actually the black dots represent initial
values for which convergence was not achieved within a number of iterations equal to or less than the dwell. That’s
different from claiming the method does not converge at all for these initial values. There’s a chance that some of

the blackened initial values would still lead to convergence if allowed more iterations.



58

CHAPTER 2. ROOT FINDING

Figure 2.5.1: Convergence diagrams over the complex plane.

From top to bottom:
Newton’s method with

g(z) =1-a’

and dwell 20;

seeded secant method with

g(z)=1-2°

and dwell 40;
Steffensen’s method with

f) =

and dwell 40.

Each diagram covers the part of
the complex plane with real
parts in [—5, 5] and imaginary
parts in [—3.75,3.75].




2.5. MORE CONVERGENCE DIAGRAMS 59

Figure 2.5.2: A vertical line and its image under the exponential function.
r = Qo
15

2 2 2aq

r+y =e

101

Two things are very striking about these convergence diagrams. First, the seeded secant method and Newton’s
method converge for a much larger set of initial values than does Steffensen’s method. This is, at least in part,
due to the function chosen. For other functions, there may be a fixed point scheme for which Steffensen’s method
converges on large sets of initial values too. Second, the patterns of colors are extremely intricate, even fractal
in nature. Predicting to which root a method will converge for a given initial value, and indeed whether it will
converge at all, are very difficult questions! And this analysis is done on a rather benign (simple) function.

Consider now a much more complicated problem—finding the roots of g(z) = ¢* — z or, equivalently, finding the
fixed points of f(z) = e®. A graph of f(z) (over the real numbers) will quickly convince you that there are no real
number solutions. It will take some thought to determine the nature of any complex solutions.

To that end, fix a real number ap and consider the vertical line in the complex plane, Lo, = {ag + b : b €
R}. The image of L,, under the exponential function is a circle with radius e centered at the origin. Indeed,
eWtib — aoeib — a0(cosbh + isinb). Thus b parameterizes the circle about the origin with radius e®. Now,
suppose Lg, contains a fixed point, 2 = ag + ib, of the exponential function, f(z) = e*. Then 2 = f(2), or
ap + ib = e (cos b+ isin 13) We conclude that the line and the circle intersect at the fixed point. Every fixed point
of f is necessarily an intersection of the line L,, with the circle C,, for some ag. Figure 2.5.2 shows a representative
example. In fact, the diagram shows an interesting case: x = ag ~ 2.439940377216816. The coordinates of the two
intersections are

(2.439940377216816, £11.2098911414971).
The interesting thing is

2-439940377216816+11.20989114149714 9 439940377216816 — 11.20989114149714

and
2-439940377216816—11.20989114149714 o, 9 439940377216816 + 11.20989114149715.

The two points are images of one another under the exponential function! What we have found here are called peri-
odic points. If we let z; = 2.439940377216816—11.20989114149714 and z5 = 2.439940377216816+11.20989114149714,
then e*! = z5 and e*2 = z1. Hence, if we iterate zo = f(21), 23 = f(22), z4 = f(23), 25 = f(24), and so on, the
sequence z1, 29, 23, 24, - - - actually looks like

215,22, 21,22,%1,22; - -

The sequence just flops back and forth between z; and z5 in a periodic fashion. We call such values period 2 points.
They are not fixed points of f(z) but they are fixed points of f(f(2))!

Crumpet 13: Periodic points.

If a sequence (p.) has the form

P1,P2,- -+, PkyP1,P25 -y PkyP1y -+ - k>1

then we say pi is a period k point (and pa, ps, ..., pr are too!).




60 CHAPTER 2. ROOT FINDING

Figure 2.5.3: More conver

gence diagrams over the complex plane.

From left to right: Newton’s method with g(z) = z — e* and dwell 20; secant method with g(z) = z — ¢* and
dwell 40; Steffensen’s method with f(z) = e* and dwell 40. Each diagram covers the part of the complex plane
with real parts in [—10, 30] and imaginary parts in [0, 73].

On the other hand, 2 = 2.062277729598284 + 7.588631178472513i is (approximately) a fixed point of f(z) since
e 0022TTTRO5982BAHT SESOILITRATIONS — 9.062277729598284 + 7.588631178472513i.

Moreover, the conjugate of 2, 2 = 2.0622377729598284 — 7.588631178472513i is also a fixed point. Verify it with a
calculator or a computer!
Generally, if 2 is a fixed point of e* then so is 2:

=ef =¢°.

W |

=6 =
So if we find one fixed point, we actually have found two, the fixed point and its conjugate.
We're ready to get back to considering intersections of L,, and C,,. Assume ag + b is a fixed point of e*. Then

ag +ib = et = % (cos b + isinb), so

e cosb

ao
b = esind (2.5.1)

Now, because ag + ib is a point of intersection, it is on Cy,, so a3 + b* = €2 = b = 4,/e2% — a2. Finally,
substituting b = y/€2% — a3 into 2.5.1, we find an intersection point will be a fixed point if and only if

ag = €™ cosy/e2w0 — qal
and
2a 2 ao o3 2a 2
e2%0 —qgf = e siny/e?% —ag. (2.5.2)

You should pause long enough to consider why it is not necessary to substitute b = —y/e2% — a2 into 2.5.1. Hint:
make the substitution and simplify. You should find out that the two equations you get are equivalent to those in
2.5.1.

For example, 2.439940377216816 — 11.2098911414971% and 2.062277729598284 + 7.5886311784725137 both sat-
isfy the first equation of 2.5.2, but 2.439940377216816 — 11.2098911414971% does not satisfy the second while
2.062277729598284 + 7.588631178472513i does. So, as observed earlier, 2.439940377216816 — 11.20989114149714 is
not a fixed point but 2.062277729598284 + 7.588631178472513: is.



2.5. MORE CONVERGENCE DIAGRAMS 61

Do you recognize the first equation of 2.5.27 We first saw it on page 53 in section 2.4. As noted there, the
smallest five solutions are

.3181315052047641, 1.668024051576096, 2.062277729598284,
2.439940377216816, 2.653191974038697, ...

The values 2.062277729598284 and 2.439940377216816 provided the examples for this discussion. What about the
other three values in this list? Do they give fixed points of the exponential function? Period two points? Something
else? Take a moment to investigate. Answers are on page 64. Using the computer to investigate 2.062277729598284,
which we know is a fixed point:

> a0=2.062277729598284

> b=sqrt(exp(2*a0)-a0~2)

> exp(a0+Ixb)

ans = 2.06227772959828 + 7.588631178472511

verifies that et = gy + ib for ag = 2.062277729598284, at least to machine precision. The exact value of the
fixed point is not known, but that is the nature of numerical analysis.

Figure 2.5.3 shows convergence to 12 of the fixed points of e*, one for each of the 12 different colors. The
coordinates of each fixed point can be approximated by locating the spot of greatest intensity within each colored
band.

As was done in Figure 2.5.3, convergence diagrams for the secant method can be created by setting x1 = g+ 9
for some small number 4. It does not matter whether ¢ is real or complex. Selecting x; automatically this way
allows the diagram to show convergence or divergence based on xg alone, just as is done for the other convergence
diagrams. You will notice that the convergence diagram for the secant method and the convergence diagram for
Newton’s method are quite similar. For sufficiently small d, this will be the case in general. The secant method
convergence diagram and the Newton’s method convergence diagram for the same function over the same region will
look very much the same. The only significant difference will be the number of iterations needed for convergence.
The secant method will need more iterations to converge.

Exercises

1. Match the function with its Newton’s method convergence diagram. The real axis passes through the center of each
diagram, and the imaginary axis is represented, but is not necessarily centered. !

) = 56— 152z + 140z — 172° — 48z* 4 92°
) = (2¥)(nz)+ (z —3)e”

) = 142+ 3z +42° + 52" + 62°

) = (nz)(=’+1)



62 CHAPTER 2. ROOT FINDING

- : oy

-5y

(a) (b)

(c) (d)

2. Match the function with its Newton’s method convergence diagram. The real axis passes through the center of each
diagram, and the imaginary axis is represented, but is not necessarily centered. !

f(x) = sinz
g(z) = sinz—e *
h(z) = e"4+27"42cosz—6
I(x) ot +22° +4
(a) (b)

lpee s s 0. 6. 0. B .2 v 0. 8. .8 o0
T

3. Find a polynomial that has the following roots and no others.

(a) —7,2,1+5i
(b) —7,2,1+ 5i



2.5. MORE CONVERGENCE DIAGRAMS 63

(¢) —4,-1,2,+2i &

(d) —4,-1,2,2i ¥

(e) 0,—1+4,1+3i

(f) —344,—2—1i,—3i,1 —2i

4. Create Newton’s method convergence diagrams for the polynomials of question 3. Make sure you capture a region that
shows at least a small area converging to each root.

5. The functions f(z) = €® and g(x) = x%“ have no roots, real or complex. Find at least two others that also have no
roots.

z2 -7z :
6. Let f(z) = =20 4 sin(3x).
(a) Find all the real roots of f. This is not a polynomial, so deflation will not work. Instead, graph the function and
use Newton’s method to find the real roots accurate to 10~8. There are four of them.

(b) Create a Newton’s method convergence diagram for f to see if there are any complex roots. If so, use Newton’s
method to approximate them. Use the convergence diagram to help you choose initial values.

(¢) Can you find all the roots of f?

7. Match the function with its seeded secant method convergence diagram. The real axis passes through the center of
each diagram, and the imaginary axis is represented, but is not necessarily centered. (5]

flz) = sinz

g(z) = sinz—e

h(z) = e"+27"+2cosz—6

I(x) = 56— 152z + 1402° — 172° — 482" 4 92°

8. Match the function with its seeded secant method convergence diagram. The real axis passes through the center of
each diagram, and the imaginary axis is represented, but is not necessarily centered. [4]

(z) = 2t +22% 14

(z) (@®)(Inz) + (z — 3)e”

h(z) = 1+ 2z+ 32>+ 4a2° + 52" + 62°
() (Inz)(a® +1)



64 CHAPTER 2. ROOT FINDING

9. Create seeded secant method convergence diagrams for the polynomials of question 3. Make sure you capture a region
that shows at least a small area converging to each root.

10. The Newton’s method convergence diagram for one polynomial is much like the Newton’s method convergence diagram
for another. Interesting changes in the Newton’s method convergence diagrams and seeded secant method convergence
diagrams can be achieved by multiplying a polynomial by a non-polynomial function with no roots. Create Newton’s
method and seeded secant method convergence diagrams for products of functions in question 3 with functions in
question 5.

11. Discuss the relative strengths and weaknesses of Newton’s method, the secant method, and the seeded secant method.

Answers

Why equivalent? The equations g(z) = 0 and f(x) = 2 have exactly the same solutions. g(z) =0 < 1 — 2% =
lel=te =& fz)=uz

Nature of roots? .3181315052047641 is a fixed point of the exponential function:

> a0=.3181315052047641;

> b=sqrt (exp(2*al)-a0~2)

> exp(a0+I*b)

ans = 0.318131505204764 + 1.3372357014306891

1.668024051576096 is a period two point of the exponential function:

> a0=1.668024051576096;

> b=sqrt(exp(2*a0)-a0~2)

> exp(a0+Ix*b)

ans = 1.66802405157609 - 5.032447064486161

2.653191974038697 is a fixed point of the exponential function:

> a0=2.653191974038697;

> b=sqrt(exp(2*a0)-a0~2)

> exp(a0+I*b)

ans =  2.65319197403878 + 13.94920833453319i1



2.6. ROOTS OF POLYNOMIALS 65

2.6 Roots of Polynomials

Synthetic division revisited

You may recall using the rational roots theorem and synthetic division to find roots of polynomials of degree 3 or
more in algebra. The process was something like this. You made a list of possible roots based on the rational roots
theorem. You checked each one using synthetic division until you either found a root or ran out of candidates. It
is possible that was as far as your class took the process, but there is more to say.

Suppose we have a polynomial p(z) and a number ¢. Synthetic division gives coefficients of ¢(z) such that
p(z) = q(x) - (x —t) + p(t). For example, the synthetic division

t p(x)
-3 | -4 2 3 —6

12 —42 117

-4 14 -39 111

q(x) p(t)

tells us that p(z) = —42® + 222 + 32 — 6 = (—42? + 142 — 39)(x + 3) + 111. While it is a small burden to evaluate
the expression —42° + 222 + 3z — 6 when x = —3, it is no burden at all to evaluate (—4z? + 14z — 39)(x + 3) + 111
when x = —3. The (z + 3) factor is zero, so it doesn’t matter to what (—422 + 14z — 39) evaluates. The product is
zero and (—42? + 14z — 39)(z + 3) + 111 evaluates to 111. Therefore, p(—3) = 111. Synthetic division gives a quick
way to evaluate a polynomial. The number at the end of the division is the value of the polynomial at the value of
the divisor.

More generally, here is a dissection of the division of p(z) = ap + a1z + - -+ + a,z™ by & — t using synthetic
division:

t| ap Gn—1 Gn—2 e ag

ant an(ant + an—1) o (- ap(an(ant + an—1) + an—2) +---+aq)
an ant + Ap—1 (079 (ant + an—l) + Ap—2 tee ’ p(t) ‘

Beginning with ¢ in the upper left corner, we end up with p(¢) in the lower right corner. It is not only when the
number in the lower right corner is zero do we find something of interest. Every synthetic division gives something
of interest! The number in the bottom right corner is p(t) whether it turns out to be zero or not. And there is
more.

The numbers a,, ant + an—1, an(ant + an—1) + an—2, and so on, appearing in the bottom row of the synthetic
division give the coefficients of the quotient, g(z). Every synthetic division gives a decomposition of the polynomial
into quotient and remainder. Thus, with every synthetic division, we get an equivalent expression of the form
q(z) - (x — t) + p(t). There is still more.

Differentiating the equation p(x) = q(z) - (x — t) + p(t) with respect to z gives

P'(x) =dq (@) (z— 1)+ q(x).

Hence, p'(t) = ¢'(t) - (t —t) + q(t) = ¢(t). So, not only do the numbers in the bottom row give the coefficients of
the quotient, they double as coefficients appropriate for evaluating p’(¢). Returning to the previous example, if we
desire to calculate p’(—3), we simply continue the synthetic division as in

-3 | -4 2 3 —6

12 —42 117

-3| -4 14 =39 | 111

12 -78

—4 26 | —117
and find out p’(—3) = —117. The procedure of calculating p(¢) and p’(¢) by simultaneous synthetic divisions
is known as Horner’s method and is especially convenient for use in Newton’s method. If we were trying to
find a root of p(x) = —42® + 222 + 3z — 6 with initial approximation 2o = —3 we would have, at this point,

T =30 — 5((2%)) =-3- %117 ~ —2.05128. Yet there is more.




66 CHAPTER 2. ROOT FINDING

Finding all the roots of polynomials

When we happen upon a root of the polynomial p(z), the result of the synthetic division, p(x) = q(z)(x —t) + p(¢),
reduces to p(x) = q(x)(z — t) since t is a root, meaning p(t) = 0. In this case, we have a factorization of p(z). The
rest of the roots of p are exactly the roots of ¢, so having found one root, we have reduced the problem of finding
roots of p to (a) noting the root we have found plus (b) finding the roots of the polynomial ¢, a polynomial of
one degree less than that of p. In this way, we have deflated the problem of finding the n roots of the n* degree
polynomial p to finding the n — 1 roots of the (n — 1)-degree polynomial ¢g. Taking it a step further, when we have
found a root of g, we can use synthetic division to reduce the problem again. We (a) note the root of ¢ and (b)
continue searching for roots of the quotient, an (n — 2)-degree polynomial. We continue this way, deflating the
problem by one degree each time we find a root until we have reduced the problem to a 2"¢ degree polynomial. At
this point, we have a quadratic polynomial and can use the quadratic equation to find the last two roots.

For example, —1.18985 is (approximately) a root of p(z) = —4a3 + 222 + 3z — 6. Synthetic division of p(x) by
(x 4 1.18985) gives

—1.18985 | —4 2 3 —6

4.7594 —8.04267 6.00002

—4  6.7594 —5.04267 | 0.00002

The (near) zero in the box at the bottom-right indicates that —1.18985 is approximately a root. There is no appre-
ciable remainder upon division of —423 + 222 + 32 — 6 by x + 1.18985. Moreover, the numbers —4, 6.7594, —5.04267
in the bottom row give the coefficients of q(x). Thus, we find from this division that —4x® + 222 + 3z — 6 =~
(=422 + 6.7594x — 5.04267)(x + 118985). We can now find the other two roots by locating the roots of ¢(z) =
—4x2% + 6.7594x — 5.04267. Using the quadratic formula, they are

—6.7594 £ 1/6.75942 — 4(—4)(—5.04267)
-8

~ .84493 £ .73944s.

Our process will lead us to finding n roots of any n* degree polynomial. It is important to note that some of
these roots may be complex and some of them may be repeated.

Crumpet 14: The Fundamental Theorem of Algebra

The process of finding one root of a given polynomial, deflating, and finding another mirrors quite closely the
mathematical theorems of algebra. The Fundamental Theorem of Algebra states that every polynomial with
complex coefficients and degree at least one has a complex root. Thus our search for a root is not in vain! We can
then write our polynomial in factored form and continue. The Fundamental Theorem says that there is again a
root of the deflated polynomial. And if we keep track of all the roots as we find them, we end up writing our

polynomial in the form
p(x) =alz —r)* (x —r2)? - (x — 78)°F, (2.6.1)

where a is a nonzero constant, r1,72,...,7, are the k distinct complex roots, and e, e, ..., e, are the so-called
(positive integer) multiplicities of the roots. From this form, we see that the degree of the polynomial equals the
sum of the multiplicities, e; 4+ ez + - - - + ex. This is what we mean when we say the number of roots, counting
multiplicity, is equal to the degree of the polynomial. Thus when searching for the roots of a polynomial of degree
n, we know we are looking for n roots, but not necessarily n distinct roots. Some of them may be repeated and
the repetitions are accounted for in the multiplicities. To formalize the claim in equation 2.6.1, we have the
follwing theorem.

Theorem 6. (Fundamental Factorization Theorem) If n > 1 and p is a degree n polynomial, then
p(@) = a(w — 1) (= 12)°* - - (@ — 7ir)*
for some constant a # 0, roots r1,72,...,7k, and positive integer exponents e1,es, ..., e where

k
E €; = n.

Jj=1



2.6.

ROOTS OF POLYNOMIALS 67

Proof. Suppose n = 1 so p(z) takes the form az + b with a # 0. Then p(z) = a(z — (—2))" and thus takes
the required form. Now suppose all polynomials of some degree n > 1 take the required form and let p be a
polynomial of degree n 4+ 1. By the Fundamental Theorem of Algebra, p has a root. Call it p. Then =z — p is
a factor of p so p can be written as p(x) = (x — p) - g(x) for some polynomial g of degree n. By the inductive
hypothesis, we have that ¢ takes the required form, so

p(e) = (@ = p) -ale =) (@ —2)? o 2 = 1)
where e; + e2 + - - - + e = n. If p is distinct from r1,72,..., 7%, then p takes the form
p(x) = a(x — ) (T —72) - (x —T8)*(x — p)*.
If p equals one of r1,72,..., 7k, say rj, then p takes the form
p(a) = alz — 1) (g —r2) - (g — 1) - (@ — )k

In either case, p takes the required form and the proof is complete. O

Pseudo-pseudo-code for this procedure might look something like this:

Assumptions: p is a polynomial of degree n > 2.
Input: Polynomial p(x); tolerance tol; maximum number of iterations N.
Step 1: For i =1 to n — 2 do Steps 2-5:

Step 2: Find a root xg of p(z) [using tol, N, and some root-finding method];

Step 3: If error trying to find zg then
return “Method failed. Root of degree n — i + 1 not found.”;

Step 4: Factor p(z) as q(z) - (x — x9);
Step 5: Set x; = xo; p(x) = q(x);
Output: Approximate roots.

To refine the pseudo-pseudo-code into pseudo-code, we will use Newton’s method, assisted by Horner’s method,

in Step 2. The usual drawback of Newton’s method, the requirement that the derivative be known and calculated, is
but a small inconvenience when Horner’s method is employed. But how do we represent polynomials in a computer
program so that we can accomplish Steps 4 and 57 The same way we implement code to execute Horner’s method.
Pseudo-code for Horner’s method, with an array:

Assumptions: p is a polynomial of degree n > 1.
Input: array [c] of coefficients of p(z) = ¢1 + cow + c32% + -+ + 12" To-
Step 1: Set y = cpy1; 2 = Cpy1;
Step 2: For j=n,n—1,...,2 do Step 3
Step 3: Set y = xoy +¢j; 2 = 202 + ¥;
Step 4: Set y = zoy + c1;
Output: y = p(zp) and z = p'(z0).

As in synthetic division, there is no need to retain the variable to various exponents. Only the coefficients are

needed to define a polynomial. So, in the program, a polynomial is represented by an array of numbers. Putting
together our pseudo-pseudo code, Newton’s method and Horner’s method into a single program, we have a method

for

finding all the roots of a polynomial:

Assumptions: p is a polynomial of degree n > 2 and ¢y, the constant coefficient of p, is nonzero.

Input: array [c] of coefficients of p(x) = c; + cox + c32% + - -+ + ¢ 12™; tolerance tol; maximum number of
iterations NV; initial value xg.

Step 1: Set m = n;



68 CHAPTER 2. ROOT FINDING

Step 2: For ¢ =1 to n — 2 do Steps 3-13:

Step 3: Set k = 0; Set x = x¢;

Step 4: While |z — x| > tol or k = 0 do Steps 5-12:
Step 5: If £ = N then return “Method failed. Not all roots found.”
Step 6: Set zg = x;
Step 7: Set dp, = Ct1; 2 = Cmt1;
Step 8: For j=m,m —1,...,2 do Step 9

Step 9: Set dj_1 = xod; + ¢j; 2 = Tz + dj_1;

Step 10: Set y = zody + c1;
Step 11: Set z = zo — ¥;
Step 12: Set k =k + 1;

Step 13: Set r; =x; [c] = [d; m =m — 1;

Step 14: Set D = \/c3 — 4cics; s1 = —ca + D; s5 = —co — D;

Step 15: If the real part of ¢o is negative, then set r,_; = 25713 and r, = 2611; else set r,_1 = 25723 and
= 2
Output: Array [rq,rs,...,7,] of approximate roots.

Steps 4 through 12 implement Newton’s method to find a single root, using Horner’s method in Steps 7 through 10
to calculte the value of the polynomial and its derivative at zy. Care is taken to calculate and store the coefficients
[d] of the quotient for easy referral in Step 13. It is assumed that the square root calculated in Step 14 is the
principle branch of the complex square root. Steps 14 and 15 utilize an alternate form of the quadratic formula
that avoids the subtraction of nearly equal quantities so much as possible.

Crumpet 15: Alternate Quadratic Formula

When the roots of p(x) = axz® + bx + ¢ are small, the numerator of the quadratic formula, x = %271;2_4(“, is

necessarily small. In this case, it is best to match the signs of —b and ++/b%> — 4ac in order to avoid subtracting
quantities of nearly equal value. Choosing the sign of the square root term this way gives one of the roots as
accurately as possible, but leaves the other root undetermined. Multiplying both numerator and denominator
by the conjugate of the numerator gives an alternate expression of the quadratic formula:

b+ Vb2 —4dac —bFVb2 —4dac b — (b — 4dac)
2a b0 —dac  2a(—bF Vb2 — 4dac)
. 4ac
~ 2a(—b F Vb2 — dac)
. 2c
 —bF VB —4dac
Expanding, we have
b4 VB —dac 2
2a T _b— /b2 —dac
and
_b— B —dac 20
2a T b+ /b2 —dac

However, there is little that can be done at this point if zero happens to be a double root. In this instance, both c;
and co will be zero or nearly zero, making both s; and sy very small. This is why the set of assumptions includes
the stipulation ¢; # 0. This ensures that zero is not a root of p.



2.6. ROOTS OF POLYNOMIALS 69

Newton’s method and polynomials

There is one more issue to address regarding the use of Newton’s method for finding roots of polynomials. For a
polynomial with real coefficients, if zq is real, so will be z1, and x2, and every successive iteration! There will be
no hope of finding complex roots. This is not a problem if the polynomial has at most two complex roots. The
real roots will be found and the resulting quadratic will hold the two complex roots. The complex roots will be
uncovered by the quadratic formula. In general, though, we can not count on a polynomial having at most two
complex roots. Our method should work for polynomials with arbitrarily many complex roots, including the case
when all roots are complex.

The fix is not difficult, with one proviso. Mathematically, Newton’s method and Horner’s method work just as
well with complex numbers as they do with real numbers. As long as the programming language you are using can
handle complex numbers, just begin with a complex (not purely real) initial approximation xg, and complex roots
will be found! Even so, it is possible that all the real roots are found first and what remains will be a polynomial
with more than two complex roots and no real roots. This is where the inaccuracy of floating point arithmetic is
actually helpful! Neither the coefficients nor the value of g will be purely real due to round-off error. The complex
roots will generally be found.

Miiller’s Method

Another very fast method for finding roots of equations is Miiller’s method . In principle, it is very much like the
secant method. With the secant method, two initial approximations py and p; are made. The secant line through
the points (po, f(po)) and (p1, f(p1)) is drawn and its intersection with the z-axis gives po. With Miiller’s method,
three initial approximations pg, p1, and, ps are needed. The parabola through the points (po, f(po)), (p1, f(p1)),
and (pe, f(p2)) is drawn and its intersection with the z-axis gives ps. There are a couple of issues to deal with,
however. First, if the parabola so drawn crosses the z-axis at all, it crosses it twice. We need to choose one of the
zeros for p3. Second, it is possible the parabola will not cross the x-axis at all.

Solving the problem of which root to choose is simple. We assume the approximation py is better than the
others, so we choose the root that is closest to ps. Actually, that solves the second “problem” too. Even when the
parabola does not cross the z-axis, it has zeros. They are complex. And we do not worry about that. We simply
take the complex root that is closest to ps. This has the nice advantage that even when the coefficients of p(z) are
all real and pg, p1, and, py are all real, and all the roots of p(z) are complex, it will find a complex root.

As to the business of finding the parabola passing through (po, f(po)), (p1, f(p1)), and (p2, f(p2)), we will seek
a parabola P(x) of the form

P(z) = a(z — p2)* + bz — p2) +c.

Making the substitutions 2 = p; and P(x) = f(p;) leads to the three equations

fo) = alpo—p2)®>+bpo—p2) +c¢
fp1) = alpr—p2)®+b(p1 —p2) +¢
f(p2) = ¢

So we find out immediately that ¢ = f(p2) and we must solve the simultaneous equations

f(po) — f(p2) = alpo —p2)* + b(po — p2)
a(pr — p2)? +b(p1 — p2)

=
e
=

I
~
—
]
no
~

Il

for a and b. The solution is

(po — p2)?(f(p1) — f(p2)) — (p1 — p2)*(f(po) — f(p2))
(Po - p2)(P1 - pz)(Po - pl)
(p1 — p2)(f(Po) — f(p2)) — (po — p2)(f(p1) — f(p2))
(Po — p2)(P1 — p2)(Po — P1) )

Now plugging a, b, and c into the quadratic formula gives us roots x = py — bi\/ﬁ. To choose the one closest to

pa, we compare |b++/b? — 4ac| with |b—+/b? — 4ac| and use the larger. This gives us the smallest value for |z — ps|,
the distance of the root from ps.



70 CHAPTER 2. ROOT FINDING

For example, we will use Miiller’s method with py = 1, p; = 2, and pz = 3 to find a root of f(z) = 2% + 1. We
calculate

do = [f(po) = f(p2) =2—28=-26
or = flp1) = f(p2) =9-28=-19
ho = po—p2=-2
hi = p1—p2=-1
ha = po—p1=-1
so we get ¢ = 28, b = hg}f;};*;i‘so = A=) _ 95 and g = fo=hod _ S1C20-C2C19) _ 6 A cloge look at

the graphs of f(z) and P(x) = 622 + 25z + 28 shows that they do meet three times (at the required points), and
that P(x) does not have real roots:

45

40

35

30

25

20

b+ Vb2 —4dac = 25 + /625 — 672 = 25 + i/47. Since |25 + iv/47| = |25 — iv/47|, it does not matter which root
we take. Selecting p3 = ps — wﬁ, we get p3 = 3 — 25_57,6\/@ = % — gi. Continuing this process gives the

iterates 0.75238 — 0.75810¢, 0.57069 — 0.842883,...,0.50000 — 0.86603¢, converging to % - @z

Crumpet 16: Orders of convergence

The order of convergence of Miiller’s method to a simple root (one that is not repeated) is

1
V11 193 4
<m+27) L
9(3 +

~ 1.839286755214161

‘ﬁ
-
Wl =

|
\I‘@
—
wl=

S

and to a double root,

1
3
V4 1
(139 e 8) e % + = ~ 1.233751928528259.
24\/§ 27 36(‘/ﬁ+§)§ 6
24/3 27

The method of Laguerre converges to a simple root with order 3.

References [23, 20]

The following chart summarizes the relative strengths and weaknesses of Newton’s method, the secant method,
and Miiller’s method.



2.6. ROOTS OF POLYNOMIALS

71
Newton’s  Secant  Miiller’s
Initial values needed 1 2 3
Derivative needed? Yes No No
Order of Convergence® 2 ~ 1.618 ~1.839
Automatic discovery of complex roots? No No Yes
Simplified in the case of polynomials? Yes No No

Key Concepts

Synthetic division: A method for dividing a polynomial p(z) by a monomial (x — x¢) using only addition, multi-
plication, and the coefficients of p. The process is identical to evaluating a polynomial by nesting. Synthetic
division simply provides an organizational tool so that nesting can be accomplished simply with pencil and

paper.

Horner’s method: A method where the value of a polynomial and its derivative at a single point are calculated

simultaneously via synthetic division.

Miiller’s method: A root-finding method similar to the secant method where instead of using a secant line a

parabola is used.

Deflation: The method of replacing a polynomial p(x) by the product of a monomial (z — x¢) and a polynomial
q(z) of degree one less than that of the original polynomial.

Exercises

1.

Write a function that calculates the roots of a
quadratic function using the alternate quadratic for-
mula when appropriate. The first line of your function
should be

function [r1,r2] = quadraticRoots(a,b,c)

where r1 and r2 are the roots of p(z) = az® + bz + c.
This way, the values r1 and r2 are returned by the
function in an array. The function is called like this:

[s,t]l=quadraticRoots(1,2,3),

setting s to the value of one of the roots and t to the
other. Test your code well by comparing outputs of
your function to hand/calculator computations.

Write a function that implements Horner’s method.
The first line of your function should be

function [p,pprime] = horner(x0,c)

where c is an array containing the coefficients of the
polynomial, x0 is the number at which to evaluate it, p
is the value of the polynomial at x0, and pprime is the
value of the derivative of the polynomial at x0. This
way, the values p and pprime are returned by the func-
tion in an array. The function is called like this:

[y,yyl=horner(-2,[5,4,3,2,11),

setting y to the value of the polynomial and yy to the
value of its derivative. Test your code well by compar-
ing outputs of your function to hand/calculator com-
putations.

Write a function that implements Newton’s method
with Horner’s method. The first line of your function
should be

function x = newtonhorner(c,x0,tol,N)

where c is an array containing the coefficients of the
polynomial, x0 is the initial value, tol is the tolerance,
and N is the maximum number of iterations before giv-
ing up. The code should be similar to code you wrote to
implement Newton’s method before, but this code will
only work for polynomials. Inside your newtonhorner
function, DO NOT write Horner’s method code. Just
call the horner function you wrote in question 2. Test
your code well by comparing outputs of your function
to outputs from the code you wrote in question 1 on
page 55.

Complete the code for the deflate function begun
here.

% This function will deflate a polynomial
% given a root.
% INPUT: coefficients c of the polynomial;

% a root r of the polynomial.
% OUTPUT: coefficients d of the deflated
YA polynomial.

function d = deflate(c,r)

end’,function

Write a function implementing Miiller’s method.

. Use Horner’s method/synthetic division to find ¢(2)

and ¢'(2). Do not use a computer.

(a) g(x) =3z + 1222 — 132z — 8 I
(b) g(x) = =7+ 8z — 3z + 52 — 2z* [*)

. Use Horner’s method to calculate g(—2) and ¢'(—2)

where g(z) = 4x* — 52° + 62 — 7. Do not use a com-
puter.

. Use your work from question 6 to help execute two it-

erations of Newton’s method using a pencil, paper, cal-
culator, and Horner’s method/synthetic division. Use
initial value zo = 2. [F//4]



72

CHAPTER 2. ROOT FINDING

10.

11.

12.

13.

14.

15.

16.

17.

Use your work from question 7 to help execute two it-
erations of Newton’s method using a pencil, paper, cal-
culator, and Horner’s method/synthetic division. Use
initial value xg = —2.

Compute z2 of Newton’s method by hand (using
Horner’s method/synthetic division) for f(z) = 2® +
4x — 8 starting with x¢o = 0.

Find x2 of Newton’s method by hand (using Horner’s
method/synthetic division) for f(z) = 2* —22% — 422 +
4x 4 4 using xo = 2.

Using Horner’s method as an aid, and not using your
calculator, find the first iteration of Newton’s method
for the function f(x) = 2z — 10z + 1 using zo = 2.

Demonstrate two iterations of Newton’s method (using
Horner’s method/synthetic division) applied to f(z) =
523 — 222 + 7z — 3 with po = 1 by hand.

Find all the roots of the polynomial as follows. Use
Newton’s method with tolerance 10™° to approxi-
mate a root of the polynomial. You may use your
newtonhorner function from question 3. Then use syn-
thetic division to deflate the polynomial one degree. Do
not use a computer for deflation. Then use Newton’s
method with tolerance 1075 to approximate a root of
the deflated polynomial. Then use synthetic division to
deflate the deflated polynomial one degree. Repeat un-
til the deflated polynomial is quadratic. Once this hap-
pens, use the quadratic formula (or alternate quadratic
formula) to find the last two roots.

(a) g(z) = z* + 625 —59x% + 144x—144 &

(b) g(z) = —280 + 909z — 15422 — 1782 + 5da* + 92"
A]

Find all the roots of the polynomial as follows. Use
Newton’s method with tolerance 107° to approxi-
mate a root of the polynomial. You may use your
newtonhorner function from question 3. Then use syn-
thetic division to deflate the polynomial one degree.
You may use your deflate function from question 4
for deflation. Then use Newton’s method with toler-
ance 107° to approximate a root of the deflated poly-
nomial. Then use synthetic division to deflate the de-
flated polynomial one degree. Repeat until the deflated
polynomial is quadratic. Once this happens, use the
quadratic formula to find the last two roots. You may
use your quadraticRoots function from question 1 for
solving the quadratic.

(a) g(z) = 2* — 22° — 122% 4+ 162 — 40 ¥
(b) g(z) = 56 — 152z + 14022 — 172> — 48z + 92° 1*)

For each root you found in question 14 except the first
one, use it as an initial approximation in Newton’s
method with tolerance 107° to see if you can refine
your roots. Do they change? (S][A]

f(z) = 2 — 1.2552% — 9838z + 1.2712 has a root at
r=1.12.

(a) Use Newton’s method with an initial approxima-
tion zp = 1.13 to attempt to find this root. Ex-
plain what happens.

18.

19.

20.

21.

22.
23.

(b) Find all the roots of f(z).

About 800 years ago John of Palermo challenged math-
ematicians to find a solution of the equation > + 222 +
102z = 20. In 1224, Fibonacci answered the call in
the presence of Emperor Frederick II. He approximated
the only real root using a geometric technique of Omar
Khayyam (1048-1131), arriving at the estimate

(L) er (LY (L)
60 60 60
1\* 1\ 1\
— 4| = 40— ) .
53 (60) + (60) + 0(60)
How accurate was his approximation?

Reference [5, pg. 96 ex. 10]

Calculate the value of the polynomial at the given
value of z in two different ways. (i) Use your horner
function from question 2; and (ii) use an inline () func-
tion. Then (iii) compare the two results using the ==
operator.

(a) p(z) = z* — 22° — 1222 4+ 162 — 40 at = = /3
(b) q(x) = 56 — 152z + 1402* — 172 — 482* + 92° at

x=r/2 M
(c) r(z) =25 + 112* — 3423 — 13022 — 275z + 819 at
1—/5 [A]
2
(d) s

(x) = 5% 4 32® — 462° — 1022* + 36522 + 1287
t

1
e

[

Write a function that uses your functions from ques-
tions 1, 3, and 4 to find all the roots of a polynomial.
Test your function well on polynomials of various de-
grees for which you know the roots. You may base
your function on the pseudo-code on page 67, but your
code should be significantly simpler since you are call-
ing functions instead of writing their code. !

Use your code from question 20 to find all the solutions
of the equation. [*!

(a) z° + 11z* — 342 — 1302 — 2752 + 819 =0
(b) 52° 4 32* — 462® — 10222 + 3652 4+ 1287 =0

Find all the roots of g(x) = 2523 — 10522 + 148z — 174.

Recall that there are some similarities between the se-
cant method and Miiller’s method. They each require
multiple initial approximations. They each involve cal-
culating the zero of some function passing through
these initial points. They both give superlinear con-
vergence to simple roots. And, of course, they are both
root finding methods. Let’s tweak the idea in the fol-
lowing way. To find roots of g, start as with the secant
method, using two approximations, zo and x1. Then,
instead of using the zero of a line through (zo, g(x0))
and (x1,g(z1)), find the function of the form

h(z) = az® +b

passing through (zo, g(z0)) and (z1,g(x1)). Let z2 be
the zero of h. Then repeat with x1 and z2 to get xs,
and so on.



2.6. ROOTS OF POLYNOMIALS

73

(a) Let g(z) = 2In(1 4+ 2*) — x, 2o = 5 and =1 = 6.
Find x2 using this method.

(b) Find a formula for x> given any function g(x) and
any initial conditions xp and z1. Your formula
should be in terms of zo, z1, g(xo), and g(z1).

(¢) Find a general formula for z, in terms of z,_2,
Tn-1, §(Tn—2), and g(zn_1)).

(d) Write a function that implements this method
and prints out each iteration.

(e) Use your function to decide whether the order
of convergence for this method is linear or super-
linear.

24. Pick a function whose root(s) you know exactly. Use
Muiiller’s method to find one of the roots. Use three
consecutive iterations to estimate the order of conver-
gence.

25. The errors in three consecutive iterations of Miiller’s
method are shown in the table. Use this information
to estimate the order of convergence.

[n ][ Jon—af |
12 [ 1.53627(10)~>™
13 | 1.67365(10) °*2
14 | 1.83922(10)" %!

26. The graph of f(x) is shown. Find distinct sets of values
Po, p1, and pa for which Miiller’s method
(a) will lead to a complex value for ps.
(b) will lead to the root at x ~ 4.4.

(c) will lead to the root at x ~ 2.8.

27. The function shown in question 26 is f(z) =

w + sin(3z). Use this information to test your
conjectures in question 26.



74 CHAPTER 2. ROOT FINDING

2.7 Bracketing

Bisection is called a bracketed root-finding method. A root is known to lie within a certain interval. Each iteration
reduces the size of the interval and maintains the guarantee the root is within. At each step of the algorithm, the
root is known to be between the latest estimate and one of the previous. These bounds form a bracket around the
root. As the algorithm proceeds, the bracket decreases in size until it is smaller than some tolerance, at which point
the root is known to be close and the algorithm stops.

The problem with bisection is its linear order of convergence. Compared to superlinear methods like the secant
method and Newton’s method, the bisection method just creeps along. But the bisection method has something
the secant method and Newton’s method do not—certainty of convergence. Yes, the secant method and Newton’s
method are fast when they converge, but there is no guarantee they will converge at all.

Methods combining the virtues of the bisection method (guaranteed convergence) and some higher order method
(speed) are called safeguarded methods. They are guaranteed to converge and can do so quickly when the root is
near. Any superlinear method may be bracketed, producing a safeguarded method.

Bracketing

Bracketing means maintaining an interval in which a root is known to lie. Bracketing is used in the bisection method.
With each iteration, the root is known to lie between the two latest approximations. Bracketing is not used in the
secant method nor Newton’s method. There is no guarantee a root remains near the latest approximations.

It is not difficult, however, to combine the bisection method with the secant method or Newton’s method, or
any other high order method for that matter, to form a hybrid method where the root remains bracketed and there
is a chance for fast convergence. In such a method, a candidate for the next iteration is computed according to the
high order method. If this candidate lies within the bracket, it becomes the next iteration. If the candidate lies
outside the bracket, the bisection method is used to compute the next iteration instead.

Bracketed secant method, better known as the method of false position or regula falsi, provides an elementary
example. In fact, the high order method (the secant method) always produces a value inside the bracket, so checking
that point is not necessary. Where false position and the secant method differ is choosing which of the previous
two iterations to keep. In the secant method, it is always the latest iteration which is kept for the next. In false
position, the latest iteration which maintains a bracket about the root is kept for the next whether that iteration
is the latest or not. Bracketed Newton’s method provides a slightly more advanced example because it is entirely
possible an iteration of Newton’s method will land outside the bracket.

Take the function g(x) = 3 — z — sin(x) over the interval [2,3]. f is continuous on [2, 3], and g(2) ~ 0.09 and
9(3) = —0.14 have opposite signs. Thus [2, 3] brackets a root of g, so let g = 2 and 21 = 3. The table shows the
computation of the next iteration for bracketed secant method and bracketed Newton’s method.

‘ ro 1 candidate xo To
bracketed secant 2 3 x- g(zl)m ~2.3912 2.3912

bracketed Newton’s | 2 3 T, — ;,((?1)) ~ —11.101 2.5
In bracketed secant, the candidate x5 is accepted, but in bracketed Newton’s method, the candidate x5 is outside
the bracket so it is discarded and x5 according to the bisection method (2.5) is taken instead.
To set up the next iteration, g(z2) is calculated. Since g(x2) is negative in both methods, the old x1, which was
3, is discarded and zg = 2 is “upgraded” to z; in order to maintain the bracket. This way, g has opposite signs at
zi1and xo. The following table demonstrates this decision process plus the computation of the next iteration.

‘ g(z2) 1 To candidate 3 T3
bracketed secant —0.073141 2 23912 =9 — g(acg)% ~ 2.2165 2.2165
bracketed Newton’s | —0.098472 2 2.5 7y — S ~ 2.0048 2.0048

Can you fill in x4 based on the values in the following table? Notice the old x; must be “upgraded” in bracketed
secant but not in bracketed Newton’s. Why? Answers on page 81.

‘ g(z3) To T3 candidate x4 Ty
—0015215 2 22165 5 — glus) BT ~ 21850 7

0.087906 2.5 2.0048 x3 — 223~ 9 1565 ?

g’ (z3)

bracketed secant

bracketed Newton’s



2.7. BRACKETING

(0]

The next 5 iterations of each method are given here in case you would like to try your hand at computing a few.

And now is a good time to do so. These values were computed using the subsequent computer code.

secant

bracketed

Newton’s

x5 | 2.18062942638407
z6 | 2.17988957044102
x7 | 2.17977718322867
g | 2.17976012038625
9 | 2.17975753008587

False position (bracketed secant method) code

Tl ToToto oo oo o ToTo oo o o o o To ToFo o fo o o o ToTo oo o oo o o To oo fo oo o o o Fo o fo oo

% Written by Dr. Len Brin 20 May 2014 %
% Purpose: Implementation of the Method of %
% False Position. %
% INPUT: function g; initial values a and b; %
% tolerance TOL; maximum iterations N %
% OUTPUT: approximation x and number of %
% iterations i; or message of failure %

Toto Tots T To o To o To o To o fo o o oo To o Fo o oo o o Fo o Yoo Fo o o o o oo Fo o Fo o oo o oo Fo o
function [x,i] = falsePosition(g,a,b,TOL,N)
i=1;
A=g(a);
B=g(b);
while (i<N)
b
x=b-B*(b-a)/(B-A);
if (abs(x-b)<TOL)
return
end%if
X=g(x);
if ((B<O && X>0) || (B>0 && X<0))
a=b; A=B;
end}if
b=x; B=X;
i=i+1;
end)while

2.17925592233708
2.17975682599184
2.17975706647997
2.17975706648003
2.17975706648003

x="Method failed--—-maximum number of iterations reached";

end’%function

Bracketed Newton’s method code

Tl ToTototo o oo o ToTo oo o o o To ToFo o o o o o ToTo oo o oo o T To oo o oo o To T Fo o o oo

% Written by Dr. Len Brin 20 May 2014 7%
% Purpose: Implementation of bracketed Newton’s 7%
% method. %
% INPUT: function g; its derivative gp; initial %
% values a and b; tolerance TOL; maximum 9%
% iterations N %
% OUTPUT: approximation x and number of %
% iterations i; or message of failure %

Tolo oo To o To o To o To o oo o oo To o Yoo Fo o o o Fo o Fo o fo o oo o oo Fo o fo o oo o oo oo
function [x,i] = bracketedNewton(g,gp,a,b,TOL,N)
i=1;
A=g(a);



76 CHAPTER 2. ROOT FINDING

B=g(b);
while (i<N)
b
x=b-B/gp(b) ;
if (x<min([a,b]) || x>max([a,b]))
x=b+(a-b)/2;
end%if
if (abs(x-b)<TOL)
return
end)if
X=g(x);
if ((B<O && X>0) || (B>0 && X<0))
a=b; A=B;
end’if
b=x; B=X;
i=i+1;
end)while
x="Method failed---maximum number of iterations reached";
end/function

falsePosition.m and bracketedNewton.m may be downloaded at the companion website.

The code for bracketed secant method and bracketed Newton’s method are very similar. In fact, they are nearly
identical. There are only two differences besides the commentary at the beginning. Where bracketed secant has the
line x=b-Bx*(b-a)/(B-A) ;, bracketed Newton’s has the line x=b-B/gp(b) ;. This is the essential difference between
the two as this is where the high order method is executed. The only other difference is that bracketed Newton’s
includes three lines where it checks whether x lands within the bracket and executes one step of the bisection method
if not:

if (x<min([a,b]) || x>max([a,b]l))
x=b+(a-b)/2;

end’%if
Actually, we could add these three lines to the bracketed secant method and it would run just the same. It is
impossible for the secant method to produce a value of x outside the bracket, so the bisection step would never be
executed. The only essential difference between the two functions is the execution of the high order method.

We can use this observation to create a sort of blueprint for bracketing any high order method. Steffensen’s,

Miiller’s (as long as the approximation stays real), or Sidi’s (section 3.2), for example, can be bracketed this way.

The following pseudo-pseudo-code represents such a blueprint, giving guidance on how to safeguard a high order
method by combining it with bisection.

Assumptions: g is continuous on [a,b]. g(a) and g(b) have opposite signs.

Input: Interval [a, b]; function g; desired accuracy tol; maximum number of iterations N; any other variables,
like ¢’ in the case of Newton’s method, needed to iterate the superlinear method.

Step 1: Set A=g(a); B=g(b);i=2;
Step 2: Initialize any other variables needed for superlinear();
Step 3: While i < N do Steps 4-10:

Step 4: Set x = superlinear(a, b, g,...);

Step 5: If (z — a)(z — b) > 0 then z = b+ 252;

Step 6: If |z — b| < tol then return z

Step T: Set X = g(x);

Step 8: If BX < 0 then set a =b; A = B;

Step 9: Set b=x; B=X;i=14+1;

Step 10: Update any other variables needed for superlinear();
Step 11: Print “Method failed. Maximum iterations exceeded.”

Output: Approximation m within tol of exact root, or message of failure.


http://lqbrin.github.io/tea-time-numerical/ancillaries.html

2.7. BRACKETING 7

Figure 2.7.1: A troublesome function for the bracketed secant method.

As motivation for the need to develop bracketed versions of other high order methods, consider the particularly

problematic function g(z) = 4192 It has a root at —%, but the bracketed secant method can be very slow to

converge to this root. Figure 12.17% illustrates this slow convergence beginning with the bracket [a,b] = [—4,.05].
With this unfortunate choice of bracket, the method takes 45 iterations to achieve 107° accuracy. A smarter
algorithm would not only check that each iterate lands within the brackets, but would also check to see that the
high order method is making quick progress toward the root. If it detected that convergence was slow, say slower
than bisection would be, it would take a bisection step instead. Note that bracketed Newton’s method does not
have a significant problem with this function. Given the same initial bracket, it converges to within 107> of the root
in only 10 iterations (the first 4 of which are bisection steps). Alas, Newton’s method requires use of the derivative.
A fast bracketed root-finding method that does not require knowledge of the derivative would be quite useful.

In the early 1970s, Richard Brent built upon the work of van Wijngaarden and Dekker to produce a bracketed
method that combines bisection, the secant method, and inverse quadratic interpolation, all the while checking
to make sure the high order method is making sufficiently quick progress toward a root. The result is what is
now known as Brent’s method [3]. It does not require knowledge of the derivative. It is fast. It is guaranteed to
converge. Consequently, it is a popular all-purpose method for finding a root within a bracket when the derivative
is not accessible. The full details of Brent’s method will not be presented here, but a significant step toward that
method will. The method presented here is similar to the MATLAB function fzero [22].

Inverse Quadratic Interpolation

You may recall, in Miiller’s method, three initial approximations, say a, b, and, ¢ are needed. The parabola through
the points (a, g(a)), (b,g(b)), and (¢, g(c)) is drawn and its intersection with the z-axis gives the next iteration. The
key elements of this method, the process of fitting a quadratic function to the three points, is called interpolation.
Thus Miiller’s method could just as well be called the “quadratic interpolation method”.

As you may have guessed, the method of inverse quadratic interpolation is similar. Instead of fitting a quadratic
function to the points (a, g(a)), (b,g(b)), and (¢, g(c)), the roles of z and y are reversed. A quadratic function is
fitted to the points (g(a),a), (g(b),b), and (g(c),c) instead. Since x is a function of y in this case, the quadratic
will cross the z-axis exactly once, when y = 0. Evaluating the quadratic at 0 gives the next iteration. Figure 2.7.2
shows quadratic interpolation and inverse quadratic interpolation on the same set of three points. In quadratic
interpolation, y is treated as a function of z. In inverse quadratic interpolation, = is treated as a function of
y. Inverse quadratic interpolation avoids the main complication of quadratic interpolation—calculating its z-axis
crossings. In quadratic interpolation, the quadratic may cross the z-axis twice or not at alll Either way, some choice
needs to be made at every step, and the roots of the quadratic involve the quadratic formula. In inverse quadratic
interpolation, the quadratic is guaranteed to cross the z-axis exactly once, and finding the crossing is just a matter
of evaluating the quadratic at 0. That is, y = 0. Remember, the quadratic gives = as a function of y.

Referring back to the derivation of Miiller’s method on page 69, forcing the parabola to pass through the points
(a, A), (b, B), and (¢, C), and swapping the roles of x and y, a formula for the inverse parabola, ¢, just falls out:

q(y) =q(y — B’ +q1(y — B) + @2



78 CHAPTER 2. ROOT FINDING

where

G2 = b
(A= B)*(c—b) ~ (C ~ B)*(a—b)

no= (A—B)(C—B)(A-C)
_ (C=B)(a—b)—(A—B)(c—b)
o= (A-B)(C-B)A-C)

Crumpet 17: Quadratic interpolation order of convergence

The method of inverse quadratic interpolation has order of convergence about 1.84 under reasonable assumptions.
If the function whose root is being determined has three continuous derivatives in a neighborhood of the root,
the latest three approximations are sufficiently close, and the root is simple, then the order of convergence is the
real solution of

d—adf—a—-1=0.

We can use inverse quadratic interpolation to approximate it!

>> format(’long’)

>> f=inline(’x"3-x"2-x-1’)

f = f(x) = x"3-x"2-x-1

>> [res,i]l=inverseQuadratic(f,1,2,107-12,100)
res = 1.83928675521416

i= 8

The exact solution is

|
Wl =

1
V11 193 4
@ = < I 27) P - 1 e
3v3 o (Y 4 19
3v3 27
You may recognize this as the order of convergence for Miiller’s method. Indeed, any quadratic interpolation
method converges to a simple root with this order.

Reference [29]

The z-axis crossing is, therefore,

r = q(0)
= B%q—Bq+a
_ Bz(C—B)(a—b)—(A—B)(C—b)_B(A—B)Q(C—b)—(C—B)Q(a—b)+b
(A-B)(C-B)(A-0) (A—B)(C—-B)(A-0)
_ [BC-B+BC-B - [B*A-B)+BA-B(-b
B (A-B)(C - B)(A-0C) "
_ [BCHBC -t~ [-BA+ BAY (c-b)
= (A—B)(C-B)A-0C) +
_ BO(C-B)a—b) - BAA-B)c-b)
= (A—B)C-B)A-0C)

5§ -Da-b)-401-5)c-b)
(1-2(5-DE-1

= b+




2.7. BRACKETING 79

Figure 2.7.2: Quadratic and inverse quadratic interpolation.

F25 -20 415 -10 -5 0 5 \10 15

B c A
" r 8 ’ c

SO

r(t+1)(c—b)+s(r+1)(a— b)'

2.7.1
rst ( 7 )

xr=0b—

Inverse quadratic interpolation can be bracketed just like any other high order method. But it does present an
interesting question that not all high order methods do. Three points are necessary for a quadratic interpolation,
so when they are used to produce the next iteration, a fourth point is generated. Of the four points, the computer
needs to decide which two will become the next bracket, and which point should be the third needed for the next
interpolation. But we are getting ahead of ourselves.

Each iteration begins with three points, (a, g(a)), (b,g(b)), and (c, g(c)) where a and b bracket a root and ¢ is a
third point. For the first iteration, only the bracket is given. c is set equal to a. For every iteration, the signs of
g(a) and g(b) are checked to ensure that a and b bracket a root. If they are opposite, the method proceeds. If they
are the same, that means ¢g(b) and g(c) must have opposite signs, so a is set equal to ¢. Next, the absolute values of
g(a) and g(b) are checked. If |g(a)| < |g(b)]|, the labels of a and b are switched and c is set equal to the new value of
a. After these initial checks, the computation of the next iteration begins with assurance that a root lies between
a and b; b is likely the best estimate of the root to date; and c is likely the worst estimate of the root to date.

If ¢ = a after the initial checks and possible relabeling, then quadratic interpolation is impossible. The next
iteration is generated by the secant method (linear interpolation) instead. If ¢ # a after the initial checks and
possible relabeling, a candidate for the next iteration, x, is calculated according to inverse quadratic interpolation.
If the candidate lies within the bracket, it is accepted as the next iteration. If it lies outside the bracket, a step
of the bisection method is used instead. In either case, ¢ is set equal to b and b is set equal to x. For bracketed
inverse quadratic interpolation, this completes one iteration. The method is then repeated until a sufficiently good
approximation is found.

In the best-case scenario, inverse quadratic interpolation is used at every step and convergence is superlinear
with order about 1.84. In the worst-case scenario, one of the high order methods is used at every step, but the
function is pathological and convergence is slow, possibly even slower than bisection. Slow convergence is rare,
though, and the actual order of convergence can not be pinned down in general. The method switches between
methods of different orders. The best we can say is it is usually fast.

Bracketed inverse quadratic interpolation code

Tl ToToTo oo oo o ToToTo o o o o fo o ToTo o fo o o o o ToFo o fo o o o o ToFo oo o o o o o Fo o fo o o

% Written by Dr. Len Brin 21 May 2014 7%
% Purpose: Implementation of bracketed inverse ¥
% quadratic interpolation method. %
% INPUT: function g; initial values a and b; %
% tolerance TOL; maximum iterations NO %
% OUTPUT: approximation x and number of %
% iterations i; or message of failure %

Tootototo foTo To o To o To fo o Fo o o To oo FoFo Todto o o o fo o Yoo oo To fo o Fo o Voo Fo o to fo o Fo o o
function [x,i] = bracketedInverseQuadratic(g,a,b,TOL,NO)
i=1;



80 CHAPTER 2. ROOT FINDING

A=g(a);
B=g(b);
c=a; C=4;
while (i<NO)
b
if (B*A>0)
a=c; A=C;
end’if
if (abs(A) < abs(B))
c=b; C=B;
b=a; B=A;
a=c; A=C;
end’if
if (a==c)
x=(b*A-a*B)/(A-B);
else
r=B/A-1; s=C/B-1; t=A/C-1;
p=(t+1) *xr* (c-b) +(r+1) *s*(a-b) ;
g=t*s*r;
x=b-p/q;
end’if
if (x<min([a,b]) || x>max([a,bl))
x=b+(a-b)/2;
end’if
if (abs(x-b)<TOL)
disp(ll u);
return
end’if
c=b; C=B;
b=x; B=g(b);
i=i+1;
end)while
x="Method failed--—-maximum number of iterations reached";
end/function

Applying the bracketed inverse quadratic interpolation method to the problematic function g(x) = iﬂgi over the

interval [—4,.05] yields the result within 107 accuracy in only 11 iterations. The method took only 1 iteration
more than bracketed Newton’s without requiring knowledge of the derivative of g! bracketedInverseQuadratic.m
may be downloaded at the companion website.

Stopping

In all of our root-finding methods, the algorithm stops when the difference between consecutive iterations is less
than some tolerance. This criterion is based on the assumption that the error will be no more than this difference.
And that is a safe assumption for any method that is converging superlinearly when it quits. Indeed, it is even
safe for the linearly converging bisection method where the difference between consecutive iterations is exactly the
theoretical bound on the error.

The criterion is not safe when a superlinear method is used far enough from a root that superlinear convergence
is not observed. This is exactly what happens in figure on page 77. The difference between consecutive iterations
is actually larger than the absolute error at every step. This is an unusual situation, but it can happen.

The criterion is also not safe when a method is linearly convergent with a limiting convergence constant \ > %
However, linearly convergent methods should never be used on their own as there is always a faster alternative.

There is one more important consideration regarding stopping. Stopping when the difference between consecutive
iterations is less than some tolerance is dependent on the absolute error. When roots could be very small or very
large, it is perhaps better to use a criterion based on relative error. Instead of stopping when |z,+1 — x,| < tol, for
example, we would instead stop when |z,11 — x| < tol - |Tpy1].


http://lqbrin.github.io/tea-time-numerical/ancillaries.html

2.7. BRACKETING 81

Key Concepts

Bracketing: Iteratively refining an interval, also known as the bracket, in which a root is known to lie until it is
small beyond some tolerance.

Inverse quadratic interpolation: A quadratic in y is fit to three consecutive approximations of a root. The
intersection of the quadratic with the z-axis becomes the next iteration.

Bracketed secant method: A combination of the secant method and bisection method employing bracketing. At
each iteration, if the secant method produces a value inside the current bracket, it becomes the next iteration.
Otherwise bisection is used to produce the next iteration.

False position: Another name for the bracketed secant method.
Regula falsi: Another name for the bracketed secant method.

Bracketed Newton’s method: A combination of Newton’s method and the bisection method employing brack-
eting. At each iteration, if Newton’s method produces a value inside the current bracket, it becomes the next
iteration. Otherwise bisection is used to produce the next iteration.

Bracketed inverse quadratic interpolation: A combination of inverse quadratic interpolation, the secant method,
and bisection employing bracketing. At each iteration, if inverse quadratic interpolation produces a value in-
side the current bracket, it becomes the next iteration. Otherwise either the secant method or bisection is
used to produce the next iteration.

Exercises 7. Repeat question 1 using the computer, bracketed in-
. . . —6
1. Use the bracketed secant method (false position) to find V%rse quadratic interpolation, and a tolerance of 107"
aroot in the indicated interval, accurate to within 1072,
(a) f(z) =3 -z —sinz; [2,3] ¥ 8. Compare the results of questions 5, 6, and 7.
(b) g(x) = 32" —22° — 3z +2; [0,1] 9. Write a bracketed Steffensen’s method function.
(¢) g(x) = 3z* — 22° — 3z +2; [0,0.9] F REMARK: Steffensen’s method is a fixed point find-
() h(z) = 10 — cosh(z); [-3, -2 ing method. It solves the equation f(z) = =z, not
f(z) = 0. So a proper bracket [a,b] is one for which
— (A] ’
(e) f(t) = v4+5sint —2.5; [-600, —500] (f(a) > a and f(b) < b) or (f(a) < a and f(b) >
(f) g(t) = St tont, [3490 3491] b). Geometrically, this means the points (a, f(a)) and
B ) (b, f(b)) are on opposite sides of the line f(z) = x, anal-
(&) h(t) = (3 sint) — 5 [L, 2] ogous to a root-finding bracket where the two points are
(h) f(r)=e™" —r; [ 20,20] on opposite sides of the line f(z) = 0.
(i) g(r) =sin(e") +7; [=3,3] . :
() h(r) = geinr _ geosr. 1, 3] (A] 10. Use your code from question 9 to repeat question
j T

1 using the computer, bracketed Steffensen’s method,
and a tolerance of 107%. Civen that you are looking
for a root of g(x), use f(x) = g(x) 4+ 2 in your call to
Steffensen’s method.

2. Repeat question 1 using bracketed Newton’s method.
[SITA]

3. Repeat question 1 using the secant method. Compare 7
your answer with that of false position. /%] 11. Compare the results of questions 7 and 10.
4. Repeat question 1 using Newton’s method. Compare

your answer with that of bracketed Newton’s method. 12. . Rewrite t}_le inverseQuadraticInte.rpolation fuI.IC-
S][A] tion so that it stops when the (approximated) relative

error is less than the tolerance.

5. Repeat questlon 1 using the computer and a toler-
ance of 1076, FIl4] 13. Use your code from question 12 to repeat question
. . 1 with a tolerance of 1076, /14
6. Repeat question 2 using the computer and a toler-
ance of 1076, 4] 14. Compare the results of questions 7 and 13. )
Answers

z4: In both methods, the candidate x4 is accepted since in each case, x4 is within the bracket formed by zo and
x3. So, for bracketed secant, x4 = 2.1854, and for bracketed Newton’s, x4 = 2.1565. z; is upgraded to zs in
bracketed secant because g(x3) is negative. g(x2) and g(x3) must have opposite signs in order to maintain
the bracket. z7 is not upgraded in bracketed Newton’s because g(x3) is positive.



82

CHAPTER 2. ROOT FINDING




Chapter

Interpolation

3.1 A root-finding challenge

We open this chapter by combining its content with that of the previous chapter. In the present chapter, we will
discuss interpolating functions (functions whose graphs must contain a prescribed set of points) and interpolation
(the exercise of finding such a function). In the previous chapter, we discussed approximating roots of functions by
numerical computation. Putting these ideas together in the present section, we present an interpolating function,
which we will call f, and challenge the reader to find all 6 roots of f, f’, and a particular antiderivative of f
as accurately and efficiently as possible. Graphs of the three functions and the definition of f follow. Should you
accept the challenge, be prepared to use all of what you know about root-finding with computer code. This problem
is not easily solved!

If you would like to get right to it, you can skip most of the content of this section. Use the three graphs and
the computer code as a starting point to find the roots of F', f, and, f/. The rest of the material is here to help
you understand the definition and construction of the functions, but is not prerequisite to taking the challenge.

The function f and its antiderivative

The function

0.08 - B

0.06 - ,

0.04 - =

0.02 - 4

-0.02

0 0.2 0.4 0.6 0.8 1,

which we will call F', could easily be mistaken for a cubic or higher degree polynomial, but it is far from so nice.
First, its domain is the interval [0, 1], so the graph shown is the entire graph. Second, it has but two derivatives.
Third, its definition is a touch unusual. More on that soon.

What we have here is the antiderivative of a fractal interpolating function. An interpolating function is a function
that contains a set of prescribed points. This one happens to be fractal in nature, thus a fractal interpolating
function. The fractal interpolating function, f, passes through

(0,.123), (.33,—.123), and (1,.5) (3.1.1)

83



84 CHAPTER 3. INTERPOLATION

in such a way that the graph shown is that of its antiderivative. The unusual nature of the definition of F' is derived
from the unusual nature of the definition of f:

() fitaZ+dif(2), 0<z<a
xTr) =
f2+62%+d2f(f:g), a<zr<l
where
8979 34779 27
fl = , C1 = — , A1 = ——
100000 100000 100
e 891 317391 6T
27 75500000 2 5500007 2 550
-
~100°

Crumpet 18: Fractal Interpolating Functions

Fractal interpolating functions are not restricted to passing through three points. Actually, three is the minimum.
In general, for n > 3, suppose z1 < @2 < --- < z,. The linear fractal interpolating function (there are other
types of fractal interpolating functions) passing through each of the points

(x17y1)7 (m27y2)7 R (xn,yn)

and having domain [z1, 2] is defined by the linear transformations

w(2)=(2 ) () () =ram

The a;, ¢, e;, and f; are calculated based on the requirement that the function interpolate the given points. In

particular, we require
Li( “ )= % )andL, | ™ )= “* ).
Y1 Yi Yn Yit+1

The d; are free parameters with the restriction |d;| < 1. It is a straightforward algebraic exercise to show

Tit1 — T4
73 = —_—
Tp — 1
o = Y —yi — di(yn — 1)
;=
Tpn — T1
€; = Ty — A;X1
fi = yi—cx—diy.

In concert, the L; define the function f, each L; responsible for the subset [z;,z;y1] of the domain.
L; ( i > _ ( cixa—fdj_yej— P )7 so as L; takes = to a;x + e;, it simultaneously takes y to c;x + d;y + fi.
Noting that L; takes this action on the function f, we must have that f(a;z +¢e;) = c;z +d; f(z) + fi on [x1, 4],
or equivalently,

flx)=fi+ec (w ;iei) +dif (x;ei) on [z, Tit1]-

2

Putting all the pieces together, f is defined by

hi(z), 21 <z <@
hz(m), xo < x < I3

flz) =
hn—l(x)7 Tn-1 << Ty
where

la(@2) = i - @ (%) +dif (g) .

i a;



3.1. A ROOT-FINDING CHALLENGE 85

Consequently, F(z) = fzzl f(t) dt is defined by

f;l h1(t)dt, X1
F(xz) + fzz hz(t)dt, T2

xTr) =
F(zn-1)+ f; B hn—1(t)dt, zpn—1 <z <2z
without qualification, and f'(z) is defined by

h’ll(z)a Z1 SxSxZ

hy(z), To < x < 3

no1(z), Tno1 <z <mH

di| <1 for all i, then the derivative will exist almost everywhere, but will generally be

a;

as long as f’ exists! If

discontinuous. If we also have hj(zi+1) = hiyq(zit1) for all i =1,2,...,n — 2, then the derivative will exist and
will be continuous.

Reference [2, Chapter 6]

The definition of f is self-referential. Its values are defined by, among other terms, values of itself! This makes
evaluating the function a bit different from evaluating a typical function. For example, by virtue of the fact that f
passes through the points 3.1.1, we must have f(0) = .123, f(.33) = —.123, and f(1) = .5, facts we can check easily
enough. According to the definition,

£(0) = f1 4+ d1 £(0) = .08979 + .27£(0)

so f(0) is defined in part by itself. We need to solve the equation f(0) = .08979 + .27f(0) to find f(0). Thus we
have f(0) = 897 = 123, as promised. Again according to the definition,
75891 317391 67
— — f(1).
550000 + 550000 + 550f( )

f(1)=fa+ca+daf(l) =

__ 75891 317391
Solving for f(1), we have f(1) = %&jm’ = 1, as promised. Since a = .33, the definition actually gives two

ways to calculate f(.33). According to t}ise first part of f,
f(33)=fle) = fitea+dif(1)
8979 34779 27

1
100000~ 100000 100 2
- —.123.

Now is a good time to verify that f(«) = —.123 according to the second part of f as well. Try it! Calculating other
values of f can be a bit more challenging, but there are still a few that are not so bad. a? < aand a+ (1 —a)a > «,
S0

f(e®) = fitca+dif(a)
_ 8979 34779 33 27 ( 123 )

100000 100000 100 T 100

1000
= —.0581907
fla+t(l-a)a) = fotecra+daf(a)
75891 317391 33 67 123
= 7550000 " 550000 100 550 <1000>
2060703
~ 55000000

= .037467327



86 CHAPTER 3. INTERPOLATION

With a similar level of difficulty, you can now calculate

f(a?))a f(a(a + (1 - a)a))a f(a + (1 - Oé)Ozz),
and f(a+ (1 - a)(a+ (1 — a)a)).
Answers on the next page. More generally, once you have calculated f(x) for some value z, you can then calculate

flaz) and f(a+ (1 — a)z) from it.
Now that we have a handle on f, we define F by F(z) = [; f(t)dt for all z € [0,1]. Integrating f(z) we have

P e+ S5 +adiF (%), 0<z<a
T\ F) + f2 (- a) + B 4 (1 a)doF (f;&) : r<1

[

where again both formulas are applicable when = = «. Just like f, F is self-referential. We must go through the same
process in finding values of F' as we did finding values of f. To get started, F'(0) = ad1 F(0) = (1 —ady) - F(0) =0,
but a and dy are both less than 1, so 1 — ad; # 0. Therefore,

— 0 f—

o 1-— O[dl o

F(0)

We could have computed this value by integration just as well: F(0) = foo f(t)dt = 0. Now, according to the
formula,

F(1) = F(@)+ (1 —a) (f2 + 5 + dF(1))
and

F(a) =« (f1 + %1 +d1F(1)) ;

a system of two equations in the two unknowns, F'(«) and F(1). Its solution is

121012947
==~ 01 25517151
F(a) = — goerossss & —0198988632551715
5361861
= 20000+ 0.0881682014009932.
F(1) = ootnag ~ 0-088168201400003

Now that we have the few values, F(0), F(«), and F (1), we can calculate others as before. The values F(ax) and
F(a+ (1 — a)z) will both depend on the value of F(x). So we can compute F(a?) and F(a + (1 — a)a):
C1

3
Fla?) = fm?+4§L+amFQﬂ

10678194456039
6081400000000000

~ .001755877668964219
Fla+(1-a)a) = F(Oé)+f2(1—0[)a+62
94196657189979

~3040700000000000
~ —.03097860926430723.

Now you can calculate F(a?), F(a(a+(1—a)a)), F(a+(1—a)a?), and F(a+(1—a)(a+(1—a)a)) yourself. Answers
on the facing page. You shouldn’t worry about calculating these values exactly. That would require a computer
algebra system with arbitrary precision and is not really the point. The point is to make sure you understand how
to do the calculations. Use a calculator or the computer and the approximate values already calculated.

The derivative of f and more graphs

The function f has a continuous derivative. In fact, the parameters defining f were specifically chosen so the
derivative would exist and be continuous. Differentiating f gives us

c1 dy g1 (x
f/(m):{a+af(a)7 OS.’ESQ

c d e
b (=) a<e<a




3.1. A ROOT-FINDING CHALLENGE 87

Figure 3.1.1: Graph of f.
0 5 B T T T B

0.4 |- .
0.3 | .
0.2 |- _

0.1 -

0 0.2 0.4 0.6 0.8 1

Figure 3.1.2: Graph of f’.
I I I

-6 = I I I 1 L 3
0 0.2 0.4 0.6 0.8 1

and we can check as before that the definition is consistent when x = a:

f'(0) = % + %f’(O) = f(0) =~ ildl = —121050903 = —5.7965
(1) = 1c_2a + 1012af’(1) = f'(1) = 1_;2_ - 18(5);3; ~ 1.052706467661692
d 14194
Fla) =22+ 2f(1) = 7737303 ~ —.1926037991858887
flla) =+ C_Qa +1 Cfa f(0) = 7;;1;3;13 ~ —.1926037991858887.

Other values of f’ can be computed as done for f and F. The graphs of f and f’ are shown in Figures 3.1.1 and
3.1.2.

That’s it. Now see if you can find the roots of the three functions.

Answers

Evaluating f: The following are a few values of f:

f(@®) =~ .03620418000000000
fla(a+ (1 —a)a)) ~ —.09176089063636364
fla+(1-a)a?) ~ —.08222890363636364

flat+t (1 —a)(a+(1-a)a)) =~ .1846063473223140.



88 CHAPTER 3. INTERPOLATION

Evaluating F: The following are a few values of F:

F(0®) =~ .002702687013731212
Fla(a+ (1-a)a)) ~ —.003859289400223274
Fla+(1-a)a?) ~ —.02753062961856850
Fla+(1-a)a+(1-a)a)) ~ -—.01466250212441314.



3.2. LAGRANGE POLYNOMIALS 89

3.2 Lagrange Polynomials

A function that is required to have a graph passing through some set of prescribed points is called an interpolating
function, and we say that such a function interpolates the prescribed points. Further, the exercise of finding such
a function is called interpolation.

In exercise 3a of section 2.5, you are asked to find a polynomial with roots at —7,2, and 1+ 5 (and no others).
The function, therefore, must be a polynomial and have a graph passing through the points

(=7,0), (2,0), (14 5i,0), and (1 — 5i,0). (3.2.1)

In retrospect, then, the question could have been phrased as: find a polynomial passing through the points 3.2.1
(and not having any roots besides —7, 2, 1+ 5i, and 1 — 5¢), a question of interpolation. We now expand upon this
idea by considering polynomials with graphs passing through points with arbitrary ordinates (not just 0).

We start on familiar ground. The polynomial p(x) = (z + 7)(x — 2) has roots —7 and 2 so has a graph passing
through (—7,0) and (2,0). Suppose we want to modify p so it also passes through (—1,1). That is, we want
p(=7) =0, p(—1) = 1, and p(2) = 0. Beginning with p(z) = (x+7)(z —2), we already have p(—7) = 0 and p(2) = 0,
so really we only need to concentrate on p(—1) = 1. Asis, p(—1) = (=1 + 7)(—=1 —2) = 6(—3) = —18, a far cry
from 1. But p(z) = (z 4+ 7)(x — 2) is not the only polynomial passing through (—7,0) and (2,0). Let a be any
real number and note that ¢(z) = a(z + 7)(z — 2) also passes through (—7,0) and (2,0). If we choose a such that
q(—1) = 1, we have the desired function:

G- = a(—1+T)(~1—2) = —18a=1=a=——.

18"
q(z) = —5(z 4+ 7)(z — 2) passes through all three of the points, (—7,0), (2,0), and (—1,1). But let us not lose
sight of whence this came. 71—18 = ﬁ, so, actually, the desired function can be written as g(x) = 12(:10) Indeed,
-7 2 1
q(=7) = nglg =0, q(2) = pfgﬂi) =0, and g(—1) = gg 13 =1.

Now suppose we want a polynomial passing through (—7,0), (2,0), and (—1,v/2). As before, we know p(z) =
(z 4+ 7)(x — 2) has the desired roots and ¢(z) = plz(_ml)) has the nice feature that g(—1) = 1. We use these two facts
to come up with an answer. In fact, without doing any calculation, we know the polynomial

p(x)
o) = p(=1) v2
is the desired function. Take a moment to check that I(—=7) = 0, I(2) = 0, and I(—1) = /2, and understand its
construction. This idea is the seed for what is called the Lagrange form of interpolating polynomials.

We are now ready to let the ordinates fly! Suppose we would like a polynomial passing through (—7,y1),
(2,92), and (—1,y3). We know the polynomial p3(xz) = (z + 7)(x — 2) has zeros at —7 and 2, so the polynomial
Is(x) = pp;((fl))yg has zeros at —7 and 2 and, conveniently, I3(—1) = y3. This is a good first step. It has the correct
ordinate at —1 and zeros at —7 and 2. Similarly, we can construct the polynomial ps(x) = (x + 7)(z + 1) with

zeros at —7 and —1, from which we can construct the polynomial l3(z) = f) zg; yo with zeros at —7 and —1 and,

conveniently, I5(2) = yo. This is a good second step. It has the correct ordinate at 2 and zeros at —7 and —1. Now
consider the sum (I3 +13). I3(—1) = y3 and l3(—1) = 0, so (I3 +12)(—1) = y3. Similarly, I3(2) = 0 and [5(2) = ys, so
(I3+12)(2) = y2. Moreover, (I3+12)(—=7) = 0. We now have a polynomial passing through two of the three required
points and having a zero at the abscissa of the third point. If we had a polynomial with the correct ordinate at —7
and zeros at 2 and —1, we could add it to the sum and be done. But this is exactly the type of polynomial we have
been constructing! We let p;(z) = (z + 1)(z — 2) and {4 (z) = pﬁl((x%) y1, and note that I; has the correct ordinate at
—7 and zeros at 2 and —1, just as we needed. Finally, the desired polynomial is (I; + Iz +{3). Table 3.1 summarizes
the construction.

And now we are ready for complete generalization. Suppose n > 1 and g, z1, .. ., Z, are n distinct real numbers.
We use the notation P,(x) for the polynomial of least degree interpolating the points

(-T07y0); (xla y1>7 ey (xnayn)

Setting p;(x H (x—zj)=(x—x0) - (x—2i-1)(x — 2441) - - - (x — ), one formula for P, is
7=0
VED)
n
pi(z)
Ln(z) = Yi- 3.2.2
() @) (3.2.2)



90 CHAPTER 3. INTERPOLATION

Table 3.1: A polynomial passing through (—7,y1), (2,¥2), and (=1, ys).

v | @) = 2 b = 2B L) = 2%, | b+t )

=7 Y1 0 0 Y1
2 0 Y2 0 Y2
-1 0 0 Y3 Y3

As written, L,, is called the Lagrange form of P,. For sake of brevity, it is often called the Lagrange interpolating
polynomial, or even Lagrange polynomial. However, the interpolating polynomial of least degree by any other name
would be but P,. We will adhere to the practice of calling it the interpolating polynomial of least degree, or use
the notation P,, when the form is unimportant and will add the phrase Lagrange form, or use the notation L,,,
when it is.

The main use for interpolating polynomials in numerical analysis is to approximate non-polynomial functions in
the following way. Suppose we know the value of f at a selection of points. That is, we know f(z¢) = yo, f(z1) =
Z1,..., f(xn) = yn and perhaps not much more. The interpolating polynomial of least degree passing through the
n + 1 points

(20, %0)s (T1, Y1), - -+ s (Tns Yn)
will, by construction, agree with f at g, x1, ..., x, and we can say with some precision how closely this interpolating

polynomial agrees with f at other points as well. The values of the interpolating polynomial at these “other points”
are what we refer to as approximations of the non-polynomial function.

Setting @ = min(xoq, ..., x,,z) and b = max(xg, ..., Ty, x), we have the following result. If f has n+1 derivatives
on (a,b) and f, f', f”,..., f( are all continuous on [a, b], then there is a value ¢, € (a,b) such that
()
fl@) = P,(x) = m(w—xo)(x—xl)--~(;v—xn). (3.2.3)

Ironically, this result is proven by considering the Lagrange form of an interpolating polynomial in ¢ that is equal
to the error at x and equal to zero at each x;. That polynomial is

(t—az0)(t—x1) - (t—xp)
(x —zo)(x — 1) (T —Tp)

A(t) = [Pn(z) — f(z)]

Crumpet 19: A

A is the (capital) eleventh letter of the Greek alphabet and is pronounced lam-duh. The lower case version, A,
appears much more commonly in mathematics and often represents an eigenvalue.

Subtracting this polynomial from the error, e(t) = P, (t) — f(t), we have a function,

that is zero for all t = zg, x1,...,Zn, z. Since ¢,¢',...,¢"™ are all continuous on [a,b] and gt exists on (a,b),
by Generalized Rolle’s Theorem, there is a value &, € (a,b) such that g(*+1)(¢,) = 0. On the other hand,
g"IE) = M (g) — AT

P () = frD (&) — ATTD(E),

and P, is a polynomial of degree at most n. Hence, P7(l"+1)(t) = 0 for all ¢ and we have g("t1(&,) = —f(+D(g,) —
A (€,) = 0. Tt follows that
FD(E) = —ATTI(E).



3.2. LAGRANGE POLYNOMIALS 91

But, A is a polynomial of degree n + 1 in ¢, so its (n + 1)*¢ derivative with respect to ¢ is constant with respect to
t. We write A as

Py (z) — f(z)
At) = tn+1+bntn++bt0
®) (m—xo)(x—xl)-~-(x—xn)[ o]
for some constants b,,b,_1, ..., by, and consequently,
A (1) = “(n+ 1)
®) (z—zo)(x—21) (T — xp) ( )
and we have, by substitution,
- P
PRI p—— L e ) ]

(x—xmo)(x—21) (T — xp)

or, equivalently,
Fr(E)

(n+1)! (x—zo)(x—21) - (x — ) = f(x) — Py(x)

as desired.
Figure 3.2.1 shows interpolating polynomials for three different functions. The z-coordinates of the prescribed
points are the same for each interpolating polynomial. The z-coordinates are

0,.1951846177977887,.3554400571592862, .4823905248516196, .9138095996128959, and 1.

The four numbers between 0 and 1 were selected by a random number generator. The interpolating polynomial
closely resembles the function only in the first case. The sixth derivative of f helps explain why.
Our error term,
9
6!

(x —x0)(x — 1)+ (& —w5)
implies that the sixth derivative of f and the polynomial h(z) = 2=25) determine how much f and
L will differ. By bounding both | f (6)| and |h| over the interval [0, 1], we can get a bound on the difference between
f and Lg. The graphs of f( are shown in Figure 3.2.1. The graph of h is

(z—z0)(xz—21)"(
6!

2.5e-06
2e-06
1.5e-06
le-06

5e-07

-5e-07

-le-06

0 0.2 0.4 0.6 0.8 1

80 maxgeo,1) |h(x)| occurs around 0.75. We can use a root-finding method applied to A’ to find that the maximum
of |h| is approximately h(.7409254943919) ~ 2.506891519629(10) ¢, a relatively small number. On the other hand,
for f(z) = (@ +D?) we find max e, [f(O(2)| & fO(6777170541644) ~ 44013.74605321, a relatively large
number. Their product,

h(z)] - ’ (6) ‘%.117
xrg[%ﬁ]l ()] max (@)

gives a bound on the error. The absolute furthest Lg can be from f over the interval [0, 1] is 0.11, a relatively small
number. The actual error is considerably smaller, so can barely be noticed in the top left graph of Figure 3.2.1.



92

CHAPTER 3. INTERPOLATION

Figure 3.2.1: Three interpolating functions. From top to bottom,

esm((z“)z), sin (e(”“rl)z), and a fractal function

as defined in section 3.1. f is shown in black and the interpolant, Lg, in red.

f(z) and Le(x)

fO(z)

40000
30000
20000
10000

-10000
-20000
-30000
-40000

8e+13
6e+13
4e+13
2e+13

-2e+13
-4e+13
-6e+13
-8e+13

Undefined



3.2. LAGRANGE POLYNOMIALS 93

For f(z) = sin <e<z+1>2), we find max,cpo 1 |FO ()] ~ FO(1) ~ 8.552147927657737(10)'3, a relatively large
number. This time the product,

max_|h(z)] - max ‘ f(6)(:1:)‘ ~ 2.1439307114460004(10)%,
z€[0,1] z€[0,1]

is a huge number relative to the values of f. So the theoretical error bound does not predict good results for
this interpolation. In fact, it suggests that the interpolation could have been much, much worse! Lg might have
differed from f by over 2 million, a fact that should be worrisome considering f takes values between —1 and 1. An
approximation that is off by even 1 is completely useless for this particular f. As it is, we should not be surprised
that Lg is not a good approximation of f since the error term can be quite large. Nonetheless, the method is sound.
Failure to approximate f well should not be seen as a flaw in the method, but rather a flaw in its application. If
we really wanted to approximate f well, we would need to find a different set of points over which to interpolate.

For the fractal function in the bottom left of Figure 3.2.1, our error estimate is entirely irrelevant. The sixth
derivative of f does not exist. In fact, even the first derivative of f does not exist. We have no way to estimate
the error except to look at the graphs. And as we see, Lg again does a very poor job of approximating f. Failure,
again, should not be seen as a flaw in the method, but rather in its application. Approximating a function with an
interpolating polynomial presumes that the function has sufficient derivatives.

Crumpet 20: Bernstein polynomials

Suppose f is a continuous function on the interval [0, 1], and define the polynomial

Bn(z) = i (Z) f (;) (1—2)"", n=123,...

v=0
Then
lim B, (z) = f(z)
n— oo

uniformly. That is, lim, . max{|B,(z) — f(z)| : « € [0,1]} = 0. The B, are Bernstein polynomials. Shown
below are B4, B2, Bioo, and Bsoo for the fractal function in figure 3.2.1.

An application of interpolating polynomials

Again we find ourselves connecting the content of the previous chapter with that of the current. The secant method
is actually an application of interpolating polynomials to root-finding. The secant line whose slope is used to



94 CHAPTER 3. INTERPOLATION

calculate any given iteration can be viewed as an interpolating line! It passes through two points lying on g. Hence,
it is an approximation of g.

Having taken this point of view, we can now imagine generalizing the method by using the derivative of a higher
degree interpolating polynomial to approximate ¢’ at each step. Such a generalized method, which we will call
Sidi’s k' degree method [30], is summarized by the formula

9(wn)

Tyl = Ty — ———
" " pilk(xn)

where p,, i, is the interpolating polynomial passing through the points

(xn,g(xn)), (xnflag(xnfl)% B (mn,k,g(l‘n,k)).

When k£ = 1, this is exactly the secant method. When k& = 2, this method uses the same parabola as does Miiller’s
method, but in a different way. In Miiller’s method, the next iteration is found by locating a root of the interpolating
polynomial. In this method, the next iteration is found by locating a root of a tangent line to the interpolating
polynomial.

As k increases, more initial values are needed, but the order of convergence increases as a benefit. Letting ay
be the order of convergence of Sidi’s k" degree method, we have a; = 1+T\/5
the secant method, and

~ 1.618, the order of convergence of

s ~ 1.839, as ~ 1.928, ay ~ 1.966.

For any k, Sidi’s method has an order of convergence less than 2 (the order of convergence of Newton’s method)
but it approaches 2 as k increases.

At this point, you might wonder just how practical such a method might be. After all, calculating a new
Lagrange interpolating polynomial and evaluating its derivative at each step can be a cumbersome process. We will
take up this issue in the next section.

Neville’s Method

The Lagrange form of an interpolating polynomial is as convenient as it gets for a human. With a little care and
patience, it is possible to write down such a polynomial without even the aid of a calculator. However, adding
points to the interpolation and evaluating the polynomial for non-interpolated points can be cumbersome tasks.
Consider a simple example: the polynomial interpolating f(z) =e* at x =0,1,2:
-1 -2 -0 -2 —1
Lo(r) = @-D(@=2) o, @E-0@=2), z—1)
0-D0-2° " a-0-2° " @-0e-1
(x — 1)2(33 -2) n x(x I 2)e . Jc(x2— 1)62.

Evaluating Lo(1.5), for example, requires either

1. computing the values of the three separate terms, each a quadratic polynomial, and adding:

15-1)(1.5—2) 1.5(1.5—-2 1.5(1.5 -1
Ly(15) = ( )2( )+ (_1 )e+ ( 5 ) 2
—.125 + .75e 4 .375¢2

4.684607408443278

or

2. the unpleasant business of simplifying Ly into a simpler form and then evaluating:

(x—1)(z—2) n x(w—2)6+ az:(x—l)e2

L =
2(7) 9 1 9

1 2
= i(xz — 3z +2) —e(x? —22) + %(xz —x)

1 2 3 2
= <2—e+62)x2+<—2+2e—62>m+1

1.4762462210062822 + 0.2420356074527652 + 1
so Ly(1.5) ~ 1.47624622100628(1.5)% + 0.242035607452765(1.5) + 1 = 4.684607408443277.

Q



3.2. LAGRANGE POLYNOMIALS 95

Method 2 is better if you have more points at which to evaluate, and method 1 is better if you plan to add points
of interpolation. However, neither method is particularly convenient. Even less convenient than evaluating the
polynomial is the task of requiring another point of interpolation. Previous work is of limited use. And we haven’t
even begun to discuss the trouble of writing a computer program to automate the calculations. Neville’s method
can be used to overcome these limitations when the value of the polynomial at a specific point is required.

Neville’s method is based on the observation that interpolating polynomials can be constructed recursively.
Suppose Py ; is the polynomial of degree at most [ interpolating the data

(@r, f(7x)), (Trrr, F(@ra1))s - o5 (T, f(@r41))-

Then, by definition, Fy , is the polynomial of degree at most n interpolating the data

(wo, f(x0)), (w1, f(21)), .-+ (@0, f2n))-

Moreover, Py , can be computed using the recursive formula

P ({E) — (.17 — xi+m+1)Pi,m(l') - (fE — :L.Z')Pi+1’m(m)
R T — Ti+m+1

Pi’o(x) = f(:L‘i)7 1= O, sy n. (324)

This claim can be checked by noting five things:

1. P, is the degree 0 polynomial interpolating the one datum (x;, f(z;)).
2. P, and P;41 ,, are polynomials of degree at most m, so P; ;.41 is a polynomial of degree at most m + 1.

Ti— Ty P (x;
3. Pi,m+1(xi) = ( ! z+m+1) Z7m( Z) = Pl,m(ZIJZ) = f(ZIJZ)
Tj — Ti+m+1

4. Forany j=4+1,...,74+m,

(xj — xi-&-m-&-l)Pi,m(xj) - ('rj — 'ri)Pi—i-lﬂn(xj)
Ti — Titm+1
() — @igm+1) [ (@5) — (zj — @) f(z;)
Ti — Titm+1
f(25) (%5 — igmy1) — (25 — 23]
Ti — Titm+1

Pimyi(zy) =

= f(=)).

—(Zitm+1 — i) Piv1,m (Titm+1)

5 Pimt1(Tigme1) = = Piv1m(@itmt1) = f(@ixme1)-

Ti — Ti4+m+1
A rigorous proof by induction on m, requested in the exercises, should follow closely these notes. Points 1
and 2 establish that P ; has degree at most I. Points 3 through 5 establish that Py ; interpolates the points
(zk, f(xk))s @rg1, f(@r11))s - -, (Xkt1s f(2h41)). Formula 3.2.4 succinctly summarizes Neville’s method.
While Neville’s method (formula 3.2.4) can be used to find formulas for interpolating polynomials as in

(I — xl)P070(x) — (x — l‘O)Pl,O(-'L')
o — T1
Tr — X

Po,l(.%‘)

= 2™ @)+

Lo — L1 Ty — Zo

f(‘rl)a

it is normally used to find the value of an interpolating polynomial at a specific point. We earlier determined that
Lo(1.5) = 4.684607408443277 for the polynomial, Lo(x), interpolating f(z) = e* at z = 0,1,2. We now find this
value using Neville’s method. Py (1.5) = f(0) =1, P1,0(1.5) = f(1) =~ 2.718281828459045, and P ¢(1.5) = f(2) =



96 CHAPTER 3. INTERPOLATION

Table 3.2: Neville’s method example, calculating Py 2(1.5).

Ts P;o= f(z;) P; 1 P s

0 1 3.577422742688568  4.684607408443278
1 2.718281828459045 5.053668963694848

2 7.38905609893065

7.38905609893065. So
(15 - $1>P0,0(1.5> - (15 - .I'())Pl’o(l.f))

Py1(15) =
o — I
(15— 1)(1) — (L5 — 0)(2.718281828459045)
N 0—1
R 3.077422742688568
1.5 —x9) P 9(1.5) — (1.5 — x1) P2 9(1.5
Pa(l5) = ( 2)P1o(1.5) — ( 1) P20(1.5)
X1 — Ig
(1.5 — 2)(2.718281828459045) — (1.5 — 1)(7.38905609893065)

1-2
~ 5.053668963694848
(15 — $2>P0,1(1.5> — (15 — LL'())PLl(l.E))

Py2(15) =
Zo — T2
_ (1.5 — 2)(3.577422742688568) — (1.5 — 0)(5.053668963694848)
- 0—2
~ 4.684607408443278.

A tabulation of the computation may make it easier to internalize the recursion and imagine how this process might
be automated. Table 3.2 shows such a tabulation. The use of this recursive formula may be more difficult than
direct computation for a human being, but for a computer, using the recursion is much quicker and simpler as
evidenced by a look at the pseudo-code.

Assumptions: P,(x) is the degree at most n polynomial interpolating the data

(o, f(20)), (1, f(21)), -+ (2ns [ (2n))

and the value P, (%) is desired.
Input: Value &; abscissas zg, 21, .. ., Zy; ordinates f(xg), f(x1),..., f(xn).
Step 1: For i =0...n do Step 2:
Step 2: Set P, o = f(x;);
Step 3: For j =1...n do Steps 4-5:
Step 4: Fori =0...n— j do Step 5:
Step 5: Set P, ; = (=i ) Pij1—(@—2i) Pigr,j1

Ti—Titj

Output: Table of values, P. P, holds the desired value, L, (Z).

Uniqueness

There are some subtleties we have thus far glossed over. When we introduced the Lagrange form, we casually stated
“Ly, is called the Lagrange form of P,”, implying that the Lagrange form gives the interpolating polynomial of least
degree (since P, is defined as such)! This fact is far from obvious. Nonetheless, we went on as if it were obvious that
L,, and P,, were one and the same polynomial. Worse yet, when we came around to discussing Neville’s method,
we calculated Py 2(1.5) and compared it to L2(1.5) from earlier with the implication that they should be the same,
again as if it were simply given that Py and Lo should be the same polynomial. The following result shows that
our blind faith that P,, L,, and Py, amount to different names for the same object was not misplaced (by virtue
of the fact that they all interpolate the same data and have degree at most n).



3.2. LAGRANGE POLYNOMIALS 97

Theorem 7. The polynomial, P,, of least degree interpolating the data (xo,y0), (x1,Y1),-- -, (Tn,yn) exists and is
unique. Moreover, any interpolating polynomial of degree at most n is equal to P,.

Proof. By construction, L, interpolates the data. Moreover, the degree of L,, is at most n since it is the sum of
polynomials p; each with degree exactly n. Thus P, exists and has degree at most n [at this point, we must
admit that the degree of P, may be less than that of L,]. Now suppose ¢ is any polynomial interpolating
(xo,v0), (x1,Y1)s -+, (Tn,Yn) with degree n or less. Then the polynomial f = P, — ¢ also has degree n or less.
Moreover, f(z;) = Py(x;) — q(x;) =y; —y; =0 for all i —0,...,n. Thus f has n + 1 roots. Alas, the only way f
can have n + 1 roots and have degree n or less is if f is identically 0. Hence, f(z) = P,(x) — q(x) = 0, implying
P, (x) = g(x) for all . O

Key Concepts
Interpolating function: A function whose graph is required to pass through a set of prescribed points.

Interpolating polynomial: A polynomial whose graph is required to pass through a set of prescribed points.

Interpolating polynomial of least degree: The polynomial of least degree interpolating a given set of n 4+ 1
data points is unique. We denote this polynomial by P,.

Interpolating polynomial of degree at most n: The polynomial interpolating n + 1 distinct points has degree
at most n and is equal to the polynomial of least degree interpolating the points.

Generalized Rolle’s theorem: Suppose that f has n derivatives on (a,b) and f, f/, f”,..., f=1 are all contin-
uous on [z, zy]. If f(xo) = f(x1) = -+ = f(ay,) for some xg < 21 < --+ < xp, then there exists £ € (a,b)
such that £ (&) = 0.

Lagrange form of an interpolating polynomial: The Lagrange form, L,,, of the polynomial of degree at most

n interpolating the points (xo,yo), (€1,¥1), .., (Tn,Yn) is given by the formula
— pi(z)
Ly (z) = - Yi,
(@) ; pi(z:) !

where p;(z) = H(x —xzj)=(x—x) - (r—zim1) (T — zig1) - (& — xp).

o

j=

J#i

Interpolation error: For P,, the interpolating polynomial of least degree passing through the n 4+ 1 points
(0,90), (1,Y1), -+, (Tn,Yn), there is a value &, € (a,b) such that

<.

FO(E,)
f(z) = Pa(2) = m(m —xo)(x — 1) - (T — 2p),
assuming f has n + 1 derivatives on (a,b) and f, ', f”,..., f are all continuous on [a,b], and where
a = min(zg, ..., Ty, z) and b = max(xg, ..., Tn, ).

Sidi’s method: A root-finding method summarized by the formula

GO
p;%k(ﬂfn)

where p,, i is the interpolating polynomial passing through the points

(mm f(xn))7 (ajnfb f(xnfl))’ ) ('Tnfka f(l’nfk))

Neville’s method: A method for computing the interpolating polynomial of least degree or values of it based on
the recursive relation

Tn41 = Tp —

(x — $i+m+1)Pi,m(9€) - (ﬂlj — xi)PiJrl,m(fU)
Tj — Ti+m+1

Pi7m+1(x) =

Pio(z) = f(xi)

where Py ; is the polynomial of least degree interpolating the data

(g, f(2x)), (Trrrs [(@ra1))s - o5 (Tt f(@41))-



98

CHAPTER 3. INTERPOLATION

Exercises

1. Write down the Lagrange interpolating polynomial
passing through (1,2), (1.5, —0.83), and (2.11,—1).

2. Find a polynomial that passes through the four points
(0,0), (1,2), (4,-3), and (10,—1).

3. Construct the (at most) quadratic Lagrange Polyno-
mial interpolating the data.

(a) (1,1), (2,1), and (3,2)

(b) (0,10), (30,58), (1029, —32)

(¢) (—10,10), (20,58), (1019, —32) [
)

(d

4. Suppose the data from question 3 were taken from an
appropriately differentiable function f. Use the inter-
polating polynomial you found in question 3 to estimate

f(1.3).

5. Find the estimate in question 4 using Neville’s method.
(s]

6. Given the following data for f(x), approximate f(0.3)
using an interpolating polynomial of degree at most

1
(b) 2
(c) 3

z | 0 1 2 3
f(z) ] 0.8 07 075 0.5

7. Given the following data for f(z), approximate f(3)
using an interpolating polynomial of degree at most (5]

(a) 1
(b) 2
(c) 3
x | 2 35 4 5
f(z) ] 0.8 07 075 0.5
8. Use interpolating polynomials of degrees one, two,

and three to approximate each of the following:

(a) £(0.43) if £(0) = 1, £(0.25) = 1.64872, £(0.5) =
2.71828, £(0.75) = 4.48169.
(b) £(0.18) if f(0.1) = —0.29004986, f(0.2)

—0.56079734, £(0.3) = —0.81401972, f(0.4)
—1.0526302. [

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

(c) f(2.26) if f(1) = 1.654, f(1.5) = —2.569, f(2) =
—1.329, f(2.5) = 1.776. F!

(d) f£(11.26) if f(10) = —0.7865, f(11) = —1.2352,
f(12) = —0.8765, f(13) = 0.0021.

Let zo = 1, x1 = 1.25, and z2 = 1.6. Using data
at these x;, construct interpolating polynomials of de-
grees at most one and at most two and use them to
approximate f(1.4). Find the absolute errors.

(a) f(z)=sinwz

(b) flx)= Vo -1
(c) fla)=e*""
(d) f(z) = In(10z)

Use formula 3.2.3 to find theoretical error bounds for
the approximations in question 9. Compare the bound
to the actual error. !

A Lagrange interpolating polynomial is constructed for
the function f(x) = (v/2)* using zo = 0, z;1 = 1,
z2 = 2, zg3 = 3. It is used to approximate f(1.5).
Find a bound on the error in this approximation.

Find the polynomial referred to in question 11. Then

(a) use the polynomial to approximate f(1.5); and

(b) calculate the actual error of this approximation,
and compare it to the bound you calculated in
question 11.

Use Neville’s method to find the approximation in
question 11.

The height of a model rocket is given at several times
in the following table. Approximate the height of the
rocket at time t = 0.6 sec using at least two different
sets of points. Comment on which approximation is
likely most accurate.

Time (sec) ‘ Height (ft)

0.53238 30.0534
0.56040 32.7929
0.58842 35.4956
0.61644 38.1575

The following table results from using Neville’s method
to approximate f(0.4).

0 1 26 Do 3.016
025 2 Py 2.96

05 Py 24

075 8

Determine f(0.5). ]
Li(z) = =72 4 572® — 134z + 78 is the degree (at
most) 3 interpolating polynomial for the data in the
table. Find w.

x| 05 0.8 w 1.4

y | 24375 3.696 0 —17.088

Let P3(z) be the interpolating polynomial for the data
(0,0), (0.5,y), (1,3), (2,2). Find y if the coefficient of
23 in P3(z) is 6.

Let f(x) = vz —x? and P:(z) be the interpolating
polynomial on 9 = 0, 1, and z2 = 1. Find the largest
value of 1 in (0, 1) for which f(0.5) — P»(0.5) = —0.25.



3.2. LAGRANGE POLYNOMIALS 99
19. The interpolating polynomial on n + 1 points does not Find
always have degree n. It has degree at most n. Plot the lim P,(1).
data (1,1), (2,3), (3,5), and (4,7), and make a conjec- n—eo
ture as to the degree of the polynomial interpolating [A]
these four points. What led you to your conjecture?
- . . 22. Let f(z) = e~®. Two different numbers are chosen at
20. Use Nev.llle s method .to find the polynomial described random from the interval [0, 1], say o and z1. Then
in question 19. Does it have the degree you expected? the points (zo, f(z0)) and (z1, f(z1)) are used to get a
21. Let linear Lagrange interpolation approximation to f over

z; = 1——— forj=0,1,2,...
J i1 J
f(z) = 54 32°"%
P,(z) = the interpolating polynomial

passing through
(xo, f(wo)), ey (.Tn, f(a:n))

23.

the interval [0, 1]. Find a bound (good for the entire in-
terval and every pair of points zg and z1) for the error
in using this approximation.

Supply the inductive proof that Py, is the poly-
nomial of degree at most n interpolating the data

(zo, f(z0)), (z1, f(x1)),..., (@n, f(xzn)). See notes on
page 95.



100 CHAPTER 3. INTERPOLATION

3.3 Newton Polynomials

In this section, we are interested in an efficient automated process for calculating interpolating polynomials. The
Lagrange form of an interpolating polynomial is best suited for pencil and paper calculations, not computer au-
tomation. Neville’s method is well suited for computing the value of an interpolating polynomial at a particular
point, not calculation of the polynomial itself. True, Neville’s method can be used to calculate the interpolating
polynomials themselves, but it lends itself to this task no better than the Lagrange form. Presently, we will discover
how the same recursive formula used in Neville’s method is used to derive a very efficient, computer-friendly method
for calculating interpolating polynomials themselves. The result of the computation is a set of coefficients for the
Newton form of a polynomial.
Suppose we have already computed the polynomial N, (z) interpolating the data

(x07 f(xO))v (xlv f(ml))v SRR (:En, f(xn))

We now wish to compute the polynomial N,,11(z) interpolating the data

(.To, f(xo))’ (xlv f(xl))’ SERE) (xn-l-lv f(xn+1))7

and we would like to recycle the work we have already done (much the same way we could add a point of interpolation
in Neville’s method and reuse all previous work)! One way to attack the problem is to find a polynomial ¢(z) such
that

Npy1(z) = No(x) + q(z).
If the attack is to be successful, we must have g(z) = N,yi1(z) — N,(z) for all z, and, in particular, ¢(z;) =
Nyyi(zj) — Nu(zj) for j =0,1,...,n+ 1. But Npji(z;) — No(z;) = f(z;) — f(z;) =0 for j =0,1,...,n, and
Npt1(Znt1) — No(@py1) = ($n+1) Ny (2p41). In other words, we seek the polynomial ¢ interpolating the points

(.’Eo, 0); (xla O), ey (xna 0)7 (anrla (f - Nn)(xn+1))
Ironically, this is a job for the Lagrange form:

) (@ — @)
(Tpt1 —20) - (Tny1 — Tn)
(f = No)(@nt1)

N (Tn41 — x0) -+ (Tpy1 — Tp) ( —x0) -~ (x = ap). (3.3.1)

(xz — xo

q(z) = (f = No)(@nt1)

But (fan)(In-Pl)

G —mo) (o y—z.y 18 just a constant, so we replace it by an41 so that we have q(z) = anp1(x—x0) - (x—2p).

(f_Nn)(xn+1)
Tn41—20) (Tpng1—Tn)’
see shortly. We can also learn from the upcoming computation the most convenient form for N,,.

When n = 0, ¢ has the form a;(z — z¢); when n = 1, ¢ has the form as(z — xo)(x — x1); when n = 2, ¢ has
the form as(x — xo)(x — z1)(x — x2); and so on. Of course Ng(z) = ag is constant since it is the interpolating
polynomial of least degree passing through a single point. So Nyi(z) = No(x) + a1(x — x¢) immediately takes the
form ap + a1(x — zg); Na(z) immediately takes the form ag + a1 (z — xo) + a2(x — zo)(z — x1); N3(x) immediately
takes the form ag + a1 (z — zo) + az(z — xo)(x — x1) + az(z — xo)(z — x1)(z — z2); and so on. This would suggest
that the most convenient form for NV, 1, the one that requires no simplification, is

Of course we can calculate a,41 using the formula 0 but there is a better way, which we will

Npt1(x) = ap +a1(z — xo) + ag(x —x0)(@ — 1) + -+ + anp1(z — o) - - (x — xp). (3.3.2)

Given in this form, the unknown quantity, a, 11, appears as the coefficient of the "1 term. Consequently, a,, ;1 is
potentially the leading coefficient of N, 11. If a,,41 were zero, then we would not call it the leading coefficient. We
will facilitate the rest of this discussion by introducing the following term. For an interpolating polynomial on k4 1
points, the coefficient of its #* term is called its potential leading coefficient (even if it happens to be zero).
Since this potential leading coefficient is the crux of our problem, we focus attention on determining the potential
leading coefficient of any interpolating polynomial.

Here is where the recursive formula

(T = Tiymy1) Piom () — (2 — 20) Py m ()
Tj — Ti+m+1

Pi,erl(x) =
Pio(z) = flzi)



3.3. NEWTON POLYNOMIALS 101

used in devising Neville’s method comes in handy. In as much as P;,, and P41, both have degree at most m,
their potential leading coefficients are the coefficients of their 2™ terms. It follows that the coefficient of the ™!
term of (z — Ziym+1)Pim(x) equals the potential leading coefficient of P; ,,(x), and, similarly, the coefficient of
the 2™+ term of (z — ;) Piy1,m equals the potential leading coefficient of P, 1 ,,. Therefore, the coefficient of the
2™ term of (z — Tigm+1) Pim(x) — (x — 1) Piy1 m(2) is the difference of the potential leading coefficients of P,
and P; 1. To simplify the discussion, we use the notation f; ; for the potential leading coefficient of P; ;. Now the
coefficient of the ™+ term of (z — i1 mi1) Prm(x) — (z — ;) Pig1.m() 18 just fi m — fit1,m. Hence, the potential
leading coefficient f; 41 of P; 11 (the coefficient of the 2™ term of P; pny1) is given by

fi,m - fi 1,m
fi7m+1 = ﬁ (333)

fi,o = f(ﬂCz‘)-

Crumpet 21: DividedDifferences

While we choose to use the notation f; ; for the potential leading coefficient of P; ;, it is much more customary
to use the expanded notation f[z;,zit1,...,xi+;] for this quantity, and to call it a 4t divided difference.

Finally, we have a formula for the potential leading coefficient that recycles previous calculations. Since N, 41
and Py 11 interpolate the same set of points and both have degree at most n + 1, they are equal by theorem

7. Therefore, their potential leading coefficients, a,1 and fy 41 are equal. By recursion 3.3.3, we then have

— — f(),n_fl,n
Unt1 = font1 = o000

It can not be stressed enough that we have not discovered a new polynomial. We have only discovered a new
way to calculate the same old interpolating polynomials. N, L,, and Fp, all interpolate the same data and all
have degree at most n. They are, therefore, equal by theorem 7. Just the forms in which they are written possibly
differ. The polynomial form in equation 3.3.2 is called the Newton form.

Crumpet 22: Newton Polynomials

Typically, the Newton form and divided differences are presented completely independent of Neville’s recursive
formula, an approach that takes considerably more work to develop. There are reasons to do so, however. Refrain-
ing from the use of Neville’s formula follows more closely the historical development of the subject since Newton
(1643-1727) preceded Neville (1889-1961) by over 200 years! Moreover, following the historical development more
naturally leads to further study of divided differences.

As an example, take the polynomial interpolating f(x) = e* at z = 0, 1, 2, as we did in the discussion of Neville’s
method on page 94. fo0 = f(0) =1, f10 = f(1) ~ 2.718281828459045, and fo o = f(2) ~ 7.38905609893065. So

foo—fio 1—2.718281828459045

fO,l o Tro — 1 B 0—1
~ 1.718281828459045
_ Ji0— fao  2.718281828459045 — 7.38905609893065
f171 - Ir1 — T2 B 1—-2
~ 4.670774270471606
fon = Joa— fi1  1.718281828459045 — 4.670774270471606

Tro — T2 0-2
~ 1.47624622100628.



102 CHAPTER 3. INTERPOLATION

Table 3.3: Newton form example, calculating No(x).

T fio = f(x:) fia fio

0 1 1.718281828459045 1.47624622100628
1 2.718281828459045 4.670774270471606

2 7.38905609893065

Therefore, No(z) = 1+1.718281828459045(x) +1.47624622100628(x)(x —1). fo,; are the coefficients of N,,. Though
this computation is manageable without a table, it is most convenient to tabulate the values of f; ; as they are
computed (just as is the case for Neville’s method). This is true for both humans and computers! A tabulation
of the computation makes it easier to internalize the recursion and imagine how this process might be automated.
Table 3.3, which is called a table of divided differences (or divided difference table), shows such a tabulation. Adding
a data point to the interpolation is as easy as computing another diagonal of coefficients (just like Neville’s method).

Sidi’s Method

We now return attention to Sidi’s k*" degree root-finding method,

g(wn)

Tptl = Tp — -
n+ n p;hk(xn)’

where p,, i is the interpolating polynomial passing through the points

(xn,g(:cn)), (xn—la g(gjn—l))a EERE) (zn—ka g(l'n,—k))~

In its Newton form,

pn,k(z) = gn,O + gn—l,l(x - xn) + gn—2,2($ - $n)(l’ - xn—l) + -+ gn—k,k(x - xn) et (z - xn—k)a

S0
p;L,k(xn) =Ggn-11*1 gn—2,2($n - xn—l) + 4+ gn—k,k(xn - xn—l) T (mn - xn—k)- (3-3-4)
In particular,
Pr2(®n) = gn-11+ (Tn — Tn_1)gn-22
and
p;z,S(‘rn) =gn-11+ (Tn —Tn-1)gn-22+ (Tn — Tn_1)(Tn — Tn_2)gn-33

and so on. As a nested product,

p;z,k(xn) = gn—11+ (¥n — Tn-1) [gn—22 + (¥n — Tn—2) [ -+ (@n — Tn—k) [gn—rk] -~ ]]-
The nested form is particularly efficient for implementation.

Assumptions: g is k times differentiable.

Input: Initial values x¢,21,...,x; diagonal entries g0, 9%—1,1,.-., 90,k of the divided difference table for
g.
Step 1: Set s = go x;
Step 2: Fori=1,2,...,k—1 do Step 3:
Step 3: Set s = (zr — i)S + Gi k—i;
Step 4: Set xp4+1 = ) — gk—’o;
s
Output: Approximation zj41.

While this pseudo-code is good as far as it goes, it is far from complete. The most obvious deficiency is that it only
executes one step of Sidi’s method. A less obvious deficiency is that its input and output do not match in type or
quantity, so at the end of the routine, the computer is still not ready to compute another iteration. What we get
from this routine is x;;. What we need to run it again are the two arrays zo, z1,...,Tr and gr,0, gk—1,1,- - -, 90,k
In order to prepare these arrays for the next iteration, we must re-index the values of z; and then compute new
values for the g; ;.



3.3. NEWTON POLYNOMIALS 103

Assumptions: g is k times differentiable.

Input: Initial values xg,1,...,x;; diagonal entries g 0,9k—1,1,---,90,k of the divided difference table for
g.
Step 1: Set x41 according to Sidi’s method applied to xg,x1,. ..,z and gx,0, Gk—1,15-- - 90,k;

Step 2: Set gr+1,0 = 9(Tht1);
Step 3: Fori =k, k—1,...,1 do Step 4:
Step 4: Set g; k41— = M7
Tk41 — T4
Output: Approximations z1,..., 2,41 and corresponding diagonal entries gx+1,0, gk,1, - - - » g1,% of the divided
difference table for g.

This new pseudo-code, which utilizes the previous pseudo-code in its first step is an improvement. Now the input
and output match in type and quantity, meaning the output of this routine may be used as input for the next
iteration. However, this routine still only calculates one step of Sidi’s method. Moreover, we have been ignoring
another issue. Each of the routines spelled out in pseudo-code so far assume we have the diagonal entries of the
corresponding divided difference table. It is not good practice to make the user of the code worry about this detail.
The routine we write should supply these values. After all, the end-user, the person trying to find a root of a
function, will only have immediate access to the function and some number of initial values. The routine must
supply the rest. Finally, we present pseudo-code in the spirit of other root-finding methods.

Assumptions: g has a root at &; g is k times differentiable; xg, x1, ..., ) are sufficiently close to Z.
Input: Initial values xg,x1,...,xx; function g; desired accuracy tol; maximum number of iterations N.
Step 1: For ¢ =0,1,...,k do Step 2:

Step 2: Set g;0 = g(x:);
Step 3: For j =1,2,...,k do Steps 4-5:

Step 4: Fori=0,1,...,k — j do Step 5:
Step 5: Set g; j = Jit1,j—-1 = Gij—1
Titj — T4
Step 6: For: =1... N do Steps 7-11:

Step 7: Compute z = 1 according to Sidi’s method applied to
20, %1, -+, &k and Gk.05 Gk—1,15- - - 90 k3
Step 8: If |z — x| < tol then return z;

Step 9: Compute gx+1,0, gk, 15 - - - 91,k

Step 10: Set xg = x1; x1 = X2} -+ + Tp_1 = T Tk = T;

Step 11: Set gk.0 = gk+1,05 Gk—1,1 = Gk,15 *** Jo.k = G1k;
Step 12: Print “Method failed. Maximum iterations exceeded.”

Output: Approximation x near exact fixed point, or message of failure.

As complete as this latest pseudo-code is, it leaves one item unaddressed. It requires k initial values to run Sidi’s k"
degree method. When we encountered the secant method, we noted that needing two initial values as opposed to
one was a disadvantage. The disadvantage is only magnified in Sidi’s method where k+ 1 initial values are required.
However, just as with the secant method, we can automatically generate initial values if needed. If Sidi’s method is
given one initial value, xo, and we are trying to find a root of the function g, then we can set x1 = z¢ + g(zo) just
as we did for the secant method. You may recall, this was not particularly successful, however. The secant method
often failed to converge with this selection of initial condition.

Much less is known about Sidi’s method and how the selection of intial values affects convergence. It might
make an interesting project to analyze good and bad practices for selecting initial values. In any case, if you have

initial values xg, z1,...,z; with 1 < j < k, the remaining k 4+ 1 — j intial values can be found using Sidi’s method
of degree j (on xg,x1,...,x;) to get z,11 followed by using Sidi’s method of degree j+ 1 (on zg,z1,...,2;41) to
get xj4o followed by using Sidi’s method of degree j + 2 (on xg,x1,...,Z;j42) to get =;13, and so on until z; is

computed.



104 CHAPTER 3. INTERPOLATION

More divided differences

Divided difference tables are generally computed for the sake of finding coefficients for one interpolating polynomial,
and one interpolating polynomial only. However, each table of divided differences is rife with representations of
interpolating polynomials. One of the strengths of a divided difference table is that its entries may be reused should
more data be added. This same property can be thought of in reverse. Suppose you have a divided difference table
computed over 4 data values but you are only interested in an at-most-degree-2 interpolating polynomial. The
divided difference table

o | foo for Sfo2 fo3
1 | fio Sfi1 fie2

T2 f2,0 f2,1

r3 | f30

actually gives us two different at-most-quadratic interpolating polynomials with four representations for each! First,
the table was devised to compute the interpolating polynomial

P3(x) = fo,0 + fo1(z — 20) + fo2(z — wo)(z — x1) + foz(z — 20) (2 — 21)(x — 22).

Notice that if we simply truncate the fo 3(z — z¢)(z — x1)(z — z2) term, we still have an interpolating polynomial
with nodes g, z1, z2. We can support this claim in at least two ways. First, the term fo 3(x — zo)(z — 21)(x — z2)
is 0 at xg,x1,x2 so it does not contribute to the interpolation at the nodes xg,x1,x2. Second, we can “reverse
engineer” the table, simply erasing the bottom-most diagonal. The remaining table is still a legitimate divided
difference table since none of the remaining entries depends on any of the erased entries:

Zo fo,o f0,1 f0,2
1 f1,0 f1,1

T2 | f20

So
Py(z) = fo,o + fo1(x — x0) + fo2(x — xo)(x — 1)

is one of the degree at most 2 interpolating polynomials. Erasing the top row of the table also leaves a legitimate
divided difference table:

€ f170 f1,1 f1,2
) f2,0 f2,1
€3 f3,0

SO
Q2(7) = fro+ fia(e —21) + fi2(z — z1)(z — 22)

is another degree at most 2 interpolating polynomial. Notice that P» and Q)2 are not just different representations
of the same polynomial. They are two different polynomials! P, interpolates over the nodes xg,z1, s while Q2
interpolates over the nodes z1, x2, 3.

The bottom diagonals of each truncated table give degree at most 2 interpolating polynomials as well. Remember,
fi,; represents the potential leading coefficient of the interpolating polynomial over the nodes x;, Tiy1,. .., ZTitj-
Hence, ~

Q2(z) = fz0+ fa1(x — 23) + fr2(z — z3) (7 — x2)

interpolates over the nodes x3,rs,x; and

152(35) = foo+ fi1(z —x2) + foo(x — x2)(x — 21)

interpolates over the nodes 9,1, 9. These are not new polynomials. These are new representations for P, and
Q2. Actually, Py = Py and Q2 = Qo.

The critical feature of each of these interpolating polynomial representations is that each successive coefficient
depends on all the same nodes as its predecessor, plus one new one. For example, fo depends on x, f1,1 depends
on x5 and z;, and fp2 depends on x3, x1, and zy. Hence, these three coefficients can be used to produce the
interpolating polynomial over the nodes zg, z1, 22 in the form of polynomial P, (which, as we have already noted,
equals P»). Another representation for the same polynomial can be written by utilizing f1 ¢ (which depends on z1),
fo,1 (which depends on 7 and ), and fy 2 (which depends on z1, g, z2):

Py(z) = f10+ foa(z — x1) + foo(z — 21)(z — x0)



3.3. NEWTON POLYNOMIALS 105

to give a representation of the polynomial interpolating over xg, 1, zo (which, therefore, must equal P). There is
one more representation of P, that can be extracted from the original divided difference table. It comes from the
coefficients f1,0, f1,1, fo,2. Can you write it down? Answer on page 107. There are two more representations of ()2
that can be extracted from the original divided difference table. Can you write them down? Answers on page 108.

Key Concepts

Newton form of an interpolating polynomial: The Newton form, N,,, of the polynomial of degree at most n interpo-
lating the points (zo, o), (Z1,Y1),- -, (Tn,yn) is

Nn(z) = a0 + ar(z — @ip) + az(z — zig)(x — @iy) + - +an(z —2ip) - (T — @i, _y)
for n distinct indices 4o, i1, .. .,in—1 from the set {0,1,2,...,n}. The Newton form for a particular set of data is not
unique.

Potential leading coefficient: For an interpolating polynomial on k + 1 points, the coefficient of its z* term is called its
potential leading coefficient.

Divided differences: The coefficients of the Newton form of an interpolating polynomial are called divided differences.

Exercises
1. Modify the Neville’s method pseudo-code on page 96 to produce pseudo-code for computing the coefficients of N,,.
2. Modify the Neville’s method code on page 77 to produce code for computing the coefficients of N,,. Test it by
computing N» interpolating f(x) = e” at z = 0, 1,2 and comparing your result to that on page 101.

3. Let £(0.1) = 0.12, £(0.2) =0.14, f(0.3) = 0.13, and f(0.4) = 0.15.

(a) Find the leading coefficient of the polynomial of least degree interpolating these data.
(b) Suppose, additionally, that f(0.5) = 0.11. Use your previous work to find the leading coefficient of the polynomial
of least degree interpolating all of the data.
4. Find a Newton form of the polynomial of degree at most 3 interpolating the points (1,2), (2,2), (3,0) and (4,0). (8]

5. Use the method of divided differences to find the at-most-second-degree polynomial interpolating the points (0, 10),
(30, 58), (1029, —32). *I

6. Use divided differences to find an interpolating polynomial for the data f(1) = 0.987, f(2.2) = —0.123, and f(3) =
0.432. I

7. Create a divided differences table for the following data using only pencil and paper.
F(12) =22 f(14)=21 f(1.6)=23

(a) What is the interpolating polynomial of degree at most 2? Does it actually have degree 27

(b) Write down two distinct linear interpolating polynomials for this data based on your table.

8. Use divided differences to find the at-most-cubic polynomial of exercise 19 of section 3.2. Does it have the expected
degree? [A)

9. Find the degree at most two interpolating polynomial of the form
pn(x) = a0+ a1(z — xo) + a2(z —x0)(x —z1) + - + an(x — zo)(x — 1) - - (. — Tp—1)

for the data in the table.

10. Use the the computer code from question 2 to compute the interpolating polynomial of at most degree four for the
data:
z | flx)
0.0 | —6.00000
0.1 | —5.89483
0.3 | —5.65014
0.6 | —5.17788

1.0 | —4.28172



106 CHAPTER 3. INTERPOLATION

Then add f(1.1) = —3.9958 to the table, and compute the interpolating polynomial of degree at most 5 using a
calculator. You may use the computer code to check your work. (5]

11. Use the computer code from question 2 to find interpolating polynomials of degrees (at most) one, two, and three
for the following data. Approximate f(8.4) using each polynomial.

£(8.1) = 16.94410, f(8.3) = 17.56492,
£(8.6) = 18.50515, f(8.7) = 18.82091

12. Find a bound on the error in using the interpolating polynomial of question 6 to approximate f(2) assuming that all
derivatives of f are bounded between —2 and 1 over the interval [1, 3]. 5)

13. Regarding the polynomial of question 9,

(a) use the polynomial to approximate f(2.5); and

(b) assuming f € C*, find a theoretical bound on the error of approximating f(z) on the interval [2,4].
14. 4

(a) Find an error bound, in terms of f*)(£s.4), for the approximation P3(8.4) in question 11.
(b) Find an error bound, in terms of f*(z), for the approximation P3(z) in question 11 good for any z € [8.1,8.7].
(¢) Suppose f® (x) = zcosx — e® for the function f(x) of question 11. Use this information to find an error bound

for the approximation P3(z) good for any z € [8.1,8.7].

15. Buck spilled coffee on his divided differences table, obscuring several numbers. Nevertheless, there is enough legible
information to find the at-most-degree-3 polynomial interpolating the data. Find it. [

16.

17. For a function f, Newton’s divided difference formula gives the interpolating polynomial
16
N3(z) =1+ 4z + 4z(x — 0.25) + gm(x —0.25)(z — 0.5)

on the nodes zo = 0, 1 = 0.25, o = 0.5, 3 = 0.75. Find £(0.75). [

18. Match the function with its Seeded Sidi method convergence diagram. In each case, Sidi’s 6" degree method was used.
The real axis passes through the center of each diagram, and the imaginary axis is represented, but is not necessarily
centered. F!

f(x) sinz

glx) = sinz—e "

h(z) = e +27"+2cosz—6

I(z) = 56— 152z 4 1402> — 172° — 48z" + 92°



3.3. NEWTON POLYNOMIALS 107

(a)

19. Match the function with its Seeded Sidi method convergence diagram. The real axis passes through the center of each
diagram, and the imaginary axis is represented, but is not necessarily centered. (4]

flz) = z*+22°+4
g(z) = (¢”)(Inz)+ (x —3)e"
h(z) = 1+ 2z+ 32>+ 42 + 52" + 62°
l(z) = (Inz)(z®+1)
(a) (b)

Answers

P, from f1, fi11, fo2r Pa(z) = fio+ fii(z —x1) + fo2(z — 21) (2 — 22)



108 CHAPTER 3. INTERPOLATION

Q2 two new ways: Qq(x) = S0+ fri(x — ) + fra(e — @2)(z — 21) and Qy(x) = fa,0 + fo,1 (@ — 22) + fr2(z —
x9)(x — x3)



Chapter

Numerical Calculus

4.1 Rudiments of Numerical Calculus

The basic idea

g(z) =2 — 2?” sin(z) has a root between 0 and 7. You are trying various methods and become interested in how
the choice of initial value affects the results. Using Newton’s method, you do some research into how the choice of

xq affects 2. You run some tests and come up with the following data.

o xTo
93/70 | 2.084603181618954
95/70 | 2.055494116570853
97/70 | 2.030278824314539
99/70 | 2.009751835391139
101/70 | 1.993574976724822
103/70 | 1.981091507449763
105/70 | 1.971614474758557

Using fixed point iteration on f(z) = 2 sin(z), you decide to examine how the choice of zq affects 19, not x since
fixed point iteration generally converges slowly. You run some tests on this method and come up with the following
data.

Zo Z10
1/7 | 1.949880891899200
2/7 | 1.951091775564697
3/7 | 1.923339403354019
4/7 1.941460911122824
5/7 1.960870620285721
6/7 | 1.965674866641883
1 1.961228252911260

In the Newton’s method experiment, zs is a function of xg, and in the fixed point iteration experiment, x1g is
a function of xy. So you start to think of them completely independently from the original root-finding question.
As they sit in their tabular form, they are just two functions for which you know a handful of values and not much
more. What do these functions look like? Do we have enough information to perhaps find their derivatives, and,
hence, local extrema? Can we find their antiderivatives? This is the stuff of numerical calculus. We can certainly
approximate these things.

In chapter 3 we learned how to approximate functions by interpolation, so we know we can use the tabular data
to approximate the functions themselves. But what about their derivatives and integrals? Well, polynomials are
easy to differentiate and integrate. Perhaps we can use the derivatives and integrals of interpolating polynomials
to approximate the derivatives and integrals of xo(xg) and z10(xg). Indeed we can!

In order to avoid the confusion of using x¢ for multiple purposes, we will rename our functions v(x) for xs(zg)
and p(x) for x10(zo). Hence, we have v(93/70) = 2.0846..., v(95/70) = 2.0554..., and so on. Similarly, we

109



110 CHAPTER 4. NUMERICAL CALCULUS

have now ¢(1/7) = 1.9498..., ©(2/7) = 1.9510..., and so on. We will also take up the practice of calling the
z-coordinates of the prescribed interpolation points nodes. Hence, the nodes we have for v are 93/70, 95/70, and
so on. The nodes we have for ¢ are 1/7, 2/7, and so on.

Crumpet 23: v and ¢

v is the (lower case) thirteenth letter of the Greek alphabet and is pronounced noo. ¢ is the (lower case) twenty-
first letter of the Greek alphabet and is pronounced fee. The letter fee is also written ¢, but in mathematics it
is much more common to see the variant ¢, perhaps to avoid confusion between fee and the empty set, . The
capital versions of v and ¢ are N and ®, respectively.

We begin by considering interpolating polynomials on three nodes. For v, we use the nodes 93/70, 99/70, and
1.5, and get
Py, (x) = .076732155870880452%—.07445530457646088z + 1.95895140161684.

For ¢, we use the nodes 1/7, 4/7, and 1, and get
P, (x) = 2.4985906863422542% — 7.726543017101505x + 7.939599956140455.

We have added a second subscript to P in order to distinguish the interpolating polynomial for v from that for ¢.
Now we can approximate derivatives and integrals for both v and ¢ using P, and Ps ,, respectively:

V(e) ~ Py, (r) =4.997181372684508z — 7.726543017101505
¢'(z) ~ Py (x)=.1534643117417609z — .07445530457646088

/l/dl’

/god:r ~ /P2,<pd:r = .02557738529029348x> — .0372276522882304422 + 1.958951401616842 + D.

Q

/Pgﬁydac = .83286356211408472% — 3.86327150855075322 + 7.939599956140455x + C

So, for example,

V(14) ~ Py, (1.4)
= 4.997181372684508(1.4) — 7.726543017101505
= —.7304890953431942

F(0.5) ~ P (05)
= .1534643117417609(0.5) — .07445530457646088
= .002276851294419568

and

Q

1.5 1.5
/ v(z)dx P, (x)dz
1

4 1.4
= [.8328635621140847x3 — 3.863271508550753x2 + 7.939599956140455:5] 13
= .1991481658283149

/01 p(z)dr =~ /01 Py ,(z)dx

[.02557738529029348:103 — .03722765228823044x% + 1.9589514016168490];
1.947301134618903.

That’s it! This exercise encapsulates the entire strategy. Given some values of an otherwise unknown function, we
will approximate the unknown function with a polynomial. We will then approximate derivatives and integrals of



4.1. RUDIMENTS OF NUMERICAL CALCULUS 111

Table 4.1: Estimating the derivatives and integrals of v and ¢.

quantity ‘ using P» using Pg
V'(1.4) —.7304890953431942  —.7178145479410887
©'(0.5) .002276851294419568  .1447147284558277

LU v(r)dr | .1991481658283149  .1991932206801721

fol o(x)dx 1.947301134618903 1.925578216262883

the unknown function by differentiating and integrating the polynomial. There is very little more to be said about
the idea. There is, however, a lot more to be said about automation, accuracy, and efficiency, the focus of the rest
of the chapter. But before we tackle those issues, we will have another look and v and ¢.

Using all the nodes of v, and the help of a computer algebra system, we compute the sixth degree interpolating
polynomial

P, () = —1342.3934178799392° + 11632.437544666232° — 41996.47893014552*
+80851.913172125822% — 87536.60487741232x2 + 50528.3026241064x
—12144.27629915625.

Using all the nodes of ¢ (and a computer algebra system) we compute the sixth degree interpolating polynomial

P (z) = —25.418487419265432° + 97.000178325061262° — 147.18053260764942*
+111.79961944403242% — 43.711104143410272* + 8.049781257197147x
+1.421773396945804.

Again we have added a second subscript in order to distinguish the interpolating polynomial for v from that for ¢.
Now we can get second estimates for v/(1.4), ¢’(0.6), fll'f vdx, and fol o da:

V'(14) ~ Py, (1.4) =~ —.7178145479410887
¢'(0.5) ~ PFg,(0.5) ~.1729311759579151
1.5 1.5
/ v(z)de = Ps ,, (z)dx ~ .1991932206801721
1.4 1.4

1 1
/ o(x)de =~ / Py, (z)dx ~ 1.925578216262883.
0 0

Table 4.1 summarizes the eight estimates we have made so far. The first four digits of the estimates of f11.;15 v(z)dx

agree, and the first two of fol o(z)dz agree. So there is some agreement for the estimates of the integrals. The
estimates for the derivatives don’t agree quite as well, however. The estimates for /(1.4) only agree in their first
significant digit. They both suggest v/(1.4) &~ —.7. But there is essentially no agreement between the estimates of
©'(0.5). One approximation is more than 60 times the other! Based on this simple analysis, we should have a hard
time believing either estimate of ¢’(0.5). And we should only trust the first few digits of the others. We will see
later that we can use this type of comparison to have the computer decide whether an approximation is good or
not.

Issues
There are three issues with the method of estimating derivatives and integrals just outlined.

1. Efficiency. For illustrative purposes and understanding the basic concept of numerical calculus, it is a good
idea to calculate some interpolating polynomials as done in the previous subsection. However, it is cambersome
and time-consuming to do so. We will dedicate significant energy into finding shortcuts to this direct method,
thus making it more efficient and practical.

2. Automation. Numerical methods are meant to be run by a computer, not a human with a calculator. We
need to find ways that a computer can handle interpolating polynomials. This issue has intimate ties with
efficiency. After all, what will make an algorithm efficient is if it can be executed quickly by a computer!



112 CHAPTER 4. NUMERICAL CALCULUS

3. Accuracy. So far we have done very little to determine how accurate our approximations are. We need to
get a better handle on the error terms in order to understand how to use the method accurately.

Presently, we make strides toward addressing all three of these issues, but we leave the bulk of it for the upcoming
sections.

In chapter 3, we labeled the nodes of an interpolating function xg, 1, . .., x,. It will be beneficial to begin calling
them xzq + Ogh, g + 01h,...,29 + 0,h instead. And for most of our analysis, we will use zq + 6h instead of x for
the point at which we desire an estimate. One might call this substitution a change of variables or a recalibration
of the z-axis.

To see how this helps with the analysis, consider the degree at most 2 interpolating polynomial of f with nodes
xo + Ogh, xg+ 01h, and xg + 6, h.

In the notation of chapter 3, we have

(x — o) (x — 1)
(z2 — @o) (72 — 21)

(x — 1) (x — x2) (

(x — zo)(z — x2) (
(zo — 1) (w0 — T2)

Py(z) = (z1 — 20) (w1 — T2)

:L'o)+ "E1)+ f(:tg),

but with the new notation, we replace xo by xg + 0oh, x1 by xo + 01h, xo by ¢ + 02k, and x by x¢ + 0h, giving us

0—01)(0— 0y
(éo — 91§E9o — 92) f(zo + 0oh)
(0 —00)(0 — 02)
(61 —6o) (01 — 92)
(0 —60)(0 — 61)
(02 — 00) (62 — 61)

Py(xo + 0h)

f(xo+01h)

+ (o + 0sh). (4.1.1)

For the most part, we have just swapped z for  and x; for 6;. This benign-looking change is actually a huge step
forward! This formula makes it apparent that the actual values of the z; are not important. It is only their location
relative to some base point, xg, measured by some characteristic length, h, that matters. 6 and the 8; are those
measures. Essentially this makes z( the origin and h the unit of measure on the z-axis. We measure all values by
how many lengths of h they are from zg.

To illustrate the benefit, let us assume that we have three nodes, equally spaced, so the least and greatest
nodes are the same distance from the third, middle node. Setting the central node as the base point, xg, and the
characteristic length, h, to the distance from this central node to the others, we can then label them

xo — h, xg, and zg + h.

And we have already arrived at the essential point. It doesn’t matter if the set of nodes is {1, 2,3} or {80, 90,100}
or {—4.3,—4.2,—4.1}. In each of these sets, we have three nodes, one of which is the midpoint of the other two.
Each set of nodes is equal to the set {xg — h,zo,zo + h} for some values of xg and h. Hence, if we can do any
analysis with the set {xg — h,xo,20 + h}, then we get information about working with any of the sets of nodes
{1,2,3} or {80,90,100} or {—4.3,—4.2,—4.1} and so on.

Back to the set of nodes {x¢g — h,xq,z¢ + h}. For this set of nodes, we have 6y = —1, 6; = 0, and 6 = 1.
Substituting into 4.1.1,

(0)(6 —1) @+1E-1) .
(_1)(_2) (1)(_1) f(xo) +
92 _ 2

= O )+ (1 ) o) +

(0 +1)(0)
(2)(1)

Hf(ﬂﬂo +h).

PQ(JU() + Gh)

f(wo —h)+ f(zo+h)

2

Now this formula can be used to get the interpolating parabola over any set of three equally spaced nodes.
In an attempt to apply this formula to v, consider the nodes 93/7%999/70 and 105/70 Slnce 2= — % % — %,

we have a set of nodes of the form {xy — h,zg, 2z + h} with ¢y = 75 and h = 7—0 = 3—3’5 It Just so happens that



4.1. RUDIMENTS OF NUMERICAL CALCULUS 113

14=2— 1.2 soweuse  =—% to calculate Py, (1.4):
1
P27V(1.4) = P27,, o — gh

) () (5) ()

v (70) +70v (%) — 5v (7¢)
72
7(2.084603181618954) + 70(2.009751835391139) — 5(1.971614474758557)
72

= 2.019677477429439.

This seems a pretty good estimate since it is between v(93/70) ~ 2.085 and v(99/70) ~ 2.009 but significantly closer
to 2.009. After all, 1.4 is between 93/70 ~ 1.328 and 99/70 ~ 1.414 but significantly closer to 1.414. Equation 3.2.3

gives us some idea how good we might expect this estimate to be.
Tv(23)+700( 25 )—5v(252)

But let’s back this calculation up just a couple steps. The constants of the 5 step were
determined purely from the values of 6 and the ;. And the %, g—g, and % are just the three nodes, xo—h, xg, xo+h,
so what we really have here is a prescription, or formula, for the value Ps(xg — %h) for any degree at most 2

interpolating polynomial over the nodes xg — h, xo, and xg + h:

v <9:0 — éh) ~ P, (1”0 _ éh> _ Tv(xg — h) + 7077(2500) — 5u(zo + h).

And there is nothing special about the particular v in this formula either. None of the constants —é, 7, 70, —5,
nor 72 is dependent on v, but rather only dependent on the spacing of the nodes. Therefore, given any function f,
we can extract from this calculation the succinct approximation formula

f (:Co _ 1h> ~ 7f(xo — h) + 70 f(z0) —5f(x0+h).

4.1.2
6 72 ( )

This formula illustrates the real purpose in reframing the values of the z; in terms of xg, h, and the ;. This way,
we get formulas applicable to a whole class of nodes, not just one particular set of nodes.

As for ¢, the nodes %, %, and 1 are equally spaced, so the set {%, %, 1} has the form {xg — h, g, 20 + h} where
x9 = 3 and h = 2. Not by accident, it happens that 7 — & - 2 = 0.5, so ¢(0.5) = ¢(z¢ — gh) where 2y = 7 and

h = % Now we can use formula 4.1.2 to approximate ¢(0.5)!

To(xo — h) + T0¢(x0) — 5p(xo + h
©0(0.5) = Py ,(0.5) = o(wo ) ‘?(2 0) ¢(wo )

7(1.9498808918992) + 70(1.941460911122824) — 5(1.96122825291126)
72

= 1.94090678829633.

This time, we have completely circumvented any direct calculation and evaluation of P ,. Formula 4.1.2 allows us
to calculate P, ,(0.5) directly from the values of ¢ at the three nodes. No need to calculate, refer back to, evaluate,
or simplify P ,! All of that has been done in deriving the formula. Very quick. Very efficient.

Stencils

A formula such as 4.1.2 is only applicable to a set of nodes and point of evaluation with the same geometry (relative
positioning) as those used to derive the formula. Therefore, it will be important to keep track of the geometry used
to derive such formulas. To that end, we often refer to a particular set of nodes with its corresponding point of
evaluation as a stencil. For example, the nodes xg — h, zg, o+ h with point of evaluation xg — %h form a stencil—a
relative positioning of points that can be scaled (by changing the value of h) and translated (by changing the value
of zp). On a number line, this particular stencil looks like

Py O Py
@ O @

zo— h Lo xo+ h

Tro— gh



114 CHAPTER 4. NUMERICAL CALCULUS

zo can be located anywhere and h can be any size, even negative. It is this flexibility that makes formulas like 4.1.2
useful.

Now let’s suppose we do not have evenly spaced data, but we are interested in a point midway between two
others. An appropriate three-point stencil would use the nodes g — h, the leftmost node, xg + h, the rightmost
node, xg + #1h for some 6; between —1 and 1, the middle node, and point of evaluation xg, the point midway
between the leftmost and rightmost nodes. For 6; = %, this stencil looks like

1
zo—h To+ 3 h xo+ h
Zo
And we can derive a formula for Ps(z() based on the values of f at the three nodes. Plugging 8 = 0, 8y = —1,

0, = %, and #; = 1 into equation 4.1.1, we get

(=3 (1)(=1) 1 (1)(=3)
flwo —h) +9f(xo + 5h) — 2f (x0 + h)

= 3 ;
again a succinct formula applicable to any function f. No need to calculate the interpolating polynomial or evaluate
it directly for any data that fit this stencil. That part has already been done and simplified.

Derivatives

Derivative formulas can be derived likewise. Once derived for a given stencil, they can be used very easily and
efficiently for other data fitting the same stencil. We now find the formula for the first derivative, Py(zg — éh)7 over
the stencil

xo—h Lo o+ h

(0]

—_

ro— = h

[=p}

used earlier. We begin by recognizing that in 4.1.1 z is a function of §. In particular, z(6) = xo+ hf, so %x(@) =h.
By the chain rule, -4 2 P2(0) = Pg( ) d0 z(0) = h%Pg (z). From equation 4.1.1, we then have
d 4 Py(0)
= xo + Ooh
h(90—91)(90—92)f( o+ 6oh)
(0 —6o) + (6 — 05
(01 — 60) (61 — 6
(0 —0o) + (0 — 6,

f(xo +01h)

——_— =

WO a6 — ) 0 02 (4.1.3)
In particular, when 8y = —1, 60, =0, 6, =1, and@—— , we have
(1)) ke R
Pi(m=gh) = Gy 1)+ e )+ gy o+ #14)
—2f(xo — h) + f(zo) + f(z0 + h)

3h

We now have a formula for Pj(zg— gh) &~ f'(zo — gh) for the stencil with nodes zo —h, o, ©o+h and z = g — h.
We can now apply this formula to approximate v/(1.4) and ¢’(0.5).

721/(%) + I/(%) + 1/(%)
3(5)
—2(2.084603181618954) + 2.009751835391139 + 1.971614474758557)
9/35

V' (1.4)

Q

—.7304890953430477.



4.1. RUDIMENTS OF NUMERICAL CALCULUS 115

Notice this is not exactly what we got in table 4.1 for v/(1.4) using P,. The two estimates differ in the last few
digits. This is due to floating-point error affecting the calculations in different ways. Generally there is more error
in calculating directly from the interpolating polynomial because the data are processed much more heavily. Best
not to trust the last several digits in either calculation, however. Now

—2p(3) +9(3) + (1)

/ ~
o 3
_ —2(1.9498808918992) + 1.941460911122824 + 1.96122825291126)
B 9/7
= .002276851294420679.

Again, this is close to the approximation in table 4.1, but not exactly the same due to different floating-point errors
for the two calculations. But the point is made. Using a formula based on a stencil is preferable to working directly
from the interpolating polynomial. It is easier, more efficient, and can be automated.

Before moving on to integration, we make one more observation. When trying to approximate f using an
interpolating polynomial, it does not make much sense to consider a stencil like

xo—h xo+ h

° o) °
Zo ,
where the point of evaluation is one of the nodes. We know, by definition of P,, that P,(z;) = f(x;) for each
node z;. Hence, the “formula” would be f(z;) = Px(z;), and it would be exact, not an approximation. And not
particularly informative since this is one of the facts from which we calculated P! On the other hand, it does make
sense to consider such a stencil when trying to approximate derivatives of f. There is no guarantee the derivative
of P, will agree with the derivative of f anywhere, even at the nodes. Substituting g = —1, #; =0, 83 = 1, and
0 = 0 into 4.1.3, we find

R 1+(=D L
) [ EAR e Ty W)
flzo+h) — f(zo—h)

= 4.1.
= , (4.1.5)

P;(x0) f(zo) + f(zo+h)

for example.

Integrals

For integration formulas, we use a modified stencil. We need the nodes plus the endpoints of integration, which will
be identified by square brackets, [ for the left endpoint and ] for the right endpoint. But the process is analogous.
We find a formula for the interpolating polynomial and, in place of integrating the unknown function, we integrate
the interpolating polynomial.

Following this procedure, we can derive a formula for the integral of f over the stencil

o xo + 2h xo + 4h o+ 6h
R o o 3
—o N
o+ h xo + 3h xo + 5h

)

for example. The algebra is straightforward but tedious, so we do not show it here. It is best to use a computer
algebra system to derive such a formula. The result, an approximation of the integral over [xq+ 2.5h, z¢ + 6h] using
nodes xq, g + h, g + 2h, x9 + 3h, g + 4h, x9 + 5h, and xg + 6h, is

zo+6h h
/ flo)de ~ [42056 f (o + 6h) + 201831 f (o + 5h) + 63357 f (o + 4h)
o 2.5h 138240

+195902 (0 + 3h) — 28518 f (o + 2h) + 10731 f (zo + k) — 1519 f (x0)] .

This formula can now be used to approximate fll.f v(z)dz instead of integrating the interpolating polynomial
directly as done on page 111. You are invited to plug in the appropriate values of v and compare your answer to
the one in table on page 111. Answer on page 118.

The stencil for the approximation of fol @(x)dx using Ps , looks like



116 CHAPTER 4. NUMERICAL CALCULUS

To xo + 2h xo+ 4h o+ 6h

[ ° ° ° ° ° ° Py

f o o o o o o
zo—h xo+h xo+ 3h xo + bh

)

different from the one we used to approximate | 11:45 v(z)dz. Consequently, the approximation formula is different
too. We need a formula for the integral over [zo — h,zo + 6h] with nodes xg, xo + h, ¢ + 2h, o + 3h, xo + 4h,
xo + bh, and xg + 6h. The nodes are the same as before, but the interval of integration is different. The result is

xo+6h h
/ fa)de o [525Tf (o + Gh) — 5880f (o + 5h) + 59829 (o + 4h)
wofh

—81536f (0 + 3h) + 102459 f (0 + 2h) — 50568 f (o + h) + 30919 (x0)] . (4.1.6)

Again, a computer algebra system should be used to derive such a formula. You are now invited to plug in the
appropriate values of ¢ to approximate fol ¢(z)dz and compare your result to the one in table on page 111. Answer
on page 118.

Key Concepts

node: the abscissa (first coordinate) of a data point used in interpolation.

polynomial approximation: approximating the value of a function, its derivative or integral based on the cor-
responding value of an interpolating polynomial.

stencil: relative positioning of the abscissas used in a polynomial approximation.

Exercises (c) Substitute = 1 into your formula from (b) and
olify, ]
1. Derive an approximation formula for the first derivative simplify.

over the stencil 3. Derive an approximation formula for the first derivative

. ) over the stencil
Zo zo+ h

xg zo+ h o+ 2h

o+ % h 1
o+ 3 h
following these steps.
& p following these steps.
(a) Write down Li(x), the Lagrange form of the inter-

Calculate N the Newton fi f the int -
polating polynomial passing through the points (a) Caleulate Ns(z), the Newton form of the interpo

lating polynomial passing through the points

(@0, f(z0)) and (1, f(z1))- (x0, f(0)). (1, f(x1), and (a2, f(x2)).
(b) Calculate the derivative L} (). (b) Calculate the derivative Nj(z).
(¢) Substitute zo + %h for x and zo + h for x; in your (c) Substitute xo+ %h for z, zo+h for x1, and zo+2h
formula from (b) and simplify. for x> in your formula from (b) and simplify. *)
2. Derive an approximation formula for the first derivative 4. Derive an approximation formula for the second deriva-
over the stencil tive over the stencil
. — xg xo+ h zo+ 2h
o zo+ h
1
0+ % h o+ 3 h

following these steps. !

] (a) Calculate Na(z(0)) = Na(zo + 0h), the New-
(a) Write down Ll(x(ﬁ)) = L{(mo + 6h), 'the La- ton form of the interpolating polynomial passing
grange form of the interpolating polynomial pass- through the points

ing through the points

following these steps.

(wo, f(z0)), (w0 + h, f(zo+ h)),

(zo, f(wo)) and (zo +h, f(zo + h)) and (zo + 2h, f(zo + 2h))
in terms of 0, h, and xo. in terms of 0, h, and xo.
(b) Calculate the derivative - L;(x(6)). Remember, (b) Calculate the derivative %Nz(m(e)). Remem-

z(0) = xo + 0h, and use the chain rule. ber, z(0) = zo + 0h, and use the chain rule.



4.1. RUDIMENTS OF NUMERICAL CALCULUS

117

(c) Substitute = % into your formula from (b) and
simplify.

5. Formula 4.1.5 and the formula you got from question
1 should be different. However, they were derived over
essentially the same stencil—two nodes with the point
of evaluation centered between them. Only the labels
on the stencils were different. In other words, they
were derived from the same geometry, so, in some sense,
must be the same. In question 1, o plays the same role
as xop — h does in 4.1.5. Moreover, in question 1, the
distance from the point of evaluation to either node is
% while in 4.1.5, that distance is h. Make the substitu-
tion xo for zog — h in 4.1.5. Then make the substitution
% for the h in the denominator of 4.1.5. With these
substitutions, formula 4.1.5 should match exactly the
formula you got in question 1. In other words, different
labelings in a stencil produce different labelings in the
associated formula. Nothing more.

6. Use formula 4.1.6 to approximate the integral.

6
(b) / sinz dz
-1

17 1
d [S]
“)[Omex

(d) /4 (z° —4) dx

-3

1
(e) / e “dx
0

/2
(f) / cosx dx

—7/2

1
Zdx A
@ [ tas
6.1
(h) / (9 — m4) dx
4
7. For each integral in question 6, (i) calculate the inte-

gral exactly, and H(ii) calculate the absolute error in the
approximation.

8. Let f(z) = (x — 1)?sinz. Use formula 4.1.4 to approx-
imate f'(0) using
(a) h=1
(b) b=
(€) h=3
(d) h=1%

9. Calculate the absolute error in each approximation of
question 8. Does the error get smaller as h gets smaller?

10. Derive an approximation formula over the stencil

ro+2h o+ 3h

O AN
A4

o xo+ h

3
.’l?(]-‘rﬁh

a) for the value of the function.

(a)

(b) for the first derivative.
)
)

for the second derivative.

(c
(d) for the third derivative. What can you say about

this formula?

11. The polynomial p(z) = 3z* — 22% +x — 7 is an interpo-
lating polynomial for f. Use p to approximate

(a) f(1)

(b) f(2) ™

(c) f'(1)

@ f(2F

() [ [fla)dz

0
m/fumwN

12. The polynomial ¢(z) = —7z* + 32% — z + 4 is an inter-
polating polynomial for g. Use g to approximate

(a) g(1) **
(b) 9(2)
)
)

a

(c 9()

(d) 4'(2
/
(ﬂlgmm

13. Use 4.1.3 to find the formula for the first derivative over
the stencil

(a) ) €To T h
© ) 3
ngrZh éL’tHri/l
(b) ro—h g xo + 2h [A]
o+ 3h
(C) O xo + 2h
1
X+ * \/7 h
3
) h xo+2h wo+3h [g
Zo
(e) zo—h o zo+ 2h
(f) o — h Zo X+ 2h [A]
(g) rg xo+h xo+ 3h
zo+ h zo+ 3h [A]

)

®
©

14. Find a general approximation formula for the integral
using two nodes by doing the following.



118

CHAPTER 4. NUMERICAL CALCULUS

(a) Write down the (linear) interpolating polynomial
with nodes xg + 02h and xg + 03h.

(b) Integrate the polynomial over the interval [zo +
eoh, o + Glh}

(c) Simplify. !

15. Use the general approximation formula you derived in

4
xq + 3 h o+ 2h
- 1

Zo

]

zo+ h [A]
by

—

T

16. A general three point formula for the first derivative

using f(zo), f(zo + ah), and f(zo + 2h), o # 0 and

question 14 to find an approximation formula over the
«a # 2, is given by

stencil.
@ o wigh st W Flan) = g [-55" e
f i
4
: +— +ah
(b) Zo Xy + % h xo+ :;: h  xo+2h 06(2 - 0{) f(xo “ )
{ | ——Qf‘af(xomh)} +0(h?)
(c) 0 o+ =h zo + % h xo+2h 8] )
{ : : } Use Taylor expansions of f(xo+ ah) and f(xo + 2h) to
derive the given formula.
Answers
zo+6h
oot f(@)da:
1/35
13é240 [42056(1.971614474758557) 4+ 201831(1.981091507449763)
+63357(1.993574976724822) + 195902(2.009751835391139)
—28518(2.030278824314539) + 10731(2.055494116570853)
—1519(2.084603181618954)]
zo+6h
fwoojh f(x)dz:
1/7
ﬁ [5257(1.96122825291126) — 5880(1.965674866641883)

+59829(1.960870620285721) — 81536(1.941460911122824)
+102459(1.923339403354019) — 50568(1.951091775564697)
+30919(1.9498808918992)]



4.2. UNDETERMINED COEFFICIENTS 119

4.2 Undetermined Coefficients
The basic idea

According to equation 3.2.3, the difference between f and an interpolating polynomial is a multiple of f(*+1)(¢,).
In other words, the error in approximating f by the interpolating polynomial P, depends directly on f+1. But
f 1 (z) is identically zero whenever f is a polynomial of degree less than n + 1. Consequently, (f — P,)(z) is
identically zero in this case. At the risk of sounding redundant, this last thought is worthy of repeating. If f is
any polynomial of degree less than n + 1, then P,, computed for any set of n + 1 nodes, equals f exactly, for all
x. As a result, derivatives of P, and integrals of P, are not just approximations of the corresponding derivatives
and integrals of f. They are exact because P, = f for all z. This observation can be used to derive formulas for
derivatives and integrals without ever computing P, or its derivatives or integrals!
All the formulas we have been deriving for approximating derivatives and integrals of the arbitrary function f

have taken the form .

Z ai f(x;)

i=0

where xg,x1, ..., %, are the nodes of the interpolating polynomial, places where the value of f is known, and the
a; are constants resulting from the derivation. The Method of Undetermined Coefficients takes a direct approach
to calculating the constants a;. Knowing that the “approximation” formula must be exact for all polynomials of
degree 0,1,...,n, we can create n+ 1 equations in the n + 1 unknowns, ag, a1, ..., a,. The solution of the resulting
system of equations gives the values of the coefficients.

Derivatives
We seek an approximation of the k" derivative of f based on knowledge of the values f(xo + Ooh), f(zo +
01h), ..., f(xo + 6,h). To be precise, we desire an approximation of the form

F*) (20 4 60h) Za, (20 + 0;h). (4.2.1)

Due to equation 3.2.3, the approximation must be exact for all polynomials of degree n or less. In particular, it
must be exact for the polynomials p;(z) = (z — z¢)?, j = 0,1,...,n. Symbolically, it must be that

P (o + 0h) =3~ aip;(wo + 0;h)
=0

for j = 0,1,...,n. Notice the approximation has become an (ezact) equality. Noting that p;(zo + 0;h) = ((x0 +
0;h) — 1:0) (9 h)7, the system of equations becomes

P (20 + 0h) = ag + D _(0:h) a; (4.2.2)

i=1

for j =0,1,...,n. It is the solution of this system that will yield the a;.

Crumpet 24: Vandermonde Matrices

In general, a system of linear equations may have zero, one, or many solutions. However, system 4.2.2 has a
special form. In each equation, the constants (6;h)’ form a geometric progression. Such a matrix of coefficients
is called a Vandermonde matrix, and it is known that as long as the 6, are distinct, this system will have one
solution.

To illustrate, suppose we have the stencil



120 CHAPTER 4. NUMERICAL CALCULUS

ro— h zo+ h
° © °
Zo
and are interested in formulas for both the first and second derivatives of f (at xg). For this stencil, § = 0, 6y = —1,

0, =0, and 6, = 1, so we are looking for formulas of the forms

Q

f'(x0) aof(zo — h) + a1 f(zo) + az f(xo + h)

and
f"(xo) =~ bof(zo—h)+Dbif(zo)+ baf(xo+ h).

Each of these formulas must be exact when f = pg, when f = p;, and when f = ps. These three requirements give
three equations in the three unknowns.
Beginning with the first derivative formula, we detail system 4.2.2 with £k =1 and n = 2:

po(wo) = aopo(wo — h) + arpo(wo) + azpo(xo + h)
pi(z0) = aopi(xzo — k) + a1p1(zo) + azpi(xo + h)
py(xo) = aopa(xo — h) + ar1p2(zo) + azpa(xo + h)

1 2

By definition, po(x) = (z —20)° = 1 s0 pj(z0) = 0; p1(x) = (x — x0)! = x — 3¢ 50 P (x0) = 1; and pa(x) = (x — )
so ph(x) = 2(x — x9) giving ph(xo) = 0. Substituting this information into the equations above,

0 = ap+ai+as
1 = —hag+ has
0 = h2ap+ has.

The system can be solved by substitution, elimination, or computer algebra system. The solution is ag = 5—}1,
a; =0, and ag = ﬁ, giving the approximation formula
f(zo+h) — f(zo—h)

2h

f'(wo) ~

just as we got on page 115 in formula 4.1.5.
The second derivative formula is derived in the same manner. Since the second derivative formula must be exact
when f = pg, when f = p;, and when f = p,, the a; must satisfy

po(xo) = bopo(xo — h) + bipo(wo) + bapo(xo + h)
P (zo) = bopi(xo — h) + bipi(zo) + bapi(zo + )
pa(zo) = bopa(zo — h) + bipa(zo) + bapz(wo + h),

system 4.2.2 with £k = 2 and n = 2. Notice the right-hand sides are exactly the same as they are for the first
derivative formula, save the name change from a; to b;. Only the left-hand side changes substantively. p{(z) = 0 so
Py (z0) = 0; pi(x) = 0 so p1(xo) = 0; and pf(x) = 2 so ph(z¢) = 2. Making these substitutions into the equations
above,

0 = by+0b+0b
= —hbg + hbs
= h2b0 + h2b2.

Again, the system can be solved by substitution, elimination, or computer algebra system. The solution is by =
by = % and b; = %, giving the approximation formula

f(onrh)*?f(on)Jrf(on*h).

f// (zo) ~ h2




4.2. UNDETERMINED COEFFICIENTS 121

Integrals

The idea for estimating integrals is identical to that of estimating derivatives. The mechanics only change nominally.

Where there were derivatives before, we will have integrals now. We seek an approximation of fab f(z)dx based on
knowledge of the values f(xg + 6oh), f(xo + 01h),..., f(zo + 0,h):

b n
/ f(z)dz ~ Zaif(x() + 0;h). (4.2.3)
@ i=0

The approximation will be exact for all polynomials of degree n or less. In particular, it will be exact for p;(z) =
(x —x0)?, 5 =0,1,...,n. Therefore, the system of equations

b n
/ pj(x)dr = ag + Z(Gih)jai j=0,1,...,n (4.2.4)

i=1

must be satisfied by the a;.

To illustrate, suppose we have the stencil

o o+ 2h xo + 4h xo + 6h
[ o . . . o . 3
: o o o o o o
zo—h xo+ h o+ 3h xo + dh
For this stencil, a = zg — h, b = g + 6h, and 0; = ih, i = 0,1,...,6. Therefore, we will have a system of seven

equations in the seven unknowns. First, the left-hand sides:

b zo+6h x0+6h
/ po(x)dr = / po(x)dz = / ldz = (z — 20)[2°10" = 7h
a zo—h zo—h
b xo+6h zo+6h 1 zo+6h 35
/ p1(r)dr = / pi(x)de = / (z — zo)dr = =(x — 20)? = 2952
a zo—h zo—h 2 zo—h 2
b xo+6h xo+6h 1 zo+6h 217
/ pQ(x)daj = / p2($)dﬂf - / ($ — .TO)de = *(l‘ — xo)g = 7h3
a zo—h zo—h 3 zo—h 3
a zro—h zo—h 4 zo—h 4
b zo+6h zo+6h 1 x0+6h
/ pa(x)de = / pa(z)dr = / (z — xo)*dr = = (x — x0)° — @hS
a zo—h zo—h ) zo—h 5
’ Totoh woFGh 1 w6k 46655
[ r@tr= [ s = [ @ wordr= gy =282
a zo—h zo—h zo—h
b xo+6h zo+6h 1 zo+6h
/ pe(x)dr = / pe(x)dr = / (x —20)%dz = —(z —x0)” = 39991h".
a zo—h zo—h 7 zo—h




122 CHAPTER 4. NUMERICAL CALCULUS

Now putting them together with the right-hand sides (and swapping sides):

6
Z(Oih)oai = ao+tay+astaz+ag+as+ag="7h
=0

o 35
Z(Gih)lai = hai + 2has + 3has + 4has + Shas + 6hag = 3h2
=0

6 217
> (6:h)%a; = h*ay +4h*ag + 9h%as + 16h%ay + 25h%as + 36h%ag = 7h?’
=0

6 1295
Z(amﬁm = hia; +8h%as + 27h%as + 64h3aq + 125h%as + 216h%ag = ——h*
=0

6 7T
> (6:h)*a; = h*ay + 16h*ay + 81h*az + 256h ays + 625h*as + 1296k as = Th5
i=0

o 46655
Z(é)ih)Sai = hPa; + 32h°ay + 243h%as + 1024h°aq + 3125h°as + T776h%ag = Thﬁ
1=0

6
> (0:h)°a; = h®ay + 64h%ay + 729h0as + 4096h°ay + 15625h%a5 + 46656h°ag = 39991A7
i=0

The system again may be solved by substitution, elimination, or computer algebra, at least in principle. Not many
humans have sufficient patience and precision to solve such a system with paper and pencil, though. Trusting a

computfgr algebra syst582r5n7, the solution is ag = 380694109h, a, = —%007}1, as = 324818503/1, az = —%h, ay = 129898403h,
as = —=z5h, and ag = g5i5h giving the approximation formula
xo+6h h
/ . flx)dx = 3640 [5257 f(zo + 6h) — 5880 f (z¢ + 5h) + 59829 f (x¢ + 4h) — 81536 f (xo + 3h)
ro—
+102459 f (x¢ + 2h) — 50568 f (xo + k) + 30919 f ()] (4.2.5)

just as we got on page 116 in formula 4.1.6.

Practical considerations
We have used stencils like

ro—h Lo xo+ h

ro— = h

D= O

and

T T+ 2h xo + 4h o+ 6h

[ ° ° ° ° . . ®

[ . . . . . .
zo—h xo+ h xo + 3h xo + 5h

not because the results are particularly helpful, but rather to (a) illustrate the methods and (b) emphasize that these
methods work in general for any stencil you may dream up. Most of the differentiation and integration formulas
presented in numerical analysis sources stick to a small host of regularly spaced stencils where, for derivatives the
point of evaluation is a node, and for integrals, all the nodes lie between the endpoints or there are nodes at both
endpoints. It is possible the regularly-spaced stencils are all you will ever need, but it is good to know that you can
derive appropriate formulas for more unusual stencils should the need arise.

As for their derivation, the main advantage of the method of undetermined coefficients over working directly
with interpolating polynomials is the ease of automation and lessening of the necessary and often laborious algebra
needed. In the method of undetermined coefficients, the only polynomials that need to be differentiated or integrated



4.2. UNDETERMINED COEFFICIENTS 123

are the polynomials p; = (z—x¢)’, a much simpler task than integrating or differentiating interpolating polynomials.
Formulas with up to three or four nodes can be handled this way with pencil and paper. The trade-off is the necessity
of solving a system of equations, again a simpler task than differentiating and simplifying interpolating polynomials
of degree 3 or 4. As a final benefit to the method of undetermined coefficients, it is a general solution technique
used not only in numerical analysis for deriving calculus approximations, but in other studies as well, particularly
differential equations. The method is applicable whenever the form of a solution or formula is known, but the
constants (coefficients) remain a mystery.

Crumpet 25: Undetermined Coefficients in Differential Equations

In differential equations, we know that a particular solution of the equation
y—2y +3y" =5sinz (4.2.6)

has the form y = Asinxz+ B cos z, but we do not immediately know the values of A and B. They are undetermined
coefficients (at this point). They are determined by substituting the known form into the equation being solved.

/ .
y = Acosx— Bsinzx

1 .
—Asinz — Bceosz

So the equation being solved becomes
(Asinz + Bcosz) — 2(Acosz — Bsinz) + 3(—Asinz — Bcosz) = 5sinx.
Collecting the coefficients of sin z and cosx on the left side,
(-2A+2B)sinz + (—2A — 2B) cosz = 5sinz.

We now match coefficients on left and right sides to get the system of equations

—2A+2B =
—2A-2B =
whose solution is A = —% and B = %. Therefore, y = —% sinx + %cosw solves equation 4.2.6.

Conceptually, this process is no different from the method of undetermined coefficients used in deriving
numerical calculus formulas. The solution to some problem is known, save for some (undetermined) coefficients.
The parameters of the problem require the coefficients to satisfy some system of linear equations. The system is
solved, and the solution to the original problem is consequently known completely, coefficients determined.

When we get involved with stencils with more than 3 or 4 nodes, solving the resulting (relatively large) system of
linear equations by hand is not a task to which most of us would look forward. However, it is a standard calculation
any computer algebra system can do easily and efficiently. Yes, it is advisable to use a computer algebra system to
derive formulas as complicated as 4.1.6. We have used Maxima' to handle or double check a number of the more
tedious calculations presented in this text.

Reference

It is unusual to use stencils with more than five nodes anyway. It is not because the formulas for more nodes are
significantly more complicated or difficult to use, however. As evidenced by formula 3.2.3, the error term for an
interpolating polynomial involves higher and higher derivatives of f as more nodes are added. This is generally
fine as long as f has sufficiently many derivatives and the values of the high derivatives are not prohibitively
large. However, numerical methods are often employed when the smoothness of f is known to be limited, the high
derivatives are known to be large, or the properties of its derivatives are unknown completely. For these functions,
stencils with fewer nodes, which give rise to formulas with lower order error terms, are often more accurate, not
less. And in the case of unknown smoothness, the lower order methods have a better chance of being accurate.

1See http://maxima.sourceforge.net/


http://maxima.sourceforge.net/

124 CHAPTER 4. NUMERICAL CALCULUS

As a final note, some care must be taken not to ask too much of a derivative formula. With n+1 nodes, the error
term for the interpolating polynomial involves f(™*1) so there is no hope of using these nodes to estimate f(+1)
or any higher derivatives at any point. If you, however, forget this fact, it shows up in a direct way in the method
of undetermined coefficients. If k > n, then the system of equations with undetermined coefficients becomes

n
> (O:ihYa; =0,  j=0,1,...,n
i=0
because the k" derivative of p; is identically 0 for all j < n < k. The only solution to this system is ag = a; =
- = a, = 0 giving the “approximation” formula

F®) (xo + 0R) = 0.

Indeed, this is exact for all polynomials of degree n or less. However, the error in using this formula is exactly
f®) (z + Oh), a relative error of exactly 1, making it completely useless.

Stability

In Experiment 2 on page 3, section 1.1, we took a brief look at approximating the first derivative of f(z) = sinx
using the fact that

£(1) = lim sin(1 4+ h) — sin(1 — h)
h—0 2h

The conclusion we drew was that this computation was highly susceptible to floating-point error. If calculations

are done exactly, then we expect W to approximate f’(1) better and better as h becomes smaller and

smaller. Not so for floating-point calculations, as the experiment revealed. There was a point at which making

h smaller made the approximation worse! And this example is not unique. This problem always arises when

approximating f’ using the centered difference formula

2h
But how can we predict at what value of A that might happen without comparing our results to the exact value of
the derivative? After all, numerical differentiation is employed most often when the exact formula for the derivative
is unknown or prohibitively difficult to compute.

Suppose f can be computed to near machine precision. In typical floating point calculations that means a
relative floating-point error of approximately 107! or absolute floating-point error e ~ 107°|f(z)|. Since we
assume h is small, we can approximate both |f(z 4+ h) — f(z +h)| and |f(x — h) — f(x — h)| by &/ giving an absolute
error of approximately 2¢¢ in calculating the numerator f(z + h) — f(z — h). Assuming h is calculated exactly, we
have the absolute error

2 _ e _ |f@)] 1

=@ - f @I~ 5 =5 =15 7 (4.2.8)

(4.2.7)

As we will see shortly, the algorithmic error, €,, is caused by truncation and equals ‘%iﬂ‘ for some value of £
near z. Since £ is near z, we approximate f/(£) by f"/(z) and conclude that
n
Eq N |/ 6( Dlpe. (4.2.9)

We now minimize the value of &, + ¢, by setting its derivative (with respect to h) equal to zero and solving the
resulting equation:

_ 4 ~ A (@] L @,
0=TplErtea) = dh<1015 G h)
_ (@) |/ ()]
I h2+ 3 N
=
@, @1
3 105 K2
@] T
o B@ s

[f" ()]



4.2. UNDETERMINED COEFFICIENTS 125

For Experiment 2 on page 3, this means we should expect the optimal value of i to be around {/ 3;22(11)) 21075 =
1.44(10)~®. We reproduce the table from Experiment 2 here with the addition of a third column, the actual absolute

error:

h p*(h) " (h) — f'(1)]
102 | 0.5402933008747335 | 9.00(10)°
103 | 0.5403022158176896 | 9.00(10)~8
10~4 | 0.5403023049677103 | 9.00(10)~1°
1075 | 0.5403023058569989 | 1.11(10)~ !
1076 | 0.5403023058958567 | 2.77(10)~ !
10~7 | 0.5403023056738121 | 1.94(10)~1°

Indeed, when h = 107, we get our best results! However, the prediction of the optimal value of h was based on

knowledge of "/, something we generally will not be able to do. Unless we happen to know that @)L s far from

[ ()]
1, we assume it is reasonably close to 1, in which case the optimal value of h is around 10~°. Similar estimates can

be made for other derivative formulas.

Because numerical differentiation is so sensitive to floating-point error, we say that it is unstable. The root
finding methods and numerical integration we have discussed are all stable methods. Their sensitivity to floating-
point error is commensurate with that of calculating f.

Key Concepts

undetermined coefficients: A method for solving problems in which the solution is known save for a set of
(undetermined) coefficients.

: . T xo+ h xo+ 2h S
Exercises G§) 0 ek ot )
e}
. . . . 1 3
1. Using the method of undetermined coefficients, derive @+ 5k wot S h
an approximation formula for the first derivative over
. xg—h T xo+ 2h
the stencil. (k) o 0 o ot
g zo+h 1+ V7
(a) ] Ts} xo + 3\[ h
1
o 2 h xg—h o 0+ 2h [A]
@ e
(b) o zo+h [A] xo+h xo+ 3h
o
= L 2. Using the method of undetermined coefficients, derive
zo+ —h . . . .
'Ta an approximation formula for the second derivative
) o over the stencil.
Lo 0T
(C) c’i (a) o N zo+ h o+ 2h
: e}
o+ 3 h L
To+ 3 h
o zo+ h S
(d) © 11 b z0—h o xo0+h [A]
3 (b) e
xo+ 1 h
xo—h o xo+ 2h
(e) o xo+ h zo+ 2h (C) ©
© 1+7
Ul T+ %\/— h
o+ 5 h R
zog—h zo+ 2h A
xo—h z0 20+ h (d) ® [A]
R 0 [A] .
(f) & o+ 3h
20— h z o+ h o+ 2h
xo—h o o+ 2h e to 0 0 0
() . (©) —e
) 1+V7 o zo+ h zo+ 2h [S]
zo + 3 h (f) °
3
xzo— h xo+ 2h A o+ %h Zot 5 h
(h) [A] -
z + 3h zog—h o zo+ 2h
() o
. xo— h o xo+ h o+ 2h 1+V7
(l) 0 0 o+ 3 h




126

CHAPTER 4. NUMERICAL CALCULUS

xo—h T

(h) ®

xo+ 2h [A]

zo+ h zo + 3h

3. Use the method of undetermined coefficients to derive
an approximation formula over the stencil

Zo zo+h xo+2h x4+ 3h
O
A4

3
xn+§h

for the value of the function.
for the first derivative.
for the second derivative.

for the third derivative. What can you say about
this formula?

compare the method of undetermined coefficients
to the direct method employed in question 10 of
section 4.1.

4. Use the method of undetermined coefficients to derive
an approximation formula for the integral over the sten-
cil.

4
(a) g o+ - h xo+2h
r 3 1
T ] >
(b) zo zo+ 5 h o+ 2h 8]
f 1 >
1
(C) JLrn zo + 3 h x[)jr h
L 1
(d) o Zo j‘ h [A]

—

4
o + 3 h zy+2h

—8 =

(f) Lo

2
o+ - h

1

4
T+ 3 h  xo+ 2h

I

4
zo+ 3 h  xy+2h

)

]

zo+ h

—$

(i) zg

4
wot 3 h o+ 2h

—%

. 2 4
(J) ivrn zo 3 h xo+ 3 h o ﬂ: 2h
[ T
1 4
(k) Ty — 3 h T+ 3 h  xo+ 2h
: J
Zo
(1) g xo+ h xo+ 2h
b 3
U T
2 4
(m) 0 xo + 3 h mo+ 3 h xo+2h

e

&
T

T

5. Using the method of undetermined coefficients, find a

general approximation formula for /

zo+6oh

ing the two nodes xo + 62h and xo + Osh.

xo+01h

f(x)dx us-



4.3. ERROR ANALYSIS 127

4.3 Error Analysis

Errors for first derivative formulas

In section 3.2, we found that if f has sufficient derivatives, then f and P,, an interpolating polynomial of degree
at most n, differ according to equation 3.2.3 on page 90, copied here for convenience:

Fo(e,)
f(x) = Po(z) = m(x —zo)(x —a1) - (& — an).
We can use this formula to derive a concise formula for the error in approximating f/(x) by P, (z).

As done in section 3.2, suppose n > 1 and zg,21,...,2, are n distinct real numbers. Set w(z) = (x — x¢)(x —
x1) -+ (x — x,), a = min(xg, ..., Ty, x), and b = max(zg,...,T,, ). We know from equation 3.2.3 that, assuming
f has n + 1 derivatives on (a,b) and f’, f”,..., f(") are all continuous on [a, b], for each z € [a, 1],

_ &)

for some &, € (a,b). Hence,

f'(@) = Pp(z) =

(n+1) (n+1)
LY il 3) ORI el 31

(n+1)! ey V@

Since w vanishes at each node, this formula simplifies nicely when x is a node. Without loss of generality, we
evaluate for z = x¢ and get

Frt ()

/ / o
From here on, the error formula is only valid at a node! This last expression can be simplified further by noting
that Yo .
w'(@) =Y [[@—a) =) pl)
i=0 j=0 i=0
1#]

where p; is as defined for equation 3.2.2 on page 89. But p;(z¢) = 0 for all i except ¢ = 0, so

wl(xo) = po(xo) = (ko — x1)(x0 — T2) -+ - (o — Tp)-

Substituting this expression for w’, we have the first derivative error formula

/ / FOD (&)
f'(wo) — Pp(x0) = W(% —x1)(x0 — 22) - (w0 — ).
Making the substitutions zq + 6;h for x;, 1 = 1,2,...,n, to get a formula in terms of A and the 6;:
/ / f(n+1) (51’0)
f'(zo) = Pp(w0) = NCESVE (—=01h)(—03h) - - - (—6,h).
This error formula simplifies just a bit:
(n+1)
7o) — Pl(0) = mm B ()™ (431)
For the stencil
—1 0 1 2 3
©
n=4,0; =—1,0, =1, 03 = 2, and 64 = 3, so the error in calculating f’ over this stencil is
20 @) -ht = - Epe
120 20 ’



128 CHAPTER 4. NUMERICAL CALCULUS

Error terms for the first derivative over other stencils are computed similarly as long as the derivative is evaluated
at a node. Table 4.2 summarizes some common first derivative formulas, including error terms.

Notice that the error term contains (xg — z1)(xg — x2) - - - (£g — @), the product of the differences between the
point of evaluation and all other nodes, as a factor. When the differences between the point of evaluation and
the other nodes is small, the product is small. Consequently, first derivative approximation formulas are generally
more accurate when the point of evaluation is centrally located among the nodes. Hence, we might expect a first
derivative formula involving nodes xy < 1 < z3 to be more accurate when the point of evaluation is x; rather
than when the point of evaluation is zg or x2. The same can be said about higher derivative formulas. The more
centrally located the point of evaluation, the more accurate the approximation.

Errors for other formulas

It is tempting to think we can simply repeat the procedure we used with first derivatives, taking the second

(n+1)
derivative of f(x)— P, (z) = fi(fl)w(x) to find the error for second derivative estimates, and the third derivative

(n+1)!
of f(z) — P,(z) = %w(x) to find the error for third derivative estimates, and so on. Alas, the matter is
not so simple. Higher derivatives of f(z) — P,(z) = %w@c) involve derivatives of the factor # which

do not vanish even when x is a node. Since &, is entirely unknown, so are its derivatives, making this approach
unworkable. Other methods for producing precise bounds for certain higher derivative formulas or certain integral
formulas are limited in scope.

There is, however, a general method for determining good enough error terms for any derivative or integral
formula. We replace each evaluation of f in the approximation by a Taylor series expanded about xy and simplify.
This gives an expression for the approximation in terms of f(x¢), f'(xo), f”(x0), and so on. We compare it to
the Taylor series representation of the quantity being estimated. The difference between the two is the error. In
summary, that’s it. Making a rigorous argument of this method takes some care and is worthy of an example. We
demonstrate the method for the approximation of the first derivative over the stencil

xo— h Lo xo+ h

ro— =h

D= O

Again, we choose this stencil not because the stencil is generally useful, but rather to emphasize that the method is
generally useful.
In subsection 4.1 on page 114, we derived the approximation

7 (l‘o _ (1;h> ~ —2f(xo — h) + f(xo) +f(3j0+h).

o (4.3.2)

The left hand side, the quantity being approximated, as a Taylor series looks like

The terms of the right hand side, the approximation, as Taylor series look like

floo—h) = fleo)— /(o) + 5125 (o) — h*F" (@) + o 7 (o) — -
flxo) = flzo)
Flao+h) = Fwo)+hf(wo) + Gh2f" (zo) + g (o) + 5oht P (zo) + -

We now substitute these Taylor series into the right hand side of 4.3.2 and simplify. To facilitate the algebra, we
begin by summing —2f(xg — h) + f(xo) + f(xo + h):

—~2f (o - h; - —(2f()mo) - 2h () — B2 F" (w0) + 103 " (w0) — Skt FD (o) —
= f(@o
fleo+h) = flxo)+hf'(x0)+ 1hZf”(ﬂﬁo) + %h3f’”(z0) + ih4f(4) (zo) + -+~
—2f(xo — h) + f(zo) + f(wo+h) = 3hf'(xo) — $h2f" (o) + 5h* " (w0) — 51" FD (o) +



4.3. ERROR ANALYSIS 129

Hence, we have

—2f(xo — h) + f(xo) + f(xo+h) 3hf'(xo) — %hzf”(%) + %hsf”/(%) - ih4f(4) (zo) + -+
3h 3h

= J/wo) — ghf" (@) + SH 5" (zo) — 2k D a) 4 -

For the error, e(h) = f' (zo — h) — 72f($°7h)+§}(f°)+f($°+h), we then get

(f/(.%b) _ éhf,/(-xO) + %th”/(xO) _ ﬁhgf(‘l)(l‘o) + . )

_ (fl(xo) - %hf”(.%'o) + thf”/(xo) . %h3f(4)(x0) + . )

6
11 17
1" @0) + 1’ F Y (o) + -

We now know that we have an error of the form O(h?f"'(£,)), the form of the remaining term with least degree,
but we do not have rigorous proof of that fact. Think of what has been done so far as discovery. Now that we know
the f"” terms do not cancel, we go back and truncate all the Taylor series after the f” terms, replacing higher order
derivatives with an error term, and “redo” the algebra. We thus have

£ 0= gh) = fln) - ght )+ 75 E)

flao=h) = flz) = hf (o) + 5h3f" z0) = S ()
flzo) = flxo)
Flao+h) = flzo)+hf (o) + 52 F" o) + 5hPF"(6)

where & € (20— %h,$o), & € (o —h,x0), and &3 € (29, x0 + h). And now when we compute e(h) = f’ (xo — %h) _
—2f(xo—h)+f(x0)+f(xzo+h)

T , we know all the terms involving f, f’, and f” vanish. The only terms left are those
involving [

—2(=gh* " (&) + gh* " (&)

e(h) = En2pe) -

72 3h

1 1 1
— Eh2f///(£1) o §h2f”/(fg) o 178}12‘10///(53)
_ h2 1 " " 1 "
- s - e - e

The final formality is that of converting this expression into big-oh notation:

2
el = |5 (5@ - @) - 36|
h2
< [[srmen) s e+ )|
h2
< BB e (1) € L))

= B2 MI[f" (&)
for some &, € (xg — h,xo + h) and M = % (the value of &, is &1, &2, or £3). We conclude
e(h) = O(h* " (&n))-

In general, &, is guaranteed to be between the least node and the greatest node. In the case of an integral
approximation, the endpoints of integration are treated as nodes for the purpose of locating &,.



130 CHAPTER 4. NUMERICAL CALCULUS

Gaussian quadrature

Ultimately, the accuracy of a numerical calculus formula is measured by its error term, a quantity having the form
O(h™f®)(&,)). If we are interested in the rate of convergence, we consider n, the power of h appearing in the error
term. The greater the power, the speedier the convergence. However, if we are interested in the largest class of
polynomials for which the formula is exact, we need to consider the value k, the order of the derivative appearing
in the error term. The greater k is, the larger the class of polynomials for which the formula is exact. In fact, if the
error term contains a factor of f(*)(&,), then the formula is exact for all polynomials up to (and including) degree
k — 1. The further implication is that there are degree k polynomials for which the formula is not exact, for if this
were not the case, then the error term would involve a higher derivative. We call the value k — 1 the degree of
precision. Formally, the degree of precision of a numerical calculus formula is the integer m such that the formula
is exact for all polynomials of degree up to and including m but is not exact for all polynomials of degree m + 1.
Gaussian quadrature formulas aim to maximize the degree of precision for integral formulas.

The numerical derivatives and integrals over a stencil with n + 1 points that we have derived so far are exact
for all polynomials up to degree n as they must be. They have degree of precision at least n. As it turns out, a
select few have degree of precision greater than n. Consider the second derivative approximation over the stencil

-1 0 1
©

The stencil has three points, so we expect it to be exact for all polynomials up to degree 2 (and it is). However, its
error term is O(h?f*)(&},)), indicating that the formula is exact for all polynomials up to degree 3. The degree of
precision is actually 3, not 2. The first derivative formula over the same stencil is similar. Though it has an error
term of % 1" (&n), indicating that the formula has degree of precision 2 as expected, the formula itself only involves
two of the three points available! The coefficient of f(xg) turns out to be zero. It follows that we can derive the
same formula using the stencil

-1 0 1

O
O

)

having only two points yet having degree of precision 2. Several other centered differences have this attribute. The
Newton-Cotes formulas with an odd number of nodes also have this property. Their error terms exceed degree of
precision expectations by one degree. We noted earlier that a centrally located point of evaluation tends to increase
accuracy, and now we see that the increase can be dramatic.

What we might gather from these observations is that it is not only the number of nodes that determines the
error term of a numerical calculus formula. The location of the nodes is also important. Up to now, we have only
seen how node location affects derivative approximation. We know that centrally locating the point of evaluation
generally increases accuracy. We now take up the question of how to locate nodes in order to increase the accuracy
of integral formulas. The idea of a centralized point of evaluation has no meaning in this context, however. Integrals
do not have a single point of evaluation. They are taken over an interval. It is the locations of the nodes relative
to the endpoints of evaluation that are important. We now find out where to put the nodes to attain the greatest
degree of precision for any given number of nodes.

Let G,, be the n'" Legendre polynomial, defined recursively by

2n + 1)2G,(z) — nGr-1(x)

Gn+1 (x) = n+1
Go(x) = 1
Gi(z) = =

We set the 6; equal to the roots of G,, to derive the n-point quadrature formula over the interval [z — h,z¢ + h]
with greatest degree of precision possible. With placement of the nodes chosen, we force the formula to be exact
for polynomials up to degree n — 1 as we did earlier. The difference this time is, due to the particular values of 6;,
the resulting formula will be exact for all polynomials up to degree 2n — 1. When the nodes are placed at the roots
of the n*" Legendre polynomial, we get a quadrature formula for f;uoj:
precision by n, the number of nodes!

We demonstrate for n = 1 and n = 3.

(z)dx that exceeds the expected degree of

Gi(z) ==



4.3. ERROR ANALYSIS 131

has for its only root, 0. Hence, we seek a formula of the form

zo+h

[ @~ anf(an)
mgfh
which is exact for polynomials up to degree 0. The one equation for the one unknown, ag, is
zo+h
[ Wz = ao)
wofh

or 2h = ag. Hence, we have

xo+h
/ f(x)dx ~ 2hf(z0),

o—h

which we claim has degree of precision 1, not 0. Indeed, for f(z) = z — x,

zo+h 1 zo+h
/ flz)dx = i(x — 20)? =0
zo—h zo—h
and
2hf($0) = 2h(x0 - :L'()) = 0,
so it is exact for degree one polynomials. However, for f(z) = (x — x¢)?,
zo+h 1 ro+h 2
/ f(x)dr = =(z — x0)? =n3
zo—h 3 zo—h 3

and
2hf(ac0) = 2h(.’E0 - $0)2 = 0,
so it is not exact for all degree two polynomials. Therefore, its degree of precision is 1. Note the formula
xo+h
/ f(x)dx = 2h f(xo) is equivalent to the Midpoint Rule as found in Table 4.5.

th
Now

32G1(z) — Go(x)

Gg(m) = B
1
SO
5xGa(x) — 2G1(x
_ 5323 —z) — 2
3
_ 5(3x —x) —4dx
B 6
_ 1522 — 9z
B 6
1
= 5(5333 — 3z),

which has roots f\/g ,0, \/é . Hence, we seek a formula of the form

zo+h 3 3
/ X f(@)dz = ao f (»”Co - \/;h> + a1 f(wo) + az f <330 + \/;h>



132 CHAPTER 4. NUMERICAL CALCULUS

which is exact for polynomials up to degree 2. The three equations for the three unknowns are

zo+h
/ (1)de=2h = ag+a1+as
:L’()*h
. 3 3
(x—x0)dr =0 = —y/=hao+ 1/ =has
zo—h 5 5
To+h 2 3 3
2 3 2 2
— dr=-h> = =h —h“as.
/wo_h (x — z)“dx 3 zlao + Fhiaz
The solution is . .
ag = ag = §h and a; = §h,

so the quadrature formula is

zo+h
/x(]h f(x)dx%g l5f (xo— \/Eh) +8f(xog)+5f (CEO—F\/E}I)] )

The formula was derived to be exact for polynomials up to degree 2, so its degree of precision is at least 2. We
claim the degree of precision is actually 5. For f(x) = (z — x¢)?,

zo+h
=0

x‘()—h

zo+h 1
/ f(z)dz = Z(x —z0)?

o—h

and
3

glw (mo—\/§h>+8f(3:o)+5f <x0+\/§h>1 -2 5(—\/§h>3+0+5<\/§h> =0,

so it is exact for degree three polynomials. For f(x) = (x — x¢)%,

zo+h 1 zo+h
/ f(z)dz = —(z — z0)° =Zhs
zo—h 5 xo—h
and
h 3 3 h 3 ! 3 !
— —/=h —h = - —1/=h —h
N N + 9 pa
9 125 25
2
= IR
5 )
so it is exact for degree four polynomials. For f(z) = (z — ¢)°,
zo+h 1 zo+h
/ f(x)dr = = (z — x0)° =0
ro—h 6 zo—h

and

o o7 (020 sst o (s 20 < 6 [5 (<) wovs (2] | <o

so it is exact for degree five polynomials. However, for f(x) = (z — 2¢)°,

zo+h _ gh7
7

zo+h 1
/ flx)dx = ?(x—xoy

o—h xo—h



4.3. ERROR ANALYSIS 133

and

6

ol

o) e ] - SR ()

5 27 27
= —h|5h® + Soh°
9 125 125
3
iy
257
so it is not exact for all degree six polynomials. Its degree of precision is 5. The formula is listed as the second
Gaussian quadrature formula in table 4.5.
We can also find the degree of precision of any numerical calculus formula by observing the form of its error
term. If the error term has the form O(R"f*)(&,)), then its degree of precision is k — 1.

Some standard formulas

Tables 4.2 , 4.3 ; 4.4 , and 4.5 summarize some standard formulas for derivatives and integrals. Notice there are no
one-point formulas for any derivatives, no two-point formulas for second derivatives or higher, and no three-point
formulas for third derivatives or higher. The stencils have been streamlined to show only the values of 6;. Hence,
the stencil
Tro— h
° C;

Lo

xo+ h

appears in the table as

Key Concepts

Degree of precision: The integer m such that a numerical calculus formula is exact for all polynomials of degree
up to and including m but is not exact for all polynomials of degree m + 1.

Error terms: Error terms for numerical calculus approximations can be found by replacing all occurrences of f
in an approximation formula by Taylor series expansions about zg and reducing.

Gaussian quadrature: A quadrature method which maximizes the degree of precision relative to the number of
nodes used.

Quadrature: Another name for a numerical integration formula.

Weighted Mean Value Theorem: Assume that f and g are continuous on [a,b]. If g never changes sign and is
non-negative in [a, b], then we have that,

/a ’ Fa)g(@)dz = (0 / " (@)

for some ¢ in (a,b).



CHAPTER 4. NUMERICAL CALCULUS

134

Table 4.2: Some standard first derivative formulas.

g q!
QOUQIOYI(] PIeMIPR 4 = + = (0x © -
A PrRsd | (S od (o) oz + (g — o) fsy — (4z — o) fog + (4 — o) o1 — (qy —omfe | T e e v
0¢ Ycl
Y — + : = (0z
) @ﬁ& (4 00) e + ()01 + (4 — o0) /51— iz — o0 o + (g —omj— oo e e
0¢ Ycl
QOURIOPI(] POIUD U — + = (0z - -
PR PR ol 4 ¥ =i+ - mrm—w—omr A
0¢ Ycl
Y — + = (O0x
" O " T 0D+ (4 + 99— (4 + 0981+ (901 — (4~ o) e Ce)d Peoeoro o
OOUDIYI(] premIog | (13)(o)f £ + el = (0z),f - N
WU Uy +02)f¢ — (yg + 0) [9T + (yg + %) f9g — (y + 0x) [ + (0x) f ez — voe o0
senuwioy jyurod-g
QOUDIOPI(] pIemypdryg A:wv:\ xm + e = Ao&v\ f _
M () e+ (y—07) [y — (yg - O7)f 0 _‘ ©
QOUAISYI(] POISUS)) (43),.4 2 + ki = (0x) f
. o (e 0m)f + (y — o) f— : ! 0 -
QOURIIPI(] PremIoq (43) %W + e = (0z) f
. ey (ug + 02)f = (4 + 0@) [y + (01) fe— \ : ’
semnuioj yurod-¢
QOURII(] plemypryg (13) &W + 4 = (0z) °
. Ty () 4 (y - o) f— ! 0 I
! ¢ 4 _
0OUOIOPI(] PIRMIO] (3) .4 YR 7Sy sy (02),f ﬁ p
senuwioy jurod-g
oureN BTNULIO] [1oua)g




135

4.3. ERROR ANALYSIS

Table 4.3: Some second derivative formulas.

QOURIOYI(] POI9IIR))

cUal

((3) (g4 O + = (0z),,.f

(yz + 0z) f — (y + 9z) fo1 + (%) fog — (y — 9x) f9T + (yg — Ox)f—

cUal

(5 @/ 00+ e oy =tz + o v + (4 + o) o + (00 0z — (g —omygrr o0
el
e prentod | ()00 G0 P (g + 0m) foe - SM FORIPI+ (r+ om01 — (o)feg e | e

semmuroj yurod-g

4] _ o
Dol 00+ (oo —w-—omg - " A
OOURIHI(J PIeMIO] ((13) QVKNQVQ + o = (0z),f ¢ z I 0

(ye + 0z)f — (yg + %) {7 + (y + o) f¢ — (°z) [

se[nuioy yurod-j

Y
OIUSIOPI(] POIOIUS]) (("3) )4 21O + (y + o) + ?Mv\m —(y—oxyf ()., 4 1 0 T
QOURIDPI(] PIeMIO] ((3) (SO + al = (%), f z 1 0

(yg + ) f + (y + 0x) [g — (0x)

se[nuwioy jyurod-¢

oureN

RIULIO

[0S




CHAPTER 4. NUMERICAL CALCULUS

136

Table 4.4: Some third derivative formulas.

PRINA PPl | (U9 M0 gy ey — o st — (e - OMNN Y Oy A S S
(Dl 0+ s o == et ==~ | T
PO PRI (D)l 200 G o+ = ot %A@ YR Ty coror e
(D20 o — e+ 0o+ (4 Lﬁm&\ﬁ —©nfort (=g e T T 01
oowarognl prened | (%) O+ (e = (a5 T T (e 4 W re = TeT Gges ~ (el | S
senuLioy yurod-
IR preprd (D000 + Geomyy s e vaie = G g+ oap= — el e
e R 8 Y (s R s Y A
(D 00+ G rom i oarss —Oage T G ~ Ot A
PRI preied R ey S U Y TR T T
semnuIoy urod-f
— — g




137

4.3. ERROR ANALYSIS

Table 4.5: Some integration formulas.

g g 6 y—te
(B o+ [{uz [V + 02 | fo+ (0r)f8+ |y [V —0v ) fo| = =ap(x)f \ s/g/t o/t
m M. H\ y+0x ﬁ g
T 0 —
3 3 4=
((3) yf WO + FQK/LL& I+ AQK/ |§v L Yy = xp(r)f \ [ g
T T y+0x T ENMT EMT— T
mﬁﬁﬁa.HOm @MS@@M@@SU Qﬁﬁwmsﬁmw
o[y s,pog] ((3) ()4 ,)O + [(yp + ) fL + (yg + 9) f2€ + (yg + 0%) [T1 + (Y + 07) fze + (ox)f1) L § = ap(x)f \ T S
yp+0x ‘
\ 8 e
oy s.uosdung ((3)nf )0 + [(ug + 00)f + (g + 02)fg + (4 + ) g + (W0)f] o = wp(2)f \ S a—
Yyg+0x :
¢ o
oy s uosdurrg (") g d O + [(ug + o) f + (4 + %) [ + (02) f] y- = ap(x)f \ 1 : 5
yg+ow '
Oz
o[y [eprozader, ((3) .4 0)O + [(4 + o) f + (0) f] m xp(x)f \ £ 3
Y40z
SRINULIOJ S910)-U0IMON] POSOTd
% o
((“3) d O + [(yp + 02) JTT + (4 + 0) [ + (yg + 02) [ + (y + 0x) f11] — = xp(2) [ \ | :
s yG+0z ¢ F 1T 0
((45) ) 000 + (g + 903+ (2 + 00)f — (p+ o)je) £ —mp(@yy [ ﬁ : g
Yy YOz v ¢ z 1 0
z e
(3)uf 900+ 0z +0)f + (g + o)) = =ap(ary [ s g
Ye yg+0z € 4 T 0
oy jyurodpriy ((3),,4 O + (Y + 0x) fyg = xp(x) \ 1 H ]
Yyg+oz
m»mﬁ:ﬁao.w m@pOOAHOu\,P@Z uoado
owreN R[NULIO [Dua)g




138 CHAPTER 4. NUMERICAL CALCULUS

Exercises

1. Let f(z) = e® — sinz. Complete the following table using the approximation formula

., —3f(@0) +4f(wo + h) — f(xo + 2h)

/
[i(wo) = o .
h ‘ approximate f'(2) ‘ abs. error
.01
.005
—.005
—.01

Is it OK to use negative values for h?

2. For each value of x in the table, use the most accurate three-point formula to approximate f'(z). [A]

v | fl@) | f(=)

—2.7 | 0.054797
—2.5 | 0.11342
—2.3 | 0.65536
—2.1 | 0.98472

3. Approximate the integral using Simpson’s rule.

(a) /O zln(z + 1)de ©

—-0.5

(b) [ In(z + 1) dz

© / " cosa)tda

—0.25
(d) f13 6sinac dx
(e) f2 zt do M

1

Do question 3 using the Trapezoidal rule. ©/*

Do question 3 using the Midpoint rule. /]

Find the error of the approximation in question 3. (S]1A]
Find the error of the approximation in question 4. 11

Find the error of the approximation in question 5. 11

© 0 N ot

Find the error in approximating fi;(32x2 +\/Tx — 2)dx using Simpson’s % Rule.
10. Find the error in approximating fff7(32m5 + 72® — 2)dx using Bode’s Rule. (A]

11. For the following values of f, xo, and h, use the formula

f(wo + h)2_hf($0 - h) i %2f///(£)

f'(xo) =
to approximate f’(zo).

(a) flz)=¢*;20=2; h=0.1."0
(b) f(x) = (cosh2z)? —sinx; o = m; h = 0.05. ¥
(¢) f(z) =In(2z —3) + bz; 2 = 10; h = 1.
12. Compute both a lower bound and an upper bound on the error for the approximation in question 11. Verify that the
actual error is between these bounds. /%%
13. For each part of question 11, find the value of & guaranteed by the formula. /1
14. State the degree of precision of the closed Newton-Cotes formula on 5 nodes, Bode’s Rule.

15. State the degree of precision of the five point formula. [5]

F'(20) = T3 [25f (x0) + 48/ (z0 + h) — 36 (w + 2h)

4
+16f(l’0 + 3h) - 3f(x0 + 4h)] + %f(5) (f)



4.3. ERROR ANALYSIS 139

16. Find the degree of precision of the quadrature formula

/:f(ac) da ~ % [3]‘ (%1) + f(5)] .

17. Find the error term for the quadrature method, and state its degree of precision.

xo+h
(a) / f(@)dz ~ hf(zo) M

xo

(b) /w0+h f(z)dz ~ hf (mo n ﬁ)

4
=0

(c) /IzoJrh f(z)dz ~ % [3]" (9[70 T %h) i f(xo)] (8]

@ /:o+zh F2)dz ~ g {3]‘ (wo + gh) n f(xo)}

xo+3h
© [ st 2 )+ 35+ 2m) ¥

xo

O [ stoae [ (- ) vor (s 30)

zo

h
2
xo+2h
@ [ fde i~ 1) = 2 G) + 7o )

(h) /Wgh F(@)dz ~ 3h {3f (:co + gh) — 6f(z0 + h) + Af (xo + %hﬂ
) /Wgh f(z)dz ~ —1% [208f (xo + %h) — 891 f (o + h) + 1344f (:po + gh> —625f (xo + %h)} 9

zo

18. Find the error term for the derivative approximation:

(a) f/(xO) ~ f(x() + 2h’) — f(l'O) [A]

2h
(6) F'(ao) o LI S0 = 1)
—3f(x0) +4f(xo + 5) = f(mo + 1)

(c) f'(wo) = A
(@) f'(z0) ~ —13f (20 — 10h) — 12f (0 + 5h) + 25f (o + 8h)

270h
/ —Tf(xo + h) + 416 f (z0 + 3h) — 2916 f (x0 + 3h) + 5632 (x0 + h) — 3125f (x0 + £h)

(e) f(wo) = s

(f) f//(ito) ~ 2f(2130 - h) — 3f3(h:v20) -+ f(xO + 2h)
(&) f"(z0) ~ 7f(zo — 5h) — 1;{5;;;) +5f (w0 + Th) 1
() 1 (z0) ~ 5f(zo — 5h) — 12f;:%]-; 2h) + 7f(zo + Th)

. " -~ 5f($0*2h)+32f(370*h)*60f($0)+25f(x0+2h)72f(x0+4h) "

(i) f"(z0) =~ e

19. Diffy Rence writes down the following approximation:
f"(3.0) ~ 25[sin(2.8) — 2sin(3.0) + sin(3.2)].
What is f(z)?
20. Let f(z) =sinz.
(a) Find a bound on the error of the approximation

_ —3sin6+4sin6.1 —sin6.2

1) 0.2

according to the appropriate error term.




140 CHAPTER 4. NUMERICAL CALCULUS

(b) Compare this bound to the actual error.
21. What can you say about the error in approximating the first derivative of
f(z) = —132* + 172 — 152% + 122 — 99
using a 5-point formula?
22. Let f(x) = 3% — 222 4 .

(a) Compute the error (not a bound on the error) in estimating f’(2) using the forward difference

f(wo+h) = f(zo0)
h

with h = 0.1.
(b) Find &o.1 as guaranteed by the error term.

23. Let f(x) =sinz. Find a bound on the error of the approximation.
(a) f"(3.0) ~ 25[sin(2.8) — 2sin(3.0) + sin(3.2)] I
(b) £"(3.0) = 1600 [25in(3.0) — 55in(3.025) + 45sin(3.05) — sin(3.075)]
(¢) f(3.0) = 500000 [—5sin(3.0) + 18sin(3.01) — 245in(3.02) + 14sin(3.03) — 3sin(3.04)] ©
(d) f"(3.0) ~ 1000 [ sin(2.8) + 3sin(2.9) — 3sin(3.0) + sin(3.1)]

! L[ (T (7, 1 \] g
i f(ﬂc)dvag {sm (2—m)+51n (2—|—2\/§>:| s

24. Suppose you have the following data on a function f. (5]

x 0 1 2 3 4
f(z) —0.2381 —0.3125 —0.4545 —0.8333 -5
(a) Approximate f’(4) and f’(2) using 5-point formulas.
(b) Which approximation would you expect to be more accurate, and why?

1. _ 1
(c) Did it turn out that way? The data came from f(z) = —.

25. Refer to the quadrature method

[ = (o 5 s (s )]+ e

xq

in all of the following questions. (4]

(a) What is the rate of convergence?
(b

)
) What is the degree of precision?
c) Use the method to approximate fow sinz dx.
)
)

(
(d
(e

Find a bound on the error of this approximation.

Compare the bound to the actual error.

2
26. The Trapezoidal rule applied to / f(x)dx gives the value 5, and the Midpoint rule gives the value 4. What value
0
does Simpson’s rule give?

27. The Trapezoidal Rule applied to f 02 f(x) dz gives the value 4, and Simpson’s Rule gives the value 2. What is f(1)? (4]

28. When approximating f”’(zo) using five nodes, the rate of convergence will be at least what? !

M, and backward difference, M, approxima-

h)— —h
flzot )th(ﬁfo )7 of f/(ZEO)'

29. Show that the average of the forward difference,

tions of f'(xo) gives the central difference approximation,

30. Chuck was “approximating” a definite integral using Simpson’s Rule. As you can see from his work below, he was
integrating a cubic polynomial. Calculate the error he incurred even though you can not read all the coefficients. [A]



4.3. ERROR ANALYSIS 141
0 1
©

31. Repeat 30 supposing Chuck was using the Trapezoidal Rule. [4]

32. Sketch the graph of a function f(x), and indicate on it values for zo and h so that the backward difference M
gives a better approximation of f'(zo) than does the central difference W

33. Sketch the graph of a function f(z) for which the Trapezoidal Rule gives a better approximation of f 01 f(x)dz than
does Simpson’s Rule, and explain how you know. (5]

34. Suppose a 5 point formula is used to approximate f”(x¢) for stepsizes h = 0.1 and h = 0.02. If Fo.1 represents the
error in the approximation for h = 0.1 and Fy o2 represents the error in the approximation for h = 0.02, what would
you expect 5}‘{-012 to be, approximately? ©!

35. A general three point formula using nodes xq, o + ah, and o + 2h, (a # 0,2) is given by

, 1 2+« «
~N— = _ h) — —— 2h)| .
(@) = o " f($0)+a(27a)f($0+04) 5/ (o +2h)
(a) Show that this formula reduces to one of the standard formulas when a = 1.
(b) Find the error term for this formula.
36. Find three different approximations for f’(0.2) using three-point formulas. [A]
0.1 | 1.10517
0.2 | 1.22140
0.3 | 1.34986
0.4 | 1.49182
The graph of f"”/(z) is shown below. Use it to rank your three approximations in order from least expected error to
greatest expected error, and explain why you ranked them the way you did.
T T T
1.4 .
13 [ .
1.2 - .
1.1 o
1 ! ! ! !
0 01 02 03 04

37. Verify numerically that the error in using the formula f'(zo) = 72“107h)73f<z°>gsf(z°+h)7f(z°+2h) to approximate
f'(3) using the function f(x) = (cos3x)? + Inx is really O(h%).

38. Numerically approximate the best estimate that can be obtained from the formula

’ —2f(3—h) —3f(3)+6f(3+h) — f(3+2h)
@)=
6h
with double precision computation and f(z) = (cos 3$)2 + Inxz. What value of h gives this optimal approximation? [A]
39. Find the degree of precision of the quadrature formula
1
V3 V3
-1
2
40. The quadrature formula / flz)dz = cof(0) + c1 (1) 4+ c2f(2) is exact for all polynomials of degree less than or equal
0

to 2. Determine cg, c1, and ca.



142 CHAPTER 4. NUMERICAL CALCULUS

4.4 Composite Integration

In section 4.3 we supplied error terms that took the form O(h*f®)(¢,)). As a prime example, the trapezoidal
zTo+h h
rule, / f(z)dx = 5 [f(20) + f(zo + h)] + O3 f"(£1)), has error term O(h®f”(€,)). This conclusion follows

o
directly from a Taylor series analysis, but what does it mean?

Error terms for derivative approximations are comparatively easy to understand. Consider the first derivative

approximation f’(zg) = —f(zo —h) + f(xo + h)

h2
+ 5 1" (&n). The smaller h is, the smaller the error in approxi-

mating f'(x0) is (as long as the f"/(&p,) term doesn’t counteract the benefit of shrinking ). Error terms for integral
approximations are not as straightforward because, in each case, the quantity being approximated depends on h.
Changing h in the integration formula also changes the quantity being approximated. This is true of each formula in
table 4.5. The trapezoidal rule is as good an example as any. The left hand side, the quantity being approximated,
S ffoﬁh f(z)dz, so smaller h means approximating the integral over a smaller interval. So how does having a
smaller error in approximating a different number tell us anything about the potential benefit of computing with
smaller values of h? Careful study of the trapezoidal rule will reveal the answer.

According to the trapezoidal rule, g [f(zo) + f(xzo + h)] approximates the integral of f over the interval [xg, zo+
h]. If h is replaced by h/2, the resulting approximation, % [f(xo) + flzo + g)], is an approximation of the integral
of f over the interval [zq,xz¢ + %] It is no longer an approximation of the integral over [zo,z¢ + k]! To use
the trapezoidal rule to approximate the original quantity, the integral of f over [zg,z¢ + h], using h/2 instead of
h requires two applications of the trapezoidal rule—one over the interval [zq, 2o + %] and one over the interval

[xo + %, 2o + h]. The sum of these two approximations is an approximation for the integral of f over [z, z¢ + h].
Reducing A further requires more applications of the trapezoidal rule over more intervals. In general, reducing h to
% for any whole number n requires n applications of the trapezoidal rule:

/:ﬁh flz)dz = /jﬁz f(z)dx + /IDHZ f(x)da+ -+ /wﬁh f(x)de

0 o wo+3 zo+(n—1)L
- {f(xo)Jrf <$0+h)] + [f (:co+h) +f(wo+2h>} +
2n n 2n n n
+% {f <xo+(n—1)z> +f(xo+h)} . (4.4.1)

Decomposing f;0°+h f(x)dz into the sum ["* f(2)dax+ [ f(x)dw+---+ [;"  f(x)dz and summing approximations
of these integrals is called composite integration.

As for using the trapezoidal rule to do the approximating, the error in a single application of the trapezoidal rule is
O(h3f"(£1)). The error in the above sum is, therefore, bounded by Y7 M (2)? () = Mh (2)*- L S20 p7 (1)

K3
for some p; with zo + (i — 1)% < p; < xo + Z% Assuming f” is continuous on [zg, xo + h], the intermediate value
theorem allows us to replace = 37" | f”(p;) with f”(&,) for some &, € (zo, o + h) because = 37" | f”(;) is the
average of the f”(u;), which is no more than the maximum of the f”(u;) and no less than the minimum of the f”(u;).

Making this replacement gives us the error bound Mh (%)2 f"(&n). In conclusion, the trapezoidal rule used multiple

times when necessary to approximate ffoﬁh f(z)dz actually has error O ( (%)2 bid (gn)), where n is the number of
subintervals used in the calculation and &, depends on n. Now the nature of the error is clearer. It is measured
by how many subintervals are used in the calculation. More subintervals (greater n) means less error (assuming
the benefit of more subintervals is not counteracted by the f” factor). Other composite integration formulas are

similar. If a single-interval quadrature formula has error O(h* f()(£,)), then the corresponding composite version

has error O <(%)k_1 f (l)(fn)). More intervals generally means smaller error.

Composite Trapezoidal Rule

Equation 4.4.1 encapsulates the composite trapezoidal rule but does not represent the most efficient way to use it.
Simplifying the expression will help. Notice that all of the function evaluations except f(zo) and f(xg + h) occur



4.4. COMPOSITE INTEGRATION 143

Table 4.6: Minimum number of intervals to achieve certain accuracies using the composite trapezoidal rule to
approximate f03 e~ da.

accuracy | 2.2(10)"% 5(10)° 107° 10" 107''  107'®
subintervals | 2 3 8 75 7453 > 745300

twice, so we can condense the formula to

/:1:0+h fa)da

Zo

[f(z0)+f(xo+h)]+% [f<x0+z>+~-~+f<xo+(n1)h>}

n

%

k3
2n

o flzo) + f(= +h)+2nz_1f<x +ih>
0 0 0 n

2n -
=1

This leads to the following pseudo-code where we make the substitutions a = zg and b = zg + h.
Assumptions: f has a continuous second derivative on [a, b].
Input: Function f; interval over which to integrate [a, b]; number of subintervals n.
. _b—a. 7 _ fa)+f().

Step 1: Set s = 2=%; [ = L4202
Step 2: Fori=1,2,...,n— 1 do Step 3:

Step 3: Set I =1+ f(a+1is);
Step 4: Set I = sI;
Output: Approximate value of ff f(z)dx.

Other composite integration formulas should be simplified likewise to minimize the number of times f is evaluated.

Adaptive quadrature

3
/ e~ dx ~ 4.57837939409486
0

and it is simple enough to approximate this value with the composite trapezoidal rule. Table 4.6 shows the
minimum number of subintervals needed to achieve various accuracies, assuming the calculations are done with
enough significant digits that floating point error does not overwhelm the calculation. It should be apparent that
achieving high accuracy results using the

Crumpet 26: error function

The error function is defined as

erf(z) = %/ et
0

and is critical in the study of statistics as it is used to calculate probabilities associated with the normal distri-

bution. The factor % comes from the fact that foo eft2
T — 00

Computer algebra systems will have the error function built-in just as they do the sine or logarithm functions.

dt = @, an interesting fact itself.

2
Hence, the easiest way to evaluate fog e~ % dx is to have a computer algebra system (or perhaps your calculator)

compute gerf(?)).

trapezoidal rule is not practical. It requires too many computations. We will take up this deficiency in the next
section. For now, let’s analyze the usefulness of the error bound O (( )2 i ({n)) Assuming f”(&,) is roughly

1
n



144 CHAPTER 4. NUMERICAL CALCULUS

constant, we should expect to improve our estimate from an accuracy of 2.2(10)72 to an accuracy of 5(10)7%,
2.2(10) "2
5(10) 5

V/440 =~ 21. In other words, we should expect it to take approximately 42 subintervals to achieve 5(10)~° accuracy
based on accuracy of 2.2(10)~2 with 2 intervals. Since it only takes 3, we conclude that the assumption that
F"(&) = f”(&3) is bad! Luckily, the badness of this assumption actually works in our favor. It takes less, not more,
than the expected number of intervals to achieve 5(10)~5 accuracy. On the other hand, increasing the accuracy from
5(10)~° to 107°, an increase by a factor of 5, we should expect to need about v/5 ~ 2.2 times as many subintervals.
3 x 2.2 = 6.6, so the 8 needed is just about what we would expect. Similarly, to increase the accuracy from 10~°
to 1077, an increase in accuracy by a factor of 100, we should expect to need about 10 times as many subintervals.
Indeed, 75 is about 10 times as many as 8. Likewise, to increase accuracy by a factor of 10,000 (as in going from
1077 to 10~ or from 107! to 1071%), we should expect to need to increase the number of subintervals by a factor
of 100. Indeed, the table bears this estimate out as well.

Just remember, if f” does not exist or is wildly discontinuous, or just wildly varying, the assumption that
f"(&,) is constant could be a bad one, no matter how many subintervals are used. The more common case is when
f" is continuous and reasonably tame, though. Even in this case, when the number of subintervals is small, the
assumption is often not a good one, but when the number of subintervals is large, it is a pretty reliable assumption.
The exact number of subintervals needed before this assumption is reasonable changes from one function to another,
however.

Taking this lesson to heart, we approximate

3
/ (x —e% cos v/ e2r — acQ) dx
0

using the trapezoidal rule with 50 subintervals and find that it is accurate to within about 10~! of the exact value.
How many subintervals should we expect to need to achieve 1072 accuracy? About 10 times as many, or about
500. With 500 subintervals, we actually attain accuracy of about .997(10)~3, spot on! The assumption that f”(&,)
is constant seems to be valid for this integral with n > 50 (and maybe for some n < 50 too). Alas, this is the type
of analysis that can not be done in practice. In practice, we calculate integrals numerically because we don’t know
how to compute their values exactly! In “real life” situations, we have no way of knowing how accurate an integral
estimate is with 3 or 50 or 500 or 3000 subintervals. We need the computer to estimate errors as it calculates, just
as we had it do for root-finding algorithms.

Even though we know the assumption is not perfect, especially for small n, we assume f”(&,) is constant, so the

an increase in accuracy of ~ 440 times, by increasing the number of subintervals by a factor of about

error of the trapezoidal rule becomes O ((%)2) The f” factor is subsumed by the implied constant of the big-oh
notation. Accordingly, halving the number of intervals can be expected to increase the error by a factor of about 4.
Introducing the notation T (a,b) for the composite trapezoidal rule approximation of f; f(z)dx with k subintervals

and e = f; f(z)dx — Ty(a,b) for its error,

SO

en M(3)°

1
711 5 =4, which implies e, ~ 4eap,.
“2n M (3;)

Because f; f(x)dx = Ty(a,b) + e2 = T1(a,b) + e,

TQ(aa b) - Tl(aa b) = €1 — €2
~ 4deyg — e9
382

so ez & £(T(a,b) — Ty (a,b)). Explicitly,

—_

b
/ f(z)dz — Ta(a,b) = =(Ts(a,b) — Ti(a,b)).

w

We now have a way of approximating the error numerically, a significant breakthrough! The error is approximately
one third the difference between the trapezoidal rule approximations with one subinterval and with two.



4.4. COMPOSITE INTEGRATION 145

To harness this knowledge, we need to incorporate this estimate into our calculation. Suppose we wish to estimate
fab f(x)dz to within an accuracy of tol. We begin by calculating T5(a,b) and Ty (a, b). If 1 |T2(a,b) — Ti(a,b)| < tol,
we are done. T3(a,b) is our approximation. In the more likely case that % |T%(a,b) — Ti(a,b)| > tol, we divide
the interval [a, ] into two subintervals, [a, %F2] and [2£2,b] and compare our error estimates on these subintervals

to 2L If 1 |Th(a a'H’) Ti(a, “52)| < %, we are done with the subinterval [a, “t]. Th(a, %E2) is a satisfactory

approximation of f f(z)dz. If not, we bisect the interval again and compare error estimates to t‘)l . On the other

half of [a, b], if & !Tg (%tb p) — Tl(“TM, b)| < 2, we are done with the subinterval [%£2, b]. Tp(%E2, b) is a satisfactory

2
approximation of f atv f(z)dz. If not, we bisect the interval again and compare error estimates to @ Each time
2

a subinterval fails to meet the error tolerance, we divide it in half and try again. The process will normally end
successfully because, with each subinterval division, we will generally have the error decreasing by a factor of 4
while the error requirement is decreasing by a factor of only 2. In the end, the sum of the T5 estimates where the
error tolerance is met will be our approximation for f; f(x)dx
The simplest way to code this algorithm is to use a recursive function. It is possible to do without, but the record

keeping is burdensome. Depending on the programming language you are using, the trade-off may be simplicity for
speed. Some languages do not handle recursive functions quickly.

Assumptions: f has a continuous second derivative on [a, b].

Input: Function f; interval over which to integrate [a, b]; tolerance tol.

Step 1: Set m = 22 I} = Ty(a,b); I = Th(a, b);

Step 2: If |I; — Il| < 3tol then return 12;

Step 3: Do Steps 1-5 with inputs f; [a, b] and t"l ; and set A equal to the result;

Step 4: Do Steps 1-5 with inputs f; [“T'H’?b]; and %"l; and set B equal to the result;

Step 5: Return A + B;

Output: Approximate value of ff f(z)dx

A tabulated example of such a computation might help clarify any confusion over how this algorithm works. The
following table approximates the integral f03 In(3 + x)dx with a tolerance of .006.

a Ti(a,b)  Ts(a,b) 3 |Ta(a,b) — Ti(a,b)| tol

0 3 4.33555  4.42389 .02944 .00600 X

0 1.5 1.95201  1.96732 .00510 .00300 X

0 0.75 0.90763 0.90997 .00077 00150
0.75 1.5 1.05968 1.06124 .00051 00150
1.5 3 247187 2.47961 .00257 .00300 «

(3 + x)dz ~ 0.90997 + 1.06124 + 2.47961 = 4.45082

The calculation in the table requires 7 evaluations of f and underestimates the integral by about .00390. In order
of occurrence, the evaluations happen at x = 0,3,1.5,.75,.375,1.125,2.25. The composite trapezoidal rule with
7 evaluations (6 subintervals each of length .5) underestimates the integral by about .00346. The non-adaptive
composite trapezoidal rule gives a slightly better estimate with essentially the same amount of computation. But
remember, it is not necessarily efficiency we are after. It is automatic error estimates. The adaptive trapezoidal
rule does something the conventional composite trapezoidal rule does not. It monitors itself for accuracy, so when
the routine completes, you not only get an estimate, but you can have some confidence in its accuracy even when
you have no way to calculate the integral exactly for comparison.

Key Concepts

Composite numerical integration: Dividing the interval of integration into a number of subintervals, applying
a simple quadrature formula to each subinterval and summing the results.

Adaptive numerical integration: Leveraging the error term of a simple quadrature formula in order to obtain
automatic calculation of the number and nature of subintervals needed to obtain a definite integral with some
prescribed accuracy.



146

CHAPTER 4. NUMERICAL CALCULUS

Exercises

1. Use the composite midpoint rule with 3 subintervals to
approximate

(a) /1 Sln(sin(a;))dm [s)
(b) / N

(c) /4 ¢ In(z) l;(x) dzx ]

(@) /

1+ cos?2xdx

2. Redo question 1 using the composite trapezoidal rule.
[ST{A]

3. Redo question 1 using the composite Simpson’s rule.
[SI{A]

4. Redo question 1 using the composite Simpson’s g rule.
[S1[A]

5. Redo question 1 using the composite version of the
quadrature rule 1V

zo+3h
/ F(z)dz = % [f (2o + h) + f (o + 2h)].

xo

6. Use a composite version of the quadrature rule

[ s s (e ) s (a3

with three subintervals to approximate

3 3
/ B
0 X +1

7. Use the (simple) trapezoidal rule on fow sin? z dz to help
estimate the number of intervals [0, 7] must be divided
into in order to approximate f 077 sin* z dz to within

10~* using the composite trapezoidal rule. NOTE:

fow sin® z dz = %71. (5]
8. Repeat question 7 using the midpoint rule. !
9. Repeat question 7 using Simpson’s rule.

10. Suppose composite Simpson’s rule with 100 subinter-
vals was used to estimate |, 512 f(z) dz, and the absolute
error turned out to be less than 107°. What function
might f(z) have been?

11. Derive a summation formula for the composite version
of
(a) the midpoint rule.
(b) Simpson’s rule. *

(c) Simpson’s 2 rule. [A]

(d) the quadrature formula

[ s [r s 5+ (o4 3]

12. Based on our discussion of composite integration, the
error term for composite Simpson’s rule applied to

fabf(m) dx with n subintervals is O ((%)4]”(4)(5”)).
With a bit more work, it can be shown that the error
term is actually —l’;—oah4f(4)(£n) where h = =2, No
big-oh needed. This error is exact for some &, € [a, b].
Use this error term to find a theoretical bound on the

error in estimating
4
1
/ dx
, 1—u

using (composite) Simpson’s rule with h = 0.1.

13. Why does the composite trapezoidal rule ALWAY'S (for
any h) give an underestimate of

s
/ sinx dx?
0

14. Demonstrate geometrically and with some words the
approximation of fg % dx using the composite
trapezoidal rule with 4 trapezoids (that is, 4 subinter-
vals).

15. Approximate f13 In(sin(x))dz using adaptive Simpson’s
method with tolerance 0.002.

16. Use adaptive Simpson’s method to approximate

1
/ In(z + 1)dz accurate to within 107%. [*]
0

17. Derive a quadrature formula for

/abf(x) d

using unspecified nodes a < o < z1 < b. In other
words, derive a “general trapezoidal rule” where x¢ and
x1 are allowed to be any two distinct values in [a, b].

18. In your formula from question 17, make the substitu-
tions xo = a, x1 = b, and 1 — x¢o = h, and show that
it thus reduces to the trapezoidal rule.

19. Let I = [ 2*In(2?® + 1) dz. ¥

(a) Approximate I using the Midpoint rule.

(b) Use your answer to (a) to estimate the number of
subintervals needed to approximate I to within

10~*. NOTE: I = 2411\(5)—6$t)an’1(2)74'

20. Let I = [ 2?In(a? + 1) da.

(a) Approximate I using Simpson’s rule.

(b) Use your answer to (a) to estimate the number of
subintervals needed to approximate I to within

107*. NOTE: I = 241n(5)76!t9an_1(2)74.

21. Use the computer to calculate the estimate sug-
gested in question 19b. Is the absolute error less than
1077



4.4. COMPOSITE INTEGRATION 147
22. Use the computer to calculate the estimate sug- 29. Use your code from question 27 to approximate
gested in question 20b. Is the absolute error less than ! Lo 4
10-42 In(z 4 1)dz accurate to within 107°.
’ 0
23. h i idal rul i
3 1 Use the composite trapezoidal rule to estimate 30. (i) Use your code from question 27 to approximate
/ In(z 4 1)dz accurate to within 107%. How many the integral using tol = 107°. (ii) Calculate the actual
0 - error of the approximation. (iii) Is the approximation
subintervals are needed? accurate to within 10™° as requested?
24. Repeat question 23 using the composite midpoint om
rule. (a) / zsin(z?)dz
25. Use composite Simpson’s rule to estimate 0 )
1 1
In(x + 1)dz accurate to within 107%. How many (b) / ;d;c
o 0.1
subintervals are needed? 2
2 2
[¢ z° In(x 1) dx
26. Repeat question 25 using composite Simpson’s % (c) /O (@ +1)
rule. 4] )
(2,2 2 _ 24In(5)—6tan"1(2)—4
27. Write computer code that implements adaptive NOTE: fO o’ In(z® + 1) do = 9 ’
Simpson’s rule as a [g?curswe function.  Some notes 31. Write computer code that implements the general
about the structure: . . .
trapezoidal rule of question 1 in such a way that x¢ and
(a) The inputs to the function should be f(z), a, b, a1 are chosen at random.
and a maximum overall error, fol. 32. Write computer code that implements a composite
(b) The output of the function should be the esti- version of the quadrature method in question 31.
mate and, if you are feeling particularly stirred,
the number of function evaluations. 33. Do some numerical experiments to compare the
(standard) composite trapezoidal rule to the (random)
28. Use your code from question 27 to approximate composite trapezoidal rule of question 32. What do

f13 In(sin(x))dz with tolerance 0.002.

you find?



148 CHAPTER 4. NUMERICAL CALCULUS

4.5 Extrapolation

In calculus, you undoubtedly encountered Euler’s constant, e, which you were probably told is approximately 2.718,
or maybe just 2.7. And unless you were involved in a digits-of-e memorization contest, you probably never saw
more digits of e than your calculator could show. We're about to change that. The first 50 digits of e are

2.7182818284590452353602874713526624977572470936999.

How many of them do you remember? Not to worry if it is not very many. No quiz on the digits of e is imminent.

Crumpet 27: Digits of e

The first 1000 digits of e, 50 per line, are

2.7182818284590452353602874713526624977572470936999
59574966967627724076630353547594571382178525166427
42746639193200305992181741359662904357290033429526
05956307381323286279434907632338298807531952510190
11573834187930702154089149934884167509244761460668
08226480016847741185374234544243710753907774499206
95517027618386062613313845830007520449338265602976
06737113200709328709127443747047230696977209310141
69283681902551510865746377211125238978442505695369
67707854499699679468644549059879316368892300987931
27736178215424999229576351482208269895193668033182
52886939849646510582093923982948879332036250944311
73012381970684161403970198376793206832823764648042
95311802328782509819455815301756717361332069811250
99618188159304169035159888851934580727386673858942
28792284998920868058257492796104841984443634632449
68487560233624827041978623209002160990235304369941
84914631409343173814364054625315209618369088870701
67683964243781405927145635490613031072085103837505
10115747704171898610687396965521267154688957035035

However, do you recall from calculus that

lim (1 + b)Y/ = e?
h—0

Can you prove it? Proof on page 155. Based on this fact, we might use
é(h) = (1L+h)!/h
to approximate e. No time like the present!

£(0.01) 2.704813829421529
&(0.005) ~ 2.711517122929293
(0.0025) ~ 2.714891744381238
£(0.00125) 2.716584846682473
£(0.000625) 2.717432851769196.



4.5. EXTRAPOLATION 149

Sadly, this sequence of approximations is not converging very quickly. We have two digits of accuracy in the first
approximation and still only three digits of accuracy in the fifth. We could, of course, continue to make h smaller to
get more accurate approximations, but based on the slow improvement observed so far, this does not seem like a very
promising route. Instead, we can combine the estimates we already have to get an improved approximation. This
idea should remind you, at least on the surface, of Aitken’s delta-squared method. In that method, we combined
three consecutive approximations to form another that was generally a better approximation than any of the original
three. We will do something similar here, combining inadequate approximations to find better ones. We will name
the various new approximations for continued reuse.

26(0.005) — &(0.01
26(0.0025) — &(0.005
26(0.00125) — &(0.0025
26(0.000625) — (0.00125

0.01) = 2.718220416437056

0.005) = 2.718266365833184

0.0025) = 2.718277948983707

0.00125) = 2.718280856855920. (4.5.1)

1

€
€1
é

1

~ — — ~—
~ o~ o~ o~

= él

Each of these new approximations is accurate to 5 or 6 significant digits! Already a significant improvement. We
can combine them further to find yet better approximations:

4¢,(0.005) — €1(0.01)

€2(0.01) = 2.718281682298560

3
4,(0.0025) — & (0.005
e >3 0005 _ ,(0.005) = 2.718281810033881
48,(0.00125) — &(0.0025
Gl ; t ) = &2(0.0025) = 2.718281826146657. (4.5.2)

The first of these approximations is accurate to seven significant digits, the second to eight, and the third to nine!
And we can combine them further:

8¢2(0.005) — &,(0.01)
7
885(0.0025) — &,(0.005)
7

= ¢&5(0.01) = 2.718281828281785

= &5(0.005) = 2.718281828448482. (4.5.3)

Now we have approximations accurate to ten and eleven significant digits! Looking back, we took five approximations

that had no better than 3 significant digits of accuracy and combined them to get two approximations that were

accurate to at least 10 significant digits each. Magic! Okay, not magic, mathemagic! Here is how it works.
Suppose we are approximating p using the formula p(h), and we know that

ﬁ(h):p+cl'hml+Cg'hm2+03.hm3+,,,

Then
Bah) = ptc1 - (ah)™ + e - (h)™ + ¢ - (ah)™ + - .

Now, if we multiply the second equation by a~™! and subtract the first from it, the h™! terms vanish, and we get
an approximation with error term beginning with co - h™2:

a ™Mp(ah) = aT™p4er - A 4 a2 T R 4o egq 3T L S 4
—[p(h) = pHei-h™ ey R4z BT 4]
o (ah) — ﬁ(h) — (a—m — 1)]7 T+ 02(am2—m1 — 1) “hme 03(amg—m1 — 1) TR

With a little rearranging,
o™ (ak) — p(h)

a~™ — 1

gty By B (4.5.4)

for some constants ds, ds, . ... If mo > mq, then this method will tend to improve on the two approximations p(h)
and p (ah) by combining them into a single approximation with error commensurate with some constant multiple
of h™2. This calculation is the basis for Richardson’s extrapolation.

It just so happens é(h) has exactly the form needed.

é(h) = e+ c1h + cah® 4+ c3h® + cah* + O(R®) (4.5.5)



150 CHAPTER 4. NUMERICAL CALCULUS

for some constants cq,cs,c3,c4. The actual values of the constants are not relevant for this computation. To
understand the computation of é;, we use equation 4.5.4 with a = % and m; =1 to get

2¢ (&) —é(h)
2—-1
I o 1 .5 1 .4 5
= 2e+ch+ 502h + ZCBh + §C4h + O(h”)
— [e + c1h 4 eoh? 4 esh® + eah® + O(h5)]
= e+ dah® +dsh® + dyh* + O(RP)

ei(h) =

for some constants ds,ds,ds. €1(h) is the formula that gave us the round of approximations accurate to 5 or 6
significant digits. It is not hard to find the constants d; in terms of the constants ¢;, but, again, the values of the
constants are immaterial and can only serve to complicate further refinements. What is important is the form of
the error. Now that we know é1(h) = e+ dzh? + dsh® 4+ d4h* + O(h®), we find é;(h) using formula 4.5.4 with a = £
and m; = 2:

ég(h) _ 4é, (g)g_él(h)

= e+ kah® + ksh* + O(RP)

for some constants ks and k4. é2(h) is the formula that gave us the round of approximations accurate to 7 to 9

significant digits. We can again use formula 4.5.4, this time with o = % and my = 3:

8¢ (§) —ea(h)
7
= e+ ULh*+0(R)

és(h)

for some constant l4. €s(h) is the formula that gave us the approximations accurate to 10 and 11 significant digits.
Now is a good time to see if you can use the expression for é3(h) and formula 4.5.4 to derive an O(h®) formula for
€4(h). Then use your formula to compute €4(0.01) using the previously given values of €3(0.01) and €5(0.005). How
accurate is €4(0.01)? Answers on page 155.

As a special case, Richardson’s extrapolation with o = % applied to any approximation of the form

ﬁo(h) = p+ Clh + Czh2 + CghS + ..
gives the recursively defined refinements

26pr—1 (%) — Pr—1(h)
2k — 1 ’

Pr(h) = k=1,2,3,...

which are expected to increase in accuracy as k increases. For other a or other forms of error, the formula for gy (h)
changes according to 4.5.4.

Crumpet 28: A Taylor polynomial for é(h)

€ is undefined at 0, so its derivatives at O are as well. However, if we extend the definition of € to

1/h
&(h) = (1+h) %fh7£07
e ifh=0

thus defining € at 0, then é(h) becomes infinitely differentiable at 0, and its fifth Taylor polynomial, for example,
is:
11le Te

~ o € 2 3 2447e 4 f(5)(€) 5
e =e—ghtor M- W +gme "+ "

for some £ € (0, h).




4.5. EXTRAPOLATION 151

Differentiation

Using extrapolation, high order differentiation approximation formulas can be derived from low order formulas.

— /(o) +hf(960 +h) _ gf”(gh). The standard error term,

f% f"(&,) does not give the error in the form ¢ - h™! + O(h™2) as required by Richardson’s extrapolation, so we
return to Taylor series to determine the O(h™?2) term:

We begin with the lowest order approximation, f’(zg) =

Flao +h) = Flwo) + hf'(zo) + 5h2F" (wo) + " (z) 4+

SO
ST T@OEN) _ ) 4 g (o) + SH o) 4
Hence,
f/(JCO) _ *f(mo) Jrhf(zo + h) _ —%hf”(xo) _ é;ﬁf’"(xo) ...

cih + O(h?)

and extrapolation will yield an O(h?) formula. Letting p(h) = w, a =2, and m; = 1, formula 4.5.4

tells us the approximation
3P(2h) — p(h)
i1
2

will be an O(h?) formula for f/(x¢). Simplifying,

1 [*f($0)+f(wo+2h)} _ —f(zo)t+f(=oth)
2 h

35(2h) — p(h) 2h
1 _ o _1
2 2
—f(zo)+f(xo+2h)  —4f(zo)+4f(zo+h)
_ ah h
_1
2
3f(xo)—4f(xo+h)+f(z0+2h)
4h

1

2
—3f(z0) +4f(x0 + h) — f(xo + 2h)
2h '

Hence, we have f'(zg) = 73f(m°)+4f(z§;rh)ff(x°+2h) + O(h?), but this is not news. This is the first 3-point formula
in table 4.2 Other high order derivative formulas can be derived by extrapolation too, but, generally, nothing new
is learned from the result. We simply have a new way of deriving high order differentiation formulas.

Integration

Applying extrapolation to definite integrals is more rewarding. We begin with any composite integration formula
and apply Richardson’s extrapolation. We now consider the composite trapezoidal rule and use the notation T(a, b)

to represent the approximation of f: f(z)dz using the trapezoidal rule with & subintervals.
Before continuing we need to have a good idea what it means for the composite trapezoidal rule to have error
term O (%)2 . In essence, it means we should expect the error to decrease by a factor of about 4 when the number

of intervals is doubled. We should expect the error to decrease by a factor of about 9 when the number of intervals is
tripled. And generally we should expect the error to decrease by a factor of about 32 when the number of intervals
is multiplied by 3. To see this effect in action, consider the definite integral

1
/ sin z dx
0



152 CHAPTER 4. NUMERICAL CALCULUS

whose exact value is 1 — cos(1) & .4596976941318602. The absolute errors of T5(0, 1), T10(0, 1), and T35(0,1) are

1
/sinxdx—Tg,(O,l) ~ 1.533(10)73
0
1
/sinxdm—Tw(O,l) ~ 3.831(10)~*
0
1
/sinxd:c—Tlg,(O,l) ~ 1.702(10)~*
0

[ sin @ dz — Ty0(0,1)| and nine

We should expect the error 0

0

fl sin z dx — T5(0, 1)‘ to be about four times the error

times the error

fol sinz dx — T15(0, 1)‘ To check, we compute the ratios:

1 .
’fO sinx dr — T5(O, 1)’ - 1533(10)—3 ~ 1,001
‘fol sinzdr — /1—710(07 1)‘ 3831(10)*4

1 .
’fO sinz dx — T5(O7 1)’ _ 1533(10)—3 ~ 0.007
‘fol sinz dr — T15(0, 1)‘ 1702(10)*4

|f01 sina:d:valg(O,l)|
|f01 sinz de—Tis (0,1)|
Finally, we apply Richardson’s extrapolation with o = % and m; = 2 to produce the higher order estimate,

to be about? Answer on page 155.

What should you expect the ratio

4T5;(a,b) — Ti(a, b
Ti1(a,b) = 2k )3 i )

We defer to numerics to get a handle on the error term of the refinement 7}, ;. We begin by collecting some data.
Continuing with the analysis of fol sin z dx, note that

T75(0,1) 4581643459604436
Ti0(0,1) ~ .4593145488579763
T20(0,1) 4596019197882473
T10(0,1) 4596737512942187.
Hence,
AT10(0,1) — T5(0,1
T51(0,1) = 100, >3 501 4506979498238206
4T0(0,1) — Tro(0, 1
Tipa(0,1) = Tl 5 1001 4506977100983375
AT;0(0,1) — Too(0, 1
To1(0,1) = 0(0.1) = To(0.1)  4506076951295424
* 3
and

’fol sinzdr —T5,1(0,1)

: ~ 16.01
Jo sinzdr —Ti1(0,1)
fol sinx dr — TlO,l(O; 1)

T ~ 16.00.
Jo sinzdr —Ty,1(0,1)

When we double the number of subintervals, the error is decreased by a factor of 16. That’s 2%, not 23 as we might
1
n

have expected! The first refinement takes us from a O (( )2) approximation to a O ((%)4) approximation. In
other words, the error of T}, ; is O ((%)4)



4.5. EXTRAPOLATION 153

Table 4.7: Romberg’s method
n Ty T Ti3

T Toy T
Ty, Tun .

Ty

Now that we know the error of T}, ; is O ((%)4) we can extrapolate again. Applying Richardson’s extrapolation

with a = % and my = 4, we have

16T410,1(0,1) — T5.1(0,1)

T52(0,1) = = ~ .4596976941166387
16T 1(0,1) — Th01(0, 1
Ti02(0,1) = 201(0, )15 10101 4506976041316228.

We now have approximations T5 2 and Tjg » whose errors are only about 1.522(10) = and 2.374(10) '3, respectively.
Use this information to calculate T5 3 and its absolute error. Answers on page 155.

The method of combining Richardson’s extrapolation with the trapezoidal rule is known as Romberg’s method
or Romberg integration. The calculation is often tabulated for organizational purposes as in Table 4.7. Rows are
added until the differences |Tj n, — Tk n+1| and |Tox . — Tk n+1| are both less than some tolerance.

Though Richardson’s extrapolation may be applied to any composite integration formula, the computations
of the error terms above help explain why the trapezoidal rule is the right one to use. We might infer from our
calculations (and it can be proven true) that the error term of the composite trapezoidal rule contains only even
powers of % To be explicit, we have

/abf(x)dx_Tn(a,b) +co <i>2 + ¢4 <71z)4+c6 (i)GJr.”

so each refinement increases the least degree in the error term by 2, not 1. Skipping the odd degrees makes this
particular choice very efficient. But this method comes with a price. Hidden within ¢, is the assumption that f has
a continuous second derivative. Hidden within ¢4 is the assumption that f has a continuous fourth derivative. And
so on. The accuracy of each refinement depends on f having two more continuous derivatives. The more refinements
we do, the smoother f must be for this method to work. For this reason, it is advisable to use Romberg’s method
only when the integrand is known to have sufficient derivatives.

Key Concepts
Richardson’s extrapolation: If approximation p is know to have the form
p(h) =p+ch™ + O(h™?)
then the approximation

a”"™p(ah) — p(h)

oa~m —1

will have error O(h™?).

Romberg integration: The application of Richardson’s extrapolation to the trapezoidal method.

Exercises Therefore, N(h) = + sin(hn) is an O(h*) approxima-

tion of . Use Richardson’s extrapolation to derive an

1. One can use Taylor Polynomials to show that 4 o (A] P
O(h*) approximation of .

1 .
= sin(hm) + Koh® + Ksh* + Keh® + - - . 2. It is interesting to note that we can reverse engi-



154

CHAPTER 4. NUMERICAL CALCULUS

neer Richardson refinements in order to approximate
the ¢; of equation 4.5.5 on page 149. For example,
é(h) = e+ c1h+O(h?), and we assume the O(h?) term
is relatively small, so we can rearrange this equation to

find 5(h

&h*e ~ .

. &(.005)—e _
To take a specific example, — o0k — =

2TL5ITIR2929293-¢ ~ —1.35 so c1 ~ —1.35. If we
pay careful attention to how the constants are affected
as we refine our initial approximations, we can find co,

cs, and c4 as well.

2 (g) —&(h)
= 2 +ch+ %QhQ + %h‘"’ + %h“ +O(h%)
—(e 4+ c1h + c2h® + e3h® + cah® + O(h?))

= e-— %QhQ _ 3 Tapa o),

4 8
Therefore, &1(h) — e &~ —<2h?, from which we conclude
—2(é1(h) —e)
h2
(a) Use this formula and the values in 4.5.1 to verify
that co ~ 1.24.
(b) Approximate c3 using values in 4.

éi(h) =

X C2.

2
3

(d) Compare these approximations of c1, ¢z, cs,ca to
the exact values in crumpet 28.

ot

ot

(c) Approximate c4 using values in 4.!

3. Suppose N approximates M according to N(h)
MA4K1h*+Kah®+ K3h"+- - - . Of what order will N3 (h

(the third generation Richardson’s extrapolation) be?
(4]

4. Suppose N approximates M according to N(h) =
M + K1h? + Ksyh* + Ksh® + ... What would you
expect the value of

|M — N(h/3)|
|M — N(h/4)|
to be for small h, approximately? (4]

5. N(h) = ﬁ%h can be used to approximate *!

lim 1—cosh
h—0 h?
(a) Compute N(1.0) and N(0.5).
(b) Compute N1(1.0), the first Richardson’s extrapo-
lation, assuming

i. N(h) has an error of the form K1h+ Koh?+
Ksh3 +---
ii. N(h) has an error of the form Koh?+ Kih*+
Keh® +---
(c) Which of the assumptions in part 5b do you think
gives the correct error and why?

6. The backward difference formula can be expressed as
1
f'(wo) = 31 (x0) = f(xo = h)]
h h*
51" (@) = " (w0) + O(h)

(a) Use Richardson’s extrapolation to derive an
O(h?) formula for f'(zo).

(b) The formula you derived should look familiar.
What formula does it look like? Is it exactly the
same? Why or why not?

7. Derive an O(h®) formula for approximating M that
uses N(h), N(%), and N(%), and is based on the as-
sumption that

M = N(h) + Kih + Koh® + K3h® + - - - .

8. The following data give estimates of the integral M =
fogﬂ/Q cosx dx.

N(h) = 2.356194
N(h/4) = —0.8815732

N(h/2) = —0.4879837
N(h/8) = —0.9709157

Assuming M — N (h) = K1h? + Koh* 4+ K3h® 4 - -, find
a third Richardson’s extrapolation for M. (5]

9. Suppose that N(h) is an approximation of M for every
h > 0 and that

M — N(h) = K1h+ Koh? + K3h® + - -

for some constants Ki, Ko, K3,.... Use the values
N(h), N(h/3), and N(h/9) to produce an O(h*) ap-
proximation of M. Al

10. Use Romberg integration to compute the integral with
tolerance 10~

(a) ’ In(sin(z))dz ©
|
(b) / Vrcoszdx

(c) /4 ¢’ In(z) lz(a:) da ¥

(@) /

1 2
-1
) / P

2
(g) / #*In(2® + 1)dz ¥
0

1+ cos?2 xdx

11. Write a Romberg integration function on the com-
puter. (A]
12. (i) Use your code from question 11 to approximate

the integral using tol = 107°. (ii) Calculate the actual
error of the approximation. (iii) Is the approximation
accurate to within 107 as requested?

27
(a) / zsin(z?)dz M
0

(b) / idm

(c) /02 2’ In(z” + 1) dz

NOTE: foQ 22 n(z? + 1) do = 241n(5)—6;an71(2)—4.
13. Compare the results of question 12 with those of ques-
tion 30 on page 147.



4.5. EXTRAPOLATION 155

Answers

lim (1 + h)Y/" = e: Begin by noting In [(1+h)V] = % Set
h—0

In(1+ h)

h—0 %(h)
R +h

Thus L = 1, and due to continuity of the exponential function, e*,

. In(14h) . In(14h) . 1/h
e=cl=emn=0 7" = lime * = lim [+
h—0 h—0

= lim (14 h)V".
h—0
€4(h): We use formula 4.5.4 with o = 1, m =4, and n =5 to find
1665 (&) — é3(h)

éy(h) = 15
= e+ O(h°).

Applying this formula to €3(0.01) and €3(0.005) we get

16(2.718281828448482) — 2.718281828281785
15

,(0.01) =

2.718281828459595,

a value that is accurate to 13 significant digits!

’fol sin dac—Tw‘
U: sinxdw—Tls‘
in the approximation of the denominator) is 1.5 times 10 (the number of intervals used in the approximation
of the numerator).

error ratio: We should expect to be about 1.5% = 2.25 because 15 (the number of intervals used

|f01 sinxdz—Tsyzl N 1'522(10)—11 N
|f01 sinxdat—T1072| T 2.374(10)- 13 7

T5 3 and its error: 64 so

64T100 — T
Tss = %z.4596976941318606

1

/sinxdx—T&g ~  4(10)71¢

0




156 CHAPTER 4. NUMERICAL CALCULUS




Chapter

More Interpolation

5.1 Osculating Polynomials

The Taylor polynomials of Section 1.2 and interpolating polynomials of Chapter 3 represent opposite extremes in
the spectrum of osculating polynomials. Taylor polynomials require the value of the polynomial at a single point
while interpolating polynomials require the value of the polynomial at, generally anyway, multiple points. Taylor
polynomials require the values of, generally anyway, multiple derivatives while interpolating polynomials do not
allow derivative specification.

The set of osculating polynomials contains Taylor polynomials, interpolating polynomials, and hybrids. Any
polynomial required to pass through any set of points with any number of derivatives specified at those points is
called an osculating polynomial. Thus a Taylor polynomial is the special case of an osculating polynomial specified
by one point and any number of derivatives at that point. An interpolating polynomial is the special case of
an osculating polynomial specified by any number of points and no derivatives at any point. To be precise, an
osculating polynomial is one that is required to pass through a set of points

(t07y0)7 (tlvyl)u R (t'nayn)

with the first m; derivatives specified at (¢;,;), ¢ = 0,1,...,n. As before, the to,t1,...,t, are called nodes.

One useful type of osculating polynomial is the Hermite polynomial in which the value of the polynomial and
its first derivative are both given at each node. Even more specifically, third degree, or cubic, Hermite polynomials
play an important role in approximation theory. Since a third degree polynomial has four parameters, data—the
ordinate and first derivative—at two nodes is sufficient to specify such a polynomial. So suppose we wish to find a
polynomial p of degree at most three that passes through (to,y0) and (¢1,y1) with derivative go at tg and g at 1.

Remembering the lessons of our study of interpolating polynomials, we might begin with the Lagrange form of
the interpolating polynomial passing through (o, y0) and (¢1,y1) and worry about the derivatives later. That gives
us f(t) = tz:ttll Yo + ttlitt"o y1 to begin. Of course f passes through the required points, but it is not even potentially
cubic, and its derivative is f'(t) = tgyf“tl + tly_lto, a constant. It would be nice if we could add to it, a third degree
polynomial that has zeroes at to and ¢; and whose derivatives we can control. Well, g(t) = (t — to)(t — t1)?, for
example, is cubic, has zeroes at ty and ¢, and has derivative (t — 1) + 2(t — to)(t — t1), so we have at least some

control over its derivative. Great, now let us look at it a little more closely:

g t) =t —t1)2+ 20t —to)(t —t1) = (t —t1) [(t — t1) + 2(t — t0)] .

So ¢'(t1) = 0 and ¢'(tg) = (to — t1)? is nonzero. That should remind you of how we developed the Lagrange
interpolating polynomial. Only, there, the value of the polynomial was either 0 or 1 at each node before we added
g(t)

an unknown coefficient. Of course, §(t) = Tomin? has derivative 1 at t; and 0 at tg. Putting it all together,

Ja(t) = al=10)=t)” yag everything we need to control the derivative at to. Similarly, & (t) = plztol(oty) g
a (to—t1)2 Yy g 0- Y, b (t1—t0)?

everything we need to control the derivative at ¢;. The sum of j, and hy is a degree at most three polynomial with

157



158 CHAPTER 5. MORE INTERPOLATION

zeroes at tg and t; and easily specified derivatives at tg and ¢;. Finally, a polynomial p of the form

t—t t—t
p(t) = L+ ——2 1+ ga(t) + hy(2)
to — t1 t1 — to
t—t t—t t—to)(t —t1)? t—t0)2(t —t
Lo 0 (t —to)( 21) +b( 0)*( 21)
to — t; t1 — to (to —t1) (t; —to)

would be the Hermite polynomial we are after. The first two terms form the interpolating polynomial passing

through the required points. The last two terms are zero at ¢y and ¢; so do not affect this interpolation. Moreover,
2
the last two terms are chosen so that their derivatives are convenient at ty and t;. The derivative of W
2
is 1 at tg and 0 at ¢;. The derivative of % is 0 at tg and 1 at t;. These characteristics ensure simple
values for a and b in terms of the specified derivatives. To find out exactly what they should be, it remains to force

P(to) = 9o and p(t1) = u:

) Y1 — Yo (t —t1)(t —to) (t—to)(t—t) (t —t1)? (t —to)?
T) = +2 a+2 b+ a+ b
Pz) t1 — 1o (to —t1)?2 (t1 —to)? (to —t1)?2 (t1 —to)?
SO "y
. 1= Yo
t p—
p(to) ity
and
. Y1 — Yo
t1) = b.
p(t) Lt T

Therefore, we need ¢ = go — 9= and d = 1 — £1={2. The desired degree at most three Hermite (osculating)
polynomial is

t—t t—to (t—t1)%(t —to) , . (t—to)%(t—t1),.
t) = - (i — 5.1.1
p(t) e U 2 o —11)? (Yo —m) +  —to)? (51 —m) (5.1.1)
where m = £1=40,
1 0

This form of the Hermite cubic polynomial is convenient for humans. It is formulaic and requires very little
computation to write down. We will call it the Human form of the Hermite cubic polynomial. A more computer-
friendly form, which we will refer to as the Computer form of the Hermite cubic is obtained via divided differences.
In general, for an osculating polynomial where the first k derivatives are specified at t;, ¢; and y; must be repeated
k+1 times in the divided differences table. Quotients that would otherwise be undefined as a result of the repetition
are replaced by the specified derivatives, first derivatives for first divided differences, second derivatives for second
divided differences, and so on.

For the cubic Hermite polynomial p passing through (to,yo) and (t1,y1) with derivative g at to and g1 at tq,
the table looks like so:

to Yo Yo |
to Yo |

oy Yy

t1

The four remaining entries are to be filled in by the usual divided difference method. Can you compute them in
general (in terms of to,t1, Yo, Y1, %0, ¥1)? Answers on page 165. Using the results, we write down the interpolating
polynomial in two ways:

pt) = m+@d@—m%+hg:$2_h%m}a_my
yl + yO - Y1 — Yo B _
[(h —tp)? 2(751 _ to)g] (t—to)*(t —t1)

and

yi+ ] (E—t1) + [tly—lto - (il__tzégg} (t—t)?

Y1 + Yo Y1 — Yo ] 2

—+ —2 t— tl t— to .
[(tl —t0)* (1 —to)? (=0t~ to)

Just as we had for interpolating polynomials, we have two ways to find cubic Hermite osculating polynomials. One

way is convenient for humans and the other for computers.

!
—~
~
~
|




5.1. OSCULATING POLYNOMIALS 159

Beézier Curves

Forcing (z(0),y(0)) = (—1,2), we need

z(0) = a,=-1
y(o) = ay =
Forcing (z(1),y(1)) = (5, —2), we need
2(1) = ap+bp+ce=—1+by+c,=5
y(l) = ay+by+cy,=2+b,+c¢c,=-2
or
by +c, = 6
by +cy, = —4

Beézier curves are parametric curves with parameter ¢ € [0, 1] connecting two points. The simplest Bézier curve
is a straight line passing through the two points. For example, the simplest Bézier curve from (—1,2) to (5, —2) is
given by the parametric linear functions

z(t) = (1=8)(=1)+105)
y(t) = (1=1)(2)+1(-2),

which we choose to write down in Lagrange form. You can check that z(0) = —1, (1) =5, y(0) = 2, and y(1) = —2.
In other words, = passes through (0,—1) and (1, 5) while y passes through (0,2) and (1, —2). This parametrization
is unique because x and y are interpolating polynomials.

One the other hand, if we allow x and y to be quadratic, there are infinitely many (parametric) pairs of functions
connecting (—1,2) to (5, —2) even if we require z and y to be interpolating polynomials and restrict the parameter
t to the interval [0, 1]. That is not to say we do not have quadratic Bezier curves, but rather that we need to specify
more than just the two points to be connected. Allowing the parameter function to be quadratic, we have say

(t) = ap+ byt + cyt?
y(t) = ay+ byt + c,t?,

giving six unknowns or undetermined coefficients, if you will. That leaves two conditions that may yet be imposed
on the parameter functions.

Any particular quadratic Bezier curve is prescribed by specifying a control point distinct from the two endpoints.
The two linear Beézier curves, one connecting (—1,2) to the control point and the other connecting the control point
to (5,—2), then determine the quadratic Bezier curve. Suppose B?Lo(t) is the linear Bezier curve from (—1,2) to
the control point and B ;(t) is the linear Bézier curve from the control point to (5, —2). These two curves define
a family of linear Bézier curves, namely the set of linear Bézier curves from él,O(tO) to Bi1(to), where to € [0,1].
Letting §2707t0 (t) be the linear Bezier curve from §170(t0) to él,l(to), the point §2,07t0 (to) is on the quadratic Beézier
curve from (—1,2) to (5, —2) via the given control point. The collection of all such points as ¢, varies from 0 to 1
is the quadratic Bezier curve we are after. Different control points determine different quadratics. For example, if
we have (0,4) as our control point, §1,0 is the linear Beézier curve connecting (—1,2) to (0,4) and §1,1 is the linear

Bezier curve from (0,4) to (5, —2):
5 _ (I—-t)(-1)
Bio(t) = ( (1—1)(2) + t(4)
and
5 _ t(5)
Bia(t) = ( (I—-t)(4) +t(-2) ) '
ég)mto is the linear Beézier curve connecting 3'170(750) to 5171(t0). Therefore, §2,O,t0 t)=(1- t)§170(t0) + tgl,l(to)

or
- 1—to)(~1
Baow(t) =1 1) ( 0 ) s ) T ( (1 1)) + to(~2) ) '



160 CHAPTER 5. MORE INTERPOLATION

Then
Buoatt =1 -0 (0 LT )+ (i baoi )
Observe that By o, is quadratic as a function of # and that By 0(0) = (_21) and By 1(1) = (_52)
But the notati(in 3'2707% (t_?) is cumbersome and we are really interested in a parametrization of the quadratic
anyway. Letting B (t) = B2,0.+(t), we get the quadratic Beézier curve from (—1,2) to (5, —2) via control point

(0,4):
- 1—t)(—1) t(5)
Bay(t) = (1—t)( (1(_t)(2)+t(4) )“( (1—t)(4£)+t(—2> )

and we have cleaner notation.
With some algebra, the expression for By o can be simplified, but leaving it unsimplified emphasizes whence it
came. It is the result of nested linear interpolations. Higher order Bezier curves are constructed by continued nesting.

We now use this idea to define the Bezier curve from Po to P,L via control points P1, PQ, - Pn 1. Commonly, PO
and Pn are also cons1dered control points and so this Beézier curve is also referred to as the Beézier curve with control
points PO, Pl, .. P Such a Bezier curve will have degree at most n.

We begin by deﬁmng the linear Bézier curves
Biit)=(1—-tP,+ (t)Py1, i=0,1,....,n—1. (5.1.2)
Note that El,i is the linear Beézier curve from 15; to ]5;4_1. Then
Bjit)=(1—1t)-Bj 1)+ @) - Bj_1:01(t), §=2,3,...,m i=0,1,...,n—j. (5.1.3)

Note that ég7i(t) is the quadratic Bezier curve connecting 13Z to 15;+2 via control point f’i+1. With a little algebra,
you can confirm that Bs ;(¢) is at-most-cubic and connects P; to PZ+3 An inductive proof will show that Bj ;(t ) is
an at-most- degree -7 polynomial parametrization connecting P to Plﬂ Can you provide it? Answer on page 5.1.

It follows that B, .0(t) is the degree at most n Beézier curve connecting P, to P,.
Returning to our previous example, we add the control point (5,1) so we have now four control points:

e (). (-5 ()5 (5)

By equation 5.1.2,

Bio(t) = (1-t)P+ ()P =(1—1) (

And by equation 5.1.3,

Boot) = (1—t)Bro(t) + ®)Bra(t) = (1—1) (;f;) +t < ) ft?)t) - (‘21++4?_+5‘;§2>

Box(t) = (1—)Bia(t) + (t)Bra(t) = (1—t) (4 Et3t) i (1—5315) - <1‘f_‘65t’52),
and
(1—t)Bao(t) + (t) B (t)
(Y (e

B (—1 + 3t +12t2 — 9t3)

o
w
o
—~

~
~

2 + 6t — 15t2 4+ 5¢3 (5.1.4)



5.1. OSCULATING POLYNOMIALS 161

Figure 5.1.1: Three points on a cubic Bezier curve constructed by recursive linear interpolation.
P P p

1 451 481

Bs 0(t) is the cubic Bezier curve from _21) to (52> via control points (2) and ? Figure 5.1.1 shows this

Bezier curve and the construction of three of its points via recursive linear interpolation. The blue points lie along
the linear Bezier curves Bl 0, Bl 1, 31 2. The orange points lie along the quadratic Bezier curves Bg o and B2 1.
The black points lie along the cubic Bezier curve. The graphs of the quadratics have been suppressed to avoid
overcomplicating the figure.

Figure 5.1.1 may help you grasp the recursion, but maybe more importantly, may help you understand the
relationship between the control _points and the Bezier curve. For example, upon close examination, you may be
led to believe the line segments 31 o and 31 o are tangent to the cubic Bezier curve B3 o at Po and P3, respectively.
Close examination of the formulas will confirm it.

According to formulas 5.1.2 and 5.1.3, the (at most) cubic Bézier curve with control points 150,]31,152,153 is
computed thus:

Bio(t) = (1-t)F+(t)P
Bia(t) = (1-t)P + ()P
Bia(t) = (1—-t)B+ (1P
Bao(t) = (L=0Bio)+OBia() = (1= [(1=0F +OF] +t [0 - 0B + (0)B)]
= (1—1)%P)+2t(1 — t)P, + * P,
Baa(t) = (1= B+ ®)Ba) = (1= 1) [(1= B + O]+t [(1 = )P + () By
= (1-t)?P +2t(1 - t)P, + t*P;

By o)+ (¢ )BQ 1(t)

[ —4)2B) +2t(1 — )P, + tZPQ} i [(1 — 2P, 1+ 2t(1 — )Py + t2]33} (5.1.5)
)Py + 3t(1 — t)2P, + 3t2(1 — t) Py + 13 Ps.

+

3[(1 =1 —2t(1—1)] P +3 [2t(1 —t) — t?] P, + 3t2P5, from which it follows

d - L L

%Bgo( ) = —3P0+3P1:3(P1—P0)
t=0

d - L L

%3370(15) = 3P, +3P;= 3(P3 — PQ).
t=1

Indeed, the derivative of 53,0 at 0 is in the direction of the line segment from 151 to 152, and the derivative of 53,0
at 1 is in the direction of the line segment from ﬁg to ﬁ3. Moreover, these derivatives have magnitude exactly three
times the magnitudes of the line segments.

Though we took a somewhat circuitous route, we now see another way to compute cubic Bezier curves besides
using recursion 5.1.2/5.1.3 or formula 5.1.5. Control points ]30 and ]33 give us two points x and y must pass through.
Control points Py and P, give us & and ¢ at those two points. Thus specified, x and y are cubic Hermite polynomials!



162 CHAPTER 5. MORE INTERPOLATION

To be precise, let P; = (z;,y;) for i = 0,1,2,3. Then z(t) is the cubic Hermite polynomial with z(0) = o,
2(0) = 3(z1 — x0), z(1) = x3, and @(1) = 3(z3 — z2); and y(¢) is the cubic Hermite polynomial with y(0) = yo,
9(0) =3(y1 — o), y(1) = ys, and y(1) = 3(y3 — y2)-

We close this section by computing the Beézier curve from (;) to (_52) via control points (2) and (?)

using equation 5.1.1 and comparing our results to 5.1.4. With z(0) = —1, ©(0) = 3, z(1) = 5, and (1) = 0 (and
the understood substitution of x for y), equation 5.1.1 gives m = i’—fé =6 and

() = %(—1) +1E)+ “%1” (3—6)+ @ (=6).

Using equation 5.1.1 with y(0) = 2, §(0) = 6, y(1) = —2, and (1) = =9 gives m = 522 = —4 and
t2(t—1)

-1 t (t—1)%

y(t) _71(2) + I(_Z) E—

While these equations are complete and correct, it is difficult to compare them to 5.1.4 without some simplification.
Can you show

(6 +4) + (—9+4).

z(t) = —1+3t+12t> -9
y(t) = 2+ 6t— 15t 4 5¢3

as required? Answer on page 165.

Crumpet 29: Bézier curves and CAGD

Bézier curves were originally developed around 1960 by employees at french automobile manufacturing companies.
Paul de Casteljau of Citroén was first, but Pierre Bézier of Renault popularized the method so has his name
associated with the polynomials.

Nowadays, almost all computer aided graphic design, or CAGD, software uses Bézier curves, particularly
cubic, for drawing smooth objects. CAGD software with cubic Beézier tools will display the four control points
and allow the user to move them about. In fact, the software will draw the two linear Bézier curves at the
endpoints as well. This gives the user “handles” to manipulate the curve. Some software will include the third
linear Bezier curve as well. The three linear Bézier curves together form the so-called control polygon. Since the
relationship between the control points and the curve is intuitive, manipulation of the control points, whether it
be by handles or control polygons, provides a means for swift modeling of smooth shapes.

Some shapes are too intricate to model with a single cubic Beézier curve, however. To handle such shapes,
CAGD software allows a user to string cubic Beézier curves together end to end, forming a composite, or piecewise,
Beézier curve, such as that shown here.

0 Pg

This particular curve is made of two cubic Beézier curves, one with control points ﬁo, ﬁl, 132, P; and the other with
control points 133, }34, 135, Ps. Since Bezier curves are intended to model smooth objects, software will provide the
option of forcing derivative matching at a common point such as P,. This is done by making sure the common
point is on the line segment between its two adjacent control points (132 and P in this diagram). You may view
an interactive version of this diagram at the companion website.

Free open source software such as Inkscape, LibreOffice Drawing, and Dia provide Bezier curve drawing
tools, but not all of them use the technical term. Inkscape has a Bezier curve tool by that name, but LibreOffice
Drawing’s Bezier curve tool is simply called “curve”, and Dia’s tool for single Bezier curves only, not composite,
goes by the name of “Bezierline”.


http://lqbrin.github.io/tea-time-numerical/ancillaries.html

5.1. OSCULATING POLYNOMIALS

163

References [1, 10, 9, 15, 27, 32]

Key Concepts

osculating polynomial: A polynomial whose graph is required to pass through a set of prescribed points

(IOa yO)v (x17y1)7 ey (Ina yn)

and whose first m; derivatives may also be specified at x;.

Hermite polynomial: An osculating polynomial required to pass through two points with its first derivative

specified at each point.

Beézier curve: A curve connecting two points via parametric osculating polynomials.

Exercises

1. Find the cubic Hermite polynomial interpolating the
data.

1

| fla)  f'(2)
2
3 -1

ot =8

2. Find the Hermite polynomial of degree (at most) 5 in-
terpolating the data.

T
0

3. Let g(z) = (v2)".

(a) Using zo =1 and z; = 2, find a Hermite interpo-
lating polynomial for g.

(b) Use the Hermite polynomial to approximate
g(1.5).

(c) Calculate the actual error of this approximation,
and compare it to the error you got in question
15 of section 3.2 on page 98.

(d) Which polynomial approximated g¢(1.5) with
smaller absolute error, the Hermite or the La-
grange interpolating polynomial?

4. Find a polynomial that passes through the points (0, 0)
and (4,—3) and whose derivative passes through the
points (0,1) and (4,1).

5. Construct the Hermite interpolating polynomial for the
given data. Do this using a pencil, paper and calcula-
tor, or a spreadsheet. Do not use code.

v | f@) | fl)

0.1 | —0.29004996 | —2.8019975
0.2 | —0.56079734 | —2.6159201
0.3 | —0.81401972 | —2.4533949

6. Find parametric equations for the cubic Bezier curve.
The ends of the “handles” are the four control points.

A

\ 4

7. Write down the parametric equations of the Bezier
curve with control points (—1,2), (=3,2), (3,1), and
(3,0). It is not necessary to simplify your answer.

8. Construct the parametric equations for the Bezier curve
with control points (1,1), (2,1.5),(7,1.5), (6,2).

9. Find equations for the cubic polynomials that make up
the composite Bézier curve.

10. The data in question 5 were generated using f(z) =

22 cos(x) — 3z.



164

CHAPTER 5. MORE INTERPOLATION

(a) Approximate f(0.18) using the polynomial from
question 5.

(b) Calculate the absolute error of this approxima-
tion.

11. Suppose H(z) = 2° — 3z* + 22® — 62 + 2 is a Hermite
polynomial interpolating the data

v | fl@) f(=)
0] 2 -6
1| —4

2| 10 2

collected from a function f. Find the missing datum.

12. A Hermite polynomial H(x) is constructed using the
data

z 03] 05 | 06 |08
fz) | 08] 06 | 03 | 05
f(z) [15 | —12 | =53 | -2

(a) Find (H o H)'(0.6). That is, the derivative of
H(H(z)) evaluated at = = 0.6.

(b) Find (f o f)’(0.8).

13. The Hermite interpolating polynomial for the following
data has the form H(z) = ao + ai(z — 0.3) + az(x —

0.3)% 4 ...
x| fl=) | fl(x)
0.30 | 0.295 | —0.155
0.32 | 0.314 | —0.149
0.35 | 0.342 | —0.139

(a) Fill in the missing part of the form of H(z).
(b) What is the maximum possible degree of H(z)?

(¢) Find ao and a;1.

14. Construct the divided differences table that led to the
Hermite polynomial

p@)=2- (e -1+ 1 (e~ 1 + 1@~ 1@ - 3)

15. The Bezier Curve

() 11t* — 18> + 3t +5
yt) = 241

has control points (5,1), (6,1), and (1,2). Find the

fourth control point.

16. What is the minimum number of cubic Beézier curves
in the diagram, and why?

17. Refer to the following graph.

(a) The graph can not be the graph of a single cubic
Bezier curve. Why not?

(b) The graph is that of a composite cubic Beézier
curve. At least how many cubic Beézier curves
have been spliced together, and why?

18. Give three reasons that might make you use a Bézier
curve rather than a Lagrange polynomial to model a
certain graph.

19. The osculating polynomial p(x) passing through
(w0, f(x0)) with P'(z0) = f'(z0), P"(w0) = f"(0),
and P"'(z0) = f"'(x0) is also called what? Be as spe-
cific as you can.

20. A cubic polar Beézier curve is the unique (parametrized)
cubic polar function (r(t), 6(¢)) satisfying the following
data.

t 1 rt) | 00t) | #(t) | 6t)
o 0o do Ho
1| 01 01 H1

(a) A standard cubic Bézier curve is given by the con-
trol points (0,0), (2,0), (0,1), and (0,3) (in that
order). Convert this data into polar coordinate
data. Recall that the conversion from Cartesian
coordinates to polar coordinates involves the for-
mulas

r=+/22+y?> and tanf = %

(b) Find the cubic polar Beézier curve based on your
results from (a).

21. Write a function to compute Hermite polynomials.

22. A car traveling along a straight road is clocked at
a number of points. The data from the observations
are given in the following table, where the time is in
seconds, the distance is in feet, and the speed is in feet
per second.

Time 0 3 5 8 13
Distance | 0 | 225 | 383 | 623 | 993
Speed 75| T7 80 74 72




5.1. OSCULATING POLYNOMIALS

165

(a) Compute a Hermite interpolating polynomial for
the data.

(b) Use your polynomial from part (a) to predict the
position (distance) of the car and its speed when
t = 10 seconds.

(d) What is the predicted maximum speed for the
car?

NOTES: Speed is the derivative of distance.

miles miles 5280 feet 1 hour
(¢) Determine whether the car ever exceeds the 55 55 = 55 :
o . hour hour mile 3600 seconds
mph speed limit on the road. If so, what is the foot
first time the car exceeds this speed? ~ 80.67
second
Answers
Hermite polynomial computer form: The four remaining entries are
Y1 —%
fin = Lt
foa = fiir—% _ y1—Yo Yo
0,2 — - -
' t1—to (t1 —t0)*> t1—to
U1 — fi1 U1 Y1 — Yo
f1,2 e g — 3
t1 —to t1 —to  (t1 —to)
fos = fra—Joz _ ity
' i —to (t1 —t0)? (t1 —t0)3

Bezier curve le(t) is an at-most-degree-j polynomial connecting P, to P;j

duction on j, beginning with j = 1: Since

.
%

Bui(t) = (1= t)P, + (t) P41,

: Proof. We proceed by in-

i=0,1,...,n—1,

B?M(O) = P and By,i(1) = 131‘+1 SO El’i connects P; to 131-“. Furthermore, B?Li(t) =P, +t(,ﬁi+1 — ]31)7 SO él,i
is an at-most-degree-1 polynomial. Now assume Ejl(t) is an at-most-degree-j polynomial connecting P, to
P;j for some j > 1 (and all applicable 7). By definition, éj+17i(0) = EJZ(O) and B}H,i(l) = §j7i+1(1). By
the inductive hypothesis, §j7i(0) = P, and Ej,i+1(1) = ]3i+j+1, SO §j+1,i connects P; to ﬁi+j+1. Furthermore,

Bjy1i(t) = (L—1) - Bja(t) + (t) - Bjisa (t)

has degree at most j + 1 because gjl(t) and gj,i+1(t) have at most degree j (by the inductive hypothesis).

This completes the proof.

O

Bézier curve via Hermite cubics: The simplification may be done as follows.

t—1 t t—1)2%¢ t2(t—1
o) = ey Ly DT g g T )
-1 1 1 1
(t—1) + 5t —3t(t — 1)* —6t*(t — 1)
= 6t—1—3t(t> — 2t +1) — 61> + 6t
= 6t—1—3t3+6t2— 3t —6t3 + 6¢°
= 92 +12t24+3t—1
and
t—1 t t—1)2%¢ t2(t—1
yt) = _—1(2)+I(—2)+%(6+4)+¥(79+4)

5t3 — 15t2 + 6t + 2.

—2(t — 1) — 2t + 10t(t — 1)* = 5t*(t — 1)
—2t +2— 2t + 10t(t* — 2t + 1) — 5t° + 5t
2 — 4t 4 10> — 20t* 4 10t — 5t3 + 5¢*



166 CHAPTER 5. MORE INTERPOLATION

5.2 Splines

Osculating polynomials have limited use in applications where a curve is required to pass through a large number
of points. And large may mean only a half dozen or so. Take the following innocuous-looking set of points.

1 T T
0.5 [® [ —
0 - ° [ ] [ ] |
0.5 . g
-1 | | | | | | | |

It is easy to imagine an equally innocuous function passing through these eight points, but actually finding such a
function poses a slight challenge. The interpolating polynomial of least degree oscillates too widely.

a L \ \ \ \ 7

This is a common problem with high-degree interpolating polynomials. There is no control over their oscillations,
and the oscillations are most often undesirable. The oscillations can be tamed to some degree by finding the
osculating polynomial through these points with, say, a first derivative of 0 at 0 and of f% at the seventh point
from the left (the one whose x-coordinate is between 5 and 6).

That’s better, but still leaves something to be desired. And the business of setting the first derivatives at two of the
points strictly for the purpose of reducing the oscillations is a bit arbitrary—Dbetter to let the nature of the problem
dictate. The oscillations of the previous attempts make them far too distinctive and interesting for the vapid set of
points with which we began. A rightfully trite way to interpolate the data is by connecting consecutive points by

line segments.
0.5 _
o :‘\‘\/‘\’/.__‘\‘_
-0.5

-1 | | | | | | | |




5.2. SPLINES 167

This forms what is known as the piecewise linear interpolation of the data set. This type of graph is often seen in
public media. Many applications, especially those from engineering, require some smoothness, however. Connecting
sets of three consecutive points by quadratic functions helps.

1 T T T T T T T T

0.5 i
o :‘\‘\/*\/’__\‘_

-0.5 -

1 b \ \ \ \ \ \ \

o 1 2 3 4 5 6 7

That takes care of smoothness at three of the points, but still lacks differentiability at the points common to
consecutive quadratics. Moreover, using the first three points for the first quadratic (which looks linear to the
naked eye), the third through fifth points for the second quadratic, and the fifth through seventh points for the
third quadratic (which also looks linear to the naked eye) leaves only the seventh and eighth points for what would
presumably be a fourth quadratic. With only two points, however, a line segment is used instead. A smoother
solution to the problem is to make sure the first derivatives of consecutive quadratics match at their common point.
With that in mind, it makes sense to fit only two points per parabola, leaving one coefficient (of the three in any
quadratic) for matching the derivative of the neighboring quadratic.

1 T T T T T T T T

0.5 i
0r i
-0.5 - -

1 L \ \ \ \ \ \ \
0 1 2 3 4 5 6 7

That’s better! This piecewise parabolic function has continuous first derivative, but there is still something arbitrary
about it. The seven parabolas have, all together, 21 coefficients. Making each parabola pass through two points
gives 14 conditions on those coefficients. Having adjacent parabolas match first derivatives at their common points
gives 6 more conditions, one at each of the 6 interior points. That leaves one “free” coefficient. Specifying one last
condition seems a bit arbitrary, and is. The graph shows the result when the derivative at 0 is set to 1. Notice
there is no control over the derivative at the right end. Besides the arbitrariness, this asymmetry is bothersome. If
only we had one more degree of freedom...

Piecewise polynomials
A piecewise-defined function whose pieces are all polynomials is called a piecewise polynomial. It takes the form

pi(x), x € [xo,21]

play = {20 pe el

pr(x) € (Tp_1,Ty]

where p;(x) is a polynomial for each ¢ =1,2,...,n and g < z1 < --- < z,; or some variant where p(x;) is defined
by exactly one of the p;. If each p; is a linear function, p is called piecewise linear. If each p; is a quadratic function,
p is called piecewise quadratic. If each p; is a cubic function, p is called piecewise cubic. And so on. Examples of
piecewise linear and piecewise quadratic functions appear in the introduction to this section.

Splines

Nothing about the definition of piecewise polynomials requires one to be differentiable or even continuous. The
following function is a piecewise polynomial.

0.4 ’

0.2
0
-0.2
-0.4

T

T

T

T




168 CHAPTER 5. MORE INTERPOLATION

Most applications of piecewise polynomials require continuity or differentiability, however. Any piecewise polynomial
with at least one continuous derivative is called a spline. The points separating adjacent pieces, the x;, j =
1,2,...,n—1, are called knots or joints.

The last graph in the introduction to this section shows a quadratic spline. Each piece of the piecewise function
is a quadratic, and the quadratics are chosen so that their derivatives match at the joints. As pointed out there,
though, we needed to supply one unnatural condition—the derivative at the left endpoint. It could have been the
derivative at any of the points, or even the second derivative at one of the points. In a very real sense, the choice
was arbitrary. It was not governed naturally by the question at hand. Consequently, there is a family of solutions
to the problem of connecting those eight points with a continuously differentiable piecewise quadratic.

Cubic splines

The most common spline in use is the cubic spline. As with the quadratic spline, a cubic spline is computed by
matching derivatives at the joints. In fact, there are enough coefficients in the set of cubics that both first and
second derivatives are matched. Note that, according to our definition of spline, matching both first and second
derivatives at the joints is not strictly necessary, however. Other sources will give a more restrictive definition of
spline where matching both derivatives is required. As a matter of convention, we focus on such splines.

A cubic spline required to interpolate n + 1 points has n — 1 joints and n pieces. It follows that the set of cubics
has 4n coefficients. Requiring each cubic to pass through 2 points gives 2n conditions on the coefficients. Requiring
first derivative matching at the joints gives n — 1 more conditions. Requiring second derivative matching at the
joints gives an additional n — 1 conditions for a grand total of 4n — 2 conditions. That leaves 2 “free” coefficients.
Mathematically speaking, we have a family of splines with two degrees of freedom. To find any specific spline, we
need to enforce two more conditions on the coefficients. These conditions may include the first, second, or third
derivative at two of the nodes, both the first and second derivative at a single node, or some other combination of
two derivative requirements.

Guided perhaps by knowledge of draftsman’s splines, convention leads us to supply endpoint conditions. That
is, we require something of some derivative at x¢ and at x,. Supplying the first derivative is akin to pointing
the draftsmen’s spline in a particular direction at its ends. Setting the second derivative equal to 0 is akin to
allowing the ends of a draftsman’s spline to freely point in whatever direction physics takes them. These models of
draftsman’s splines are not particularly accurate, but they are motivational.

A cubic spline with its first derivative specified at both endpoints is called a clamped spline. A cubic spline with
its second derivative set equal to zero at both endpoints is called a natural or free spline. A hybrid where the first
derivative is specified at one end and the second derivative is set to zero at the other has no special name. To be
precise, we have the following definitions.

Let (20,%0), (1,91),- -+, (Zn,yn) be n + 1 points where z¢p < 21 < -+ < 2, and let S;(x) = a; + b;(x — ;) +
ci(r —x)? +di(x — ;)3 fori =1,2,...,n. Then S, defined by

Si(x), x € [xo, 1]
So(x), x € [x1,x2]

S(z) = : ,
Sn(x), = € [Tn_1,Ts)
is a cubic spline if it satisfies the following three conditions.
1. Si(xi—1) = yi—1 and S;(z;) = y; for i = 1,2,...,n (interpolation)
2. Sj(x;) = Si;1(xs) and S} (x;) = S§'y () for i = 1,2,...,n — 1 (derivative matching)

3. One of the following is satisfied (endpoint conditions)

(a) St(z0) = Sy/(xn) =0

(b) Si(xg) = mg and S} (z,) = m,, for some mgy and m,,
(¢) Si(xg) = mg for some mgy and S/ (z,) =0

(d) SY(xo) =0 and S, (x,) = m, for some m,

If endpoint condition 3a is satisfied, S is called a free spline or natural spline. If endpoint condition 3b is satisfied,
S is called a clamped spline.

The natural (cubic) spline passing through the eight points presented in the introduction to this section looks
like this.



5.2. SPLINES 169

1 T T T T T T T T

0.5 .
. W_
-0.5

-1 | | | | | | | |

Finally, a function that is as unspectacular as the data set itself! How was it calculated, you ask? The short answer
is, the 28 simultaneous equations resulting from the definition of natural cubic spline were solved. The solution
provided the coefficients a;, b;, ¢;,d;, 1 =1,2,...,7.

Setting up the equations

The long answer is, well, a bit longer to tell, but really only differs from the short version in the level of detail. To
begin, the requirement that S;(x;) = y; immediately gives us the values of n of the coefficients:

Si(z:) = a; = y;.

The requirement that S;(z;—1) = y;—1 gives us the n equations

Si(wic1) = yi +bi(zicn —2) + ¢i(wimy — 2) + di(@i1 — 2)® =y (5.2.1)
for i =1,2,...,n. The derivative requirements give us n — 1 equations each:
S;(Z‘z) = S{+1(IZ) = b= bi+1 + 2Ci+1(xi — $i+1) + 3d,’+1($i - $i+1)2 (522)
Sz{/(l‘i) = SZICH(J?@) = 2¢; =2¢i41 + GdiJrl (l‘i — $i+1) (523)
fori=1,2,...,n — 1. Finally, the endpoint conditions give us the two equations
Si’(l‘o) = 2c + 6d1(.730 — 331) =0 (524)
S'(zn) = 2¢,=0.

Without much ado, we have the values of the a; and of ¢,. The remaining 3n — 1 coefficients are found by solving
the remaining 3n — 1 simultaneous equations. Though a computer can certainly handle the solution from here,
finding a bit of the general solution by hand gives a much more efficient algorithm.

Solving the equations

Essentially, we now have three equations with three unknowns. Equations 5.2.1, 5.2.2, and 5.2.3 are written in
the variables b;, ¢;,d;. Equation 5.2.3 can easily be solved for d; in terms of ¢; and equation 5.2.1 can easily be
solved for b;. The resulting expressions can be substituted into equation 5.2.2 to get an equation in only ¢;. It is a
straightforward matter to complete the calculation. At this point, it becomes convenient to define h; = ;1 — ;.

(5.2.3) = dig=2 T 12 n-1
3hit1
- diz%, i=23,...,n. (5.2.6)
0
(5.2.1) = bi:w—cihi—dih?, i=1,2,....n
i—1— Yi i—1— Ci)hi
S L T
i—1 — Vi -1+ 2¢i)hi
- =2 1h G 14; i 95 n (5.2.7)
i — Yi i +2¢i41)hi ‘
- bM:yhy“—(H 63“) i =1,2,.. . n— 1.
1+1

Substituting into equation 5.2.2,

i-1— Y (cim1 4 2¢)h; i — Yi Ci + 2¢i1)hi
Yi-1 — i (cioa Vi _yi—yirn  ( +1)hit1 2 1hiss + (6 — e
hi 3 hi+1 3




170 CHAPTER 5. MORE INTERPOLATION

fort=2,3,...,n— 1. With a bit of simplification, this becomes

Yi-1 —Yi  Yi — Yit1
h; hita

hici,1 + 2(h1 + h7;+1)C7; + hi+1Ci+1 =3 ( > s 1= 2, 3, ceey,n— 1. (528)

We now have n — 2 equations in the n unknown ¢;. These equations hold for any cubic spline with any endpoint
conditions. But equation 5.2.2 has not been used with index ¢ = 1. Hence, we still have to incorporate
b1 = by + 2¢coho + 3d2h§ (529)

into the solution. It remains to replace by, by, and do by expressions in ¢;.
To begin, equations 5.2.7 and 5.2.6 with ¢ = 2 give

b, — LT (c1 + 2¢2)hs
, = _

ha 3
C1 — C2
d =
? 3hs
Making the substitutions for by and ds, equation 5.2.9 becomes
— c1+ 2c2)h
by = -y (o 2)hz + 2c0ha + (c1 — c2)ha
ha 3
Y1 —Yy2 | 2 1

= —h —hoca. 5.2.10

Iy + 3 2C1 + 3 2C2 ( )

We have not used the endpoint conditions yet, so this equation is good for any cubic spline. Whatever endpoint
conditions are given must result in an expression for b; in terms of ¢; plus one other equation in the c;.
In the case of the free spline, endpoint condition 5.2.5 gives ¢, = 0. This is the first of the final two equations.

Endpoint condition 5.2.4 gives di = _;Tll' This relationship is not directly useful since we are looking for an
expression for b;. However, equation 5.2.1 with ¢ = 1 gives by = yO,:lyl —c1hy — dlh% so we can use it to find
Yo— Y1 2
by = — —c1hy.
1 I 3G

Finally, substituting into equation 5.2.10, the final equation in ¢; is % - %clhl = % + %hgcl + %thg, which
simplifies to

2(hy + ha)er + hacy =3 (yo — y2> . (5.2.11)
hy ha
Equations 5.2.8, 5.2.11, and ¢,, = 0 are n equations which can be solved for the n coefficients ¢;. Back-substitution
will give the values of the b; and d;.
Other endpoint conditions lead to a different pair of final equations, but the process is the same. We need to
substitute an expression for b; into 5.2.10 and come up with one other equation.

An application of natural cubic splines?

“For many important applications, this mathematical [cubic spline] model of the draftsman’s spline is highly real-
istic”! Claims such as this rely on the assumptions that a draftsman’s spline is aptly modeled by a thin beam and
that beam deflections are small. But the shapes modeled by splines often include large deflections, and unless the
draftsman’s spline is damaged in some way, its shape will be an infinitely differentiable curve. Cubic splines gener-
ally lack continuity in their third derivative, hence, do not have higher order derivatives. Moreover, the endpoint
conditions S{(zg) = S}/(z,) = 0 do not translate well to the physical situation. These conditions imply the shape
of the spline has zero curvature (concavity) at the endpoints while nothing about the physical situation points to
that conclusion.

Despite the cubic spline’s ineffective use as a model for a draftsman’s spline, it can be used with great efficacy
in design applications. At Boeing, the airplane manufacturer, for example, they are used in computer-aided graphic
design, computer-aided manufacturing, engineering analysis and simulation, and as a key component in Boeing’s
Automated Flight Manual system. By 2005, it was estimated that Boeing’s use of splines involved about 500 million
spline evaluations every day!?

L Ahlberg and Nilson, The Theory of Splines and their Applications, Elsevier, 1967.
2STIAM News, volume 38, number 4, May 2005.



5.2. SPLINES

171

Exercises

1.

What problem with polynomial interpolation does cu-
bic spline interpolation address?

. Write down the system of equations that would need

to be solved in order to find the cubic spline through
(0,-9), (1,—13), and (2, —29) with free boundary con-
ditions. Do not attempt to solve the system. [5]

Set up but do not solve the equations which could be
solved to find the free cubic spline through the points
(1,1), (2,3), and (4, 2).

List three reasons that might make you use a cubic
spline rather than a Lagrange polynomial to model a
certain graph.

Write down a system of equations that could be solved
in order to find the free cubic spline through the fol-
lowing data points. Do not solve the system.

Write down the system of equations that would need
to be solved in order to find the cubic spline through
(0,-9), (1,—13), and (2, —29) with clamped boundary
conditions S’(0) =1 and S’(2) = —1. Do not attempt
to solve the system.

Set up but do not solve the equations which could be
solved to find the clamped cubic spline through the
points (1,1), (2,3), and (4,2) with S’(1) = S’(4) = 0.
[s]

Write down a system of equations that could be solved
in order to find the clamped cubic spline through the
following data points with S'(0.1) = 0.5 and S’(0.4) =
0.1. Do not solve the system.

Find the spline described in question

10.

11.

12.

13.

14.

15.

16.

17.

(b) 9b
(c) 9c

Modify the code presented in this section so that it
computes the coefficients for a clamped cubic spline. (5]

Use your code from question 10 to check your answer
to question

(a) 9d
(b) 9e B
(c) of A

Modify the code presented in this section so that it
computes the coefficients for a cubic spline with mixed
endpoint conditions 3c (page 168).

Use your code from question 12 to find the cu-
bic spline through (0, —9), (1, —13), and (2, —29) with
mixed boundary conditions S’(0) =1 and S”(2) = 0.

Use your code from question 12 to find the cubic
spline through the points (1,1), (2,3), and (4, 2) with
S'(1)=8"(4) = 0.

Suppose n + 1 points are given (n > 1). How many
endpoint conditions are needed to fit the points with a

(a) quadratic spline with first derivative matching at
each joint?

(b) cubic spline with first and second derivative
matching at each joint?

(¢) quartic spline with first, second, and third deriva-
tive matching at each joint?

(d) adegree k spline (k > 1) with derivative matching
up to degree k — 1 at each joint?

Suppose a spline S is to be fit to the four points (z;, y;),
i =0,1,2,3 where x¢p < x1 < x2 < x3. Further sup-
pose S is to be linear on [zo, z1], quadratic on [z1, z2],
and cubic on [z2, z3]. Finally suppose S is to have one
continuous derivative. How many endpoint conditions
are needed to specify the spline uniquely? Argue that
any such endpoint conditions must be specified at x3
and not xg.

Let f(z) = sinz and xg = 0, x1 = /4, 2 = 7/2,

x3 = 3mw/4, and x4 = 7.

(a) Find the cubic (clamped) spline

(o, f(0)), (w1, f(21)), .-, (24, f(2a))
§'(0) = £'(0) and S'(m) = f'().

Approximate f(7/3) by computing S(7/3).
Approximate f(77/8) by computing S(77/8).

through
with

A A
o o o
2 o Z

Calculate the absolute errors in the approxima-
tions.



172 CHAPTER 5. MORE INTERPOLATION




Chapter

Ordinary Differential Equations

The gate and key to the sciences is mathematics.
~Roger Bacon (Opus Majus)

If I were again beginning my studies, I would follow the advice of
Plato and start with mathematics.
—Galileo Galilei

6.1 The Motion of a Pendulum

A brief history

Christiaan Huygens (1629-1695) is credited with inventing the pendulum clock in 1656, and Galileo Galilei (1564-
1642) is credited with the first scientific study of the properties of pendula.[25, 33] In a famous letter to Guidobaldo
del Monte in 1602, Galileo asserts that the period of a swinging pendulum (the time it takes to swing one way and
back) is independent of the amplitude of the swing (how far it swings left and right). Del Monte famously argued
that the physical evidence did not support the claim.[20] And he was right—it does not, and Galileo’s claim is
actually false. The period of a pendulum varies with the amplitude of its swing (all else equal).

Historians are generally willing to forgive Galileo for this error, though, likely due, in part, to the fact that the
period of a pendulum is nearly constant for small amplitudes, and in part, to the fact that Galileo was the main
figure in the scientific revolution (the birth of modern science) in the 17th century. His results regarding pendular
motion account for only a small part of his total contribution to the sciences. The way he utilized idealized
mathematical models of the physical world to inform his claims and experiments, a method of scientific study that
directly contrasted with the generally held wisdom of his day, forms the basis for the scientific revolution, and as
such was at least as important to science as any of his individual scientific discoveries. As for the pendulum, he
put in motion the investigations which would one day (some years after his death) lead to a method of determining
longitude at sea, an accomplishment that would change the world! With the ability to calculate their longitude,
sailors were able to sail the seas, discover new places, and map the globe. Perhaps the biggest impact was the
European colonization of foreign lands.

The thought of a pendulum today most likely brings to mind the grandfather clock. While arguably less
important than its contribution to science and navigation, the timekeeping accuracy that pendulum clocks brought
to the world had a substantial impact on broad society. With accurate timekeeping, time-based labor, transit and
trade schedules, announced starting times for religious or other meetings, and every other clock-based phenomenon
we take for granted today became possible. In the 17th century, these things were novel. To put into some
perspective just how important the clock, and therefore the pendulum became to society, consider Mumford’s
claim: “the clock, not the steam-engine, is the key-machine of the modern industrial age.”[24]

173



174 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

Figure 6.1.1: Free body diagram for a pendulum.

Pivot
.

Crumpet 30: The Pendulum Clock

Galileo never implemented the pendulum as a timekeeping mechanism. It was around 15 years after Galileo’s
death that the pendulum clock became a reality. Even though his first pendulum clock (1656) was more accurate
than any other clock at the time, Huygens strived to improve upon its design. During his quest, he built a clock
with a modified pendulum and published the classic work, Horologium Oscillatorium, where mathematical details
of the isochronism of the cycloid were laid out for the first time, in 1673.[33, 21]

Today, we take for granted that the cycloid is the path a falling object must follow in order for its travel to a
given point to happen in the same time regardless of its starting position. And we also take for granted that the
period of a simple pendulum varies with its amplitude. We have over 400 years of physical and mathematical
hindsight that tell us so!

The equation of motion

Hopefully having justified an interest in the pendulum, let us turn to a modern derivation of the motion of a
pendulum by appealing to the free body diagram, a mechanical engineering mainstay. In a free body diagram, a
body, in this case the bob of a pendulum, is isolated from everything except the forces acting on it. Those forces are
indicated by vectors, and Newton’s second law of motion (the acceleration of an object is directly proportional to the
magnitude of the net force applied to the object, in the same direction as the net force, and inversely proportional
to the mass of the object, or F' = ma) is applied. Figure 6.1.1 shows the three forces acting on a pendulum—the
force of gravity; the tension in the rod or string holding the bob to the pivot; and a third force called drag, which
is due to air resistance—along with the directions normal (N) and tangential (T') to the path of the pendulum.
Technically only the bob and the three forces are part of the free body diagram. Nothing else is part of the free
body diagram, but is added in dashed lines to help describe the motion. The length of the pendulum is taken to
be ¢, and we will apply Newton’s second law in the direction tangent to the motion. That is, in the direction T.

The speed of the bob is the product of the length of the pendulum and the angular speed, 0. The acceleration
of the bob, the derivative of speed, is % (60) = (. Therefore, the ma (mass times acceleration) term of Newton’s
second law for the motion of a pendulum is mlé.

Gravity causes a constant downward force on the bob with magnitude equal to the weight of the bob, mg. The
magnitude of this force in the T direction, however, is mgsin 6. It is worth taking a moment to make sure we have
the correct sign. For values of 6 between 0 and m, the bob is to the right of the pivot, so the force of gravity tends
to accelerate the bob in the clockwise (negative with respect to 6) direction. Since mgsin @ is positive for values
of 6 between 0 and 7, the force due to gravity is actually —mgsin 6. For values of € between —7 and 0, the bob
is to the left of the pivot, so the force of gravity tends to accelerate the bob in the counterclockwise (positive with
respect to 6) direction. Since mgsin 6 is negative for values of 8 between —7 and 0, the force due to gravity is again
—mygsin #. Similar analysis for any other angle will lead to the same conclusion.



6.1. THE MOTION OF A PENDULUM 175

The damping or drag force (air resistance) is taken as a force proportional to the speed of the bob, 6, so has
magnitude cld. Damplng forces are always taken to directly oppose the motion, so the magnitude of damping in
the direction of T is its entirety. It only remains to choose the right sign. Since 0 indicates the direction of motion,
the damping force must have the opposite sign. The damping constant c is taken to be positive, and of course / is
positive, so the damping force must be —clh.

The tension acting on the bob is irrelevant because it is always perpendicular to the motion. The component of
tension in the tangential direction is always zero.

Substituting the sum of these tangential forces for F'; Newton’s second law applied to the pendulum becomes
—mgsinf — el — 0 = mlé or

i+ %eﬁr%sme:o. (6.1.1)

Equation 6.1.1 is known as a differential equation because it is an equation that involves derivatives (or differentials).
To be more precise, it is a second degree ordinary differential equation (o.d.e.). Second degree because the highest
degree derivative is the second and ordinary because it involves only one independent variable (time t).
The simplest differential equations are considered in calculus, though the term “differential equation” is rarely
used. When first discussing the idea of antidifferentiation, the question of “What function has a derivative equal to
. ?” inevitably comes up. For example, one might be faced with the question of what function’s derivative equals
2? This question can also be asked, what function y satisfies the (differential) equation ¢y’ = 7 The answer can be

arrived at by integrating the equation:
/ ydr = / xdz

1
§$2+O

Y

(don’t forget the constant of integration!).

Forces in a free body diagram

The derivation of the equation of motion for the pendulum touches on three forces typically found in a free body
diagram: gravity, drag, and tension. There are several other forces that may creep into a free body diagram. Most
typical is the normal force a surface applies to a body lying upon it. In summary, here are the forces that should
be considered when constructing a free body diagram.

Gravity: always acts directly downward with magnitude equal to the weight of the body, mg.

Drag: always acts directly opposite the direction of motion with a magnitude approximated in different ways
depending on the application. This force is perhaps the most complicated to account for. It depends on
the geometry of the body, the speed of the body, and the viscosity of the fluid relative to which the body
moves. For slowly moving objects in low viscosity fluids, such as pendula in air, drag (air resistance) is taken
proportional to the speed of the object. For faster moving objects in low viscosity fluids, drag is often taken
proportional to the square of the speed of the object. In reality, drag is not exactly proportional to any
power of speed, but rather varies in a very complicated way as the body moves through the fluid. For sake of
tractability, though, it is almost always modeled as proportional to an appropriate power of speed. For our
purposes, that power will simply be given.

Tension/compression: tension is transmited through a rope, wire, chain, or other similar object by pulling on
its ends (in opposite directions). The magnitude of the tension is constant within the object assuming, as
we often do, that the rope, wire, or chain is massless. Tension is always directed along the rope, wire, or
chain. The opposite of tension is compression. Rigid objects such as rods, dowels, or poles are capable of
transmitting compressive forces by pushing on their ends. Ropes, wires, chains, and other objects that simply
slacken when pushed are not capable of transmitting compression.

Spring: a spring exerts a force proportional to the deflection of the spring, in the direction opposite the deflection.

Normal: when a body lies atop a solid surface and the body is not floating away from the surface nor sinking into
the surface, there must be a balance between the forces perpendicular (normal) to the surface. The force that
the surface applies to a body to keep it from sinking into the surface is called the normal force and always
acts normal (perpendicular) to and away from the surface. The magnitude of the normal force is always equal
to the net magnitude of all other forces in the normal direction. Often the normal component of gravity is
the only other force acting normal to the surface.



176 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

Friction: when a body lies in contact with a surface, friction opposes motion with a magnitude proportional to the
normal force. The constant of proportionality is called the coefficient of friction and is denoted by p. For any
body/surface combination, there are two types of friction to consider—static friction and kinetic friction. A
body at rest on a surface is capable of resisting a greater force than is the same body sliding across the same
surface (with the same normal force). You may be familiar with this phenomenon if you’ve ever tried to slide
an oven into or out of its usual position in a kitchen. It’s much harder to get it started moving than it is to
keep it moving. Whether the friction is static or kinetic, it always resists motion tangential to the surface.

Applied: a force that is applied to a body by another body, such as a person pushing a sofa or an engine accelerating
a vehicle.

Crumpet 31: Anti-lock braking systems

The anti-lock braking system (ABS) of an automobile is designed to take advantage of the fact that the static
friction between a tire and the road can stop a car more quickly than the kinetic friction between the same tire
and the same road. A tire that is not skidding is capable of applying a greater braking (frictional) force than the
same tire skidding. When the ABS senses that a wheel has locked (ceased rotation) while the car is still moving,
it forces the driver to let up on the brake enough so the wheel will start spinning again, though very briefly. If
the driver continues to hold down the brake hard enough to skid, the ABS will force the driver to let up again.
The ABS rapidly alternates between forcing the driver to let up and allowing the driver to do as (s)he will. The
quick alternation between making the driver let up and allowing the driver to brake hard is what causes the
vibration or pulsing you feel when the ABS kicks in. If the ABS is working properly, a vehicle will come to a
halt more quickly than it would have if it were allowed to skid to a stop. Also, it’s much easier to steer a car
when it is not skidding than when it is skidding!

Solutions of ordinary differential equations

The solution of a differential equation is, in one way, very much like the solution of an algebraic equation but, in
another way, entirely different. For an algebraic equation in z, for example, we say that we have a solution x = s if
substituting s for x in the equation makes the equation true. Likewise, for a differential equation in 6, for example,
we say that we have a solution € = s if substituting s for 6 in the equation makes the equation true. The difference
is s is a number in the case of an algebraic equation while s is a function in the case of a differential equation. We
would say that 2 = 2 is a solution of the algebraic equation 322 — 8z + 4 = 0 since, substituting 2 for z gives

a true statement. Analogously, we would say that § = e2! is a solution of the differential equation 36 — 89 + 46 = 0
since, substituting e for 4 gives

3(4e?") — 8(2e%) + 4(e?) = 0,

again a true statement. Notice that the derivatives 6 and 6 need to be calculated in order to complete the substi-
tution.

Approximate solutions of differential equations, then, must be approximations of functions. In fact, for any
given ode, we settle for the crudest approximation, a set of points that, if our approximation is good, lie near the
graph of an exact solution. Hence the set {(0,1),(.25,1.5), (.5,2.25), (.75, 3.375), (1,5.0625)} might qualify as an
approximate solution of the equation 36 — 80 + 46 = 0 for t € [0,1]. See figure 6.1.2. The approximation is good
for values of t near zero but not as good for values of ¢ near 1.

Initial Value Problems

As with algebraic equations, differential equations may have more than one solution. We already saw that 6 = et
is a solution of 39 — 80 4+ 40 = 0. So are 6 = 5e%*, § = —2.1e?*, and § = /Tme?. In fact, § = ce?* is a solution for



6.1. THE MOTION OF A PENDULUM 177

Figure 6.1.2: Approximate solution of 36 — 80 + 40 = 0.

any constant c. The ode 36 = 80 + 40 = 0 has infinitely many solutions! It is a straightforward exercise to check.
For 0 = ce?t, § = 2ce?t and 0 = 4ce?, so

36 — 86 + 46 3(4ce®!) — 8(2ce?) + 4(ce?)
12¢(e?) — 16¢(e?') + 4c(e?)
(12¢ — 16¢ + 4c)e*

0.

2t/3 2t

Even more, 6 = ae is a solution for any constant a. This solution can be verified just as the solution 8 = ce
was verified. Can you do it? Answer on page 179. Finally, § = ce? + ae?*/? is also a solution for any pair of
constants ¢ and a! Can you show it?7 Answer on page 180. It is not uncommon for a differential equation to have
infinitely many solutions.

Another differential equation with infinitely many solutions is

. t

y=—.

Y
The solutions are y = V12 +c and y = —V/t2 + a, valid for any constants ¢ and a as long as y # 0. Complex
solutions are valid! However, if we also require y(0) = 1, there is only one solution! y = —v/¢2 4 ¢ is no longer a

solution because it gives negative values of y for all values of t. And y = v/t2 + ¢ is only a solution if ¢ = 1. The
one and only solution is y = vt2 + 1.
The requirement y(0) = 1 is called an initial value, or initial condition, and the pair of equations

. t
y o= -
Yy
y(0) = 1
is called an initial value problem. More generally, the pair of equations
gy = [fly1)
y(to) = o

forms what is knows as a first order initial value problem.

Crumpet 32: There is exactly one solution of § =

< |+

such that y(0) = 1.

t

Setting y = V2 + 1,y = %\/t;ﬁ(%) =~ Hence the equation § = i becomes

v t

2+l Vet+1l




178 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

an undeniably true statement. Hence y = v/t? + 1 is a solution of § = i Moreover y(0) = v0?2+1 =1, so
the particular solution y = +/t? + 1 satisfies the requirement that y(0) = 1 also. Hence y = vt2+ 1 is one
solution—and the only solution of the form y = v/t2 + ¢ or y = —V/t? + a. But is it the only solution of any
form? Perhaps there are other functions that satisfy the differential equation. A little bit of calculus should help
settle the issue. The demonstration hinges on showing that y = v/t2 + ¢ and y = —v/t2 + a are the only solutions

of y = 5 The following sequence of equations show it. Each line implies the next.
dy t
g 2 0
L y, Yy F
ydy = tdt, y#0
/ydy = C+/tdt, y#0
1 5 15
- — ¢
5Y C+5t,  y#0
y© = 20+t y#0
y = E£Vt2+20, y # 0.

Replacing the constant 2C with ¢ or a does not change the fact that the term is an arbitrary constant, so
y =Vt?+ c and y = —V/t2 + a are the only solutions of y = i This method of solving the differential equation
is called separation of variables.

Key Concepts

Approximate solution of a differential equation: a set of points that, ideally, lie near the graph of an exact
solution.

Degree of a differential equation: equal to the highest order derivative appearing in the equation.
Differential equation: an equation with derivatives (or differentials) in it.

Free body diagram: An engineering diagram consisting of only a body and the forces acting on it.
Initial value problem: a differential equation coupled with a required value of the solution.

Newton’s second law of motion: the acceleration of an object is directly proportional to the magnitude of the
net force applied to the object, in the same direction as the net force, and inversely proportional to the mass
of the object—often summarized by the equation F' = ma. This equation assumes the mass of the object is
constant.

Ordinary differential equation (o.d.e.): a differential equation with only one independent variable.

Solution of a differential equation: a function that, when substituted for the dependent variable, makes the
equation a true statement.

Exercises (a) y(t)=esg=y®
— 3 ; . — 3

1. State the degree of the differential equation. (b) y(x) =2 —26.83x —sinw; y’ = 62 +sinz
(@) g=y ¥ (c) s(t) = e *?sin <§t);§+é+s:0w
(b) ¥’ =6z +sinz () f@) =5 +2 250 f +L =20
(c) 4+ 6+s=01" (e) h(z)=—2x; (2h+x)h' + h =4z
d f+L=2" 5 () r(t) =Vt t>0; it = -1 (A]
(e) @h+a)h +h=dx 3. Verify that the function is a solution of the initial value
(f) Frt2 = ,é (A] problem.

2. Verify that the function is a solution of the differential (a) y(t) =4e’; 9=y, y(0) =4 .

equation. (b) y(z) =2® —sinx — 7%, ¢y = 32> —cosx, y(7) =0



6.1. THE MOTION OF A PENDULUM

179

= (1—2s)t, s(0) =114

@) flz) =%+, >0 f =L +2® f(4) =20
18]

(e) h(z) = -2z —1; ' = FHE=b p(0) = -1

(f) r(t) = Vt—3,t > 0; #t> = -, r(9) = 0,
7(9) = é [AJHINT: The solution must satisfy
the o.d.e. and both conditions, r(9) = 0 and
7(9) = 5.

(a) y =5z ¥
(b) 3y = 3xe”

(c) y—tfsint[]
(d) g=21t<0
(e) s' = 1 —Inz
(f) § = 3tet ¥

5. Given are an initial value problem, its exact solution,
and an approximate solution. Comment on how well
the approximate solution approximates the exact solu-

tion.
@9 =y y0) = 4 y@b) = 4
{(0,4), (.25,5), (.5,6.3), (.75, 7.8), (1,9.8)} [*
(b) v = 32% —cosz, y(r) = 0; y(z) = 2° —sinz — 7°;
{(m,0), (37, 30), (3x,74), (Ix,135), (27, 216)}
(© & = (1—2s)t, s(0) = 1; s(t) = %(14—6_’52);
{(0,1),(.5,1),(1,.75), (1.5,.5), (2, .5)} 4
@ f = —I+a f(4) = 20 fa) = % + 1%
{(4,20), (4.25,23), (4.5, 26), (4.75, 30), (5,34)} ©
(e) W = =t h(0) = —1; h(z) = —2z — 1;
{(0,-1), (.25, —-1.5), (.5, —2), (.75, =2.5), (1, —3)}
(f) 77t = =L, 7(9) = 0, #(9) = —1; r(t) = \f 3;

{(9,0), (10,.16), (11, .31), (12, .46), (13, .61)} *
6. Draw a free body diagram for the situation.

(a) Pendular motion ignoring air resistance (no
damping). ]

Answers

0 = ae?'/3 is a solution of 30 — 80 + 40 = 0: 6 =

30 — 80 + 46

3
4
3

4
(5
0

a(€2t/3)

16

3

a+

ae2t/3 and 0 =

(3&6”“) -8 (gaGQt/3> +4 (aezt/g)

16

3

12

(b) A block sliding down an inclined plane. !

(c) A block sitting on an inclined plane (not moving).
(8]

A block being pushed up an inclined plane.

A sofa being pushed across a level floor where the
applied force is parallel to the floor. I

A sofa being pushed across a level floor where the
applied force is not parallel to the floor. [5]

A sofa being pushed up an old, slanted hardwood
floor. The applied force may or may not be par-
allel to the floor. [*]

A sledder has reached the bottom of a hill (and is
now traveling on level snow) and is coasting to a
stop. [A]

A sledder sledding down a hill.

A hockey puck sliding across an ice rink. [4]

—
(N
~

A hockey puck sliding across ice at constant speed
(ignoring friction).

A sky diver falling.
A sky diver whose parachute just opened. F!

A sky diver whose parachute just opened while a
constant breeze is blowing sideways. !

A football originally kicked at a 40 degree angle
just as it reaches its peak, ignoring drag. (4]

(p) A football moving up and to the right approach-
ing its peak, ignoring drag.

Use the free body diagram from question 6 to find the
equation of motion in the tangential direction foryv(r(’)a)-
(6k), and in the vertical direction for (61)-(6p). "

How much easier is it to slide a sofa by pushing paral-
lel to the floor as opposed to slightly toward the floor?
Compare the kinetic friction for a sofa being pushed
parallel to the floor to one being pushed at an angle of
20 degrees from parallel. Then calculate the necessary
applied force to overcome kinetic friction in each case.
Assume the floor is level. ™!

ae2t/3 g

12
a(e?/3) + 3

a) o2t/3

a(€2t/3)

3



180 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

0 = ce?t + ae?/3 is a solution of 36 — 80 + 40 = 0: 0 = 2ce®t + %ae%/?’ and 0 = 4ce?t + %ae2t/3 SO

. . 4 2
30-80+40 = 3 (4ce2t + 9ath/3> -8 (26€2t + 3a62t/3> +4 (cth + ath/g)
4 16 12
= 12¢(e?") + ga(e%/?’) — 16¢(e?!) — ga(e%/g) + 4e(e®) + Ea(e%/?’)
4 16 12
= (12¢— 16¢ + 4c)e* + (3a — 50 + 3a> 23

= 0.



6.2. TAYLOR METHODS 181

Figure 6.2.1: Beginning a numerical solution with the initial condition
30

25
20
(4, 20)

15

10

-1 0 1 3 4 5 6 7 8 9
-5

The exact solution of the initial value problem

6.2 Taylor Methods

= —Z 442
t

Y
y(4) = 20 (6.2.1)

isy(t) = % + %, t > 0, as verified in exercise 3d on page 179. For the time being, let us try to forget that we know
the exact solution, and study a method for approximating it. We will recall that we have the exact solution when
we are ready to check how the approximation is going. The initial condition, y(4) = 20, means that the graph of
the exact solution passes through (4,20). What a great place to start an approximate solution—at a point that is
on the graph of the exact solution! Thus the approximation is seeded by the initial condition. There are numerous
ways to proceed from there. Perhaps the simplest way is to use the differential equation to compute the exact slope
(derivative) of y at (4,20):
y(4)

j(4) = -2 447
9(4) T

20
= 2442
4+

= 11

You might imagine a graph like that in figure 6.2.1. The graph is that of the first order Taylor polynomial expanded
about ¢ty = 4. According to Taylor’s theorem, y(t) = 204+ 11(t —4) + #(t —4)? for t near 4 and some ¢, depending
ont. So, y(2) = T1(2) =20+ 11(2 —4) = —2 and y(5) = T1(5) = 20+ 11(5 — 4) = 31 (as long as y has two
derivatives on an open interval containing [2,5]), and so on. As always, there is the concern of how good these
approximations are.

In section 4.4, two different approximations for the same number were used to estimate error in the adaptive
methods. A similar tack may be used here. We will compare approximations given by 77 and T5. The differential
equation can be used to compute §j, in terms of y and . Implicitly differentiating the differential equation gives

_ yt—y
=

+ 2t.

But = —¥ + 2, so we may substitute into and simplify the expression for 4:

—¥ ) -
j o= _(tt#_’_gt
— 3 —
= —%—I—Qt

= tj—?+2t



182 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

Table 6.1: Comparing first and second order polynomial approximations
t | Tu(t) | ()

2 -2 11

5 31 34.25

Figure 6.2.2: A repetitive numerical calculation (truncated to 5 decimal places)

20 L ]
to y(to)
4 20 .
3.75 | 17.25 15 s
3.5 | 14.88437 .
3.25 | 12.88504 .
3 | 11.23557 10 .
2.75 | 9.92187 te
2.5 | 8.93323 S
2.25 | 8.26406
2 | 7.91666
¢ 0 1 2 3 4 5 6

Now we know §j(4) = 21—(;‘) +4= % +4 =22 50 To(t) = 20 + 11(t — 4) + 22(t — 4)%. Finally, we can compare
values of T7 to corresponding values of T, as in Table 6.1. T1(2) and T»(2) disagree wildly, so we should assume
that neither approximation is to be trusted. T3(5) and T5(5) differ by only around 10%, so these approximations
may be reasonable. To further hone the approximation of y(2), it is possible to calculate T3(2) and again compare.
Can you do it? Answer on page 186.

Another way to approximate y(2) is to take things a little more slowly. We could use the initial condition to
approximate y(3.75) first. Then we could use this approximation to approximate y(3.5), which we could, in turn,
use to approximate y(3.25), and so on until we ultimately use the approximation of y(2.25) to approximate y(2).
We humans may think the prospect of doing all these calculations is repugnant, but with a little computer code,
the burden is placed on the machine. It is the ability to understand the process well enough to write that code that
now becomes the focus.

We know that y(4) = 20 and we are interested in approximating y(3.75). Since the difference between 4 and 3.75
is only .25, perhaps using 77 will be sufficiently accurate. From before, we know the Taylor polynomial expanded
about o =4 is T1(t) = 20 + 11(¢t — 4), so T1(3.75) = 20 + 11(—.25) = 17.25. Now we can use y(3.75) = 17.25 as a
“new” initial condition. y(3.75) = — 13?‘7255 +3.75% = 9.4625. We can use this information to approximate the Taylor
polynomial for y expanded about 3.75: Ty (t) =~ 17.25 + 9.4625(¢t — 3.75), and use this expansion to approximate
y(3.5): y(3.5) &~ T1(3.5) ~ 17.25 4+ 9.4625(3.5 — 3.75) = 14.884375. We then can use y(3.5) = 14.884375 as an initial
condition, approximating the Taylor polynomial for y expanded about 3.5. Continuing in this vein leads to the
tabular and graphical results in Figure 6.2.2. Can you reproduce these results? Details on page 186.

The method of repeated calculation leads to y(2) ~ 7.91, but more importantly, illuminates an algorithm
for approximating solutions of differential equations. Calling the initial condition (¢g, o), and succeeding points
(t1,91),(t2,y2),(t3,y3) . . ., the same procedure is used to calculate (¢1,y1) from (o, yo) as is used to calculate (t2,y2)
from (t1,y1) as is used to calculate (t3,y3) from (¢2,y2), and so on. It remains to capture that procedure as a
formula of some sort. To summarize, the procedure is to use a given point, call it (¢;,y;) to

1. calculate g(t;, y:);
2. use the three values t;, y;, and y(t;, y;) to form T} (t) expanded about t;; and finally
3. set y;+1 = T1(ti4+1), which gives a new point, (t;41, Yi+1)-
But Ty (ti+1) = yi + 9(ti, yi) - (tix1 — i), so the procedure really boils down to setting
Yirr = Yi T Yt yi) - (tivr — ti). (6.2.2)

The method of using formula (6.2.2) repeatedly to compute a sequence of points approximately on the solution of
an ordinary differential equation is most often called Euler’s method.[7] It may also be referred to as the Taylor



6.2. TAYLOR METHODS 183

method of degree 1 since it uses Taylor polynomials of degree 1 at each step. The value t;11 — t; is called the step
size and is often held constant, so you are likely to see Euler’s method written as

Yir1 =Yi +h- 9t yi) (6.2.3)

where h = t; 1 — t; is the constant step size.

Euler’s Method (pseudo-code)

As is most common, Euler’s method will be coded for a constant step size.

Assumptions: The solution of the o.d.e. exists and is unique on the interval from ¢y to ;.
Input: Differential equation ¢ = f(¢,y); initial condition y(tp) = yo; numbers ¢y and ¢1; number of steps N.
Step 1: Set t =to; y = yo; h = (t1 — to)/N
Step 2: For j =1...N do Steps 3-4:
Step 3: Set y =y + hf(t,y)
Step 4: Set t =tq +  (t1 — to)
Output: Approximation y of the solution at t = ¢;.

Higher Degree Taylor Methods

Taylor methods of higher degree are rarely used in practice because they require computation of derivatives, a task
that is not always easy or even possible. Nonetheless, it is not a huge stretch from what we have already done
to consider higher degree methods. Rewriting the steps outlined in the enumeration that leads to 6.2.2; the third
degree Taylor method can be summarized by

L. calculate §(t;,y;) and §(t;,y:) and ¥ (t;,y:);

2. use the three five values t;, y;, and §(t;, y;), i(ti, i), and ¥ (t;,y;) to form Fr{#) T5(x) expanded about ¢;; and
finally

3. set yrrr="r{ti+1) Yit1 = T5(ti+1), which gives a new point, (¢;41, Yit1)-

Now written without all the markup, the procedure is

1. caleulate §(ts,ys), §(ti,ys), and Y (ti, y:);

2. use the five values t;, vi, ¥(t:,v:), i(ti,y:), and ¥ (t;,y;) to form T3(x) expanded about ¢;; and finally
3. set y;11 = T3(ti+1), which gives a new point, (;41,¥i+1)-

Higher degree Taylor methods require higher derivatives in step 1 and a higher degree Taylor polynomial in steps
2 and 3. As should be expected, higher degree methods are generally more accurate than lower degree methods as
long as the formula for y(¢, y) is sufficiently smooth. To illustrate the point, we now compare approximate solutions
of 6.2.1.

Taylor’s Method of Degree 3 (pseudo-code)

Taylor’s method of degree 3 will be coded for a constant step size.

Assumptions: The solution of the o.d.e. exists and is unique on the interval from ¢ to ¢;.

Input: Differential equation ¢ = f(t,y); formulas §j(t,y) and ¥ (¢,y); initial condition y(ty) = yo; numbers
to and t1; number of steps N.

Step 1: Set t =to; y = yo; h = (t1 — to)/N

Step 2: For j=1...N do Steps 3-4:
Step 3: Set y =y -+ hf(t,y) + 3h2G(t,y) + A3V (t,y)

Step 4: Set t = to + %(tl — to)
Output: Approximation y of the solution at t = t;.



184 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

Table 6.2: Approximate values of y(2) from solving 6.2.1
‘ h=0.5 ‘ error ‘ h=0.25 ‘ error ‘ h=0.125 ‘ error
Euler’s method 6.1 3.9 7.91666 2.08333 8.91911 1.08088
Taylor’s degree 3 method | 9.975765 0.024234 | 9.996280 0.003719 | 9.999485  0.000514

Using code based on the pseudo-code presented in this section, Table 6.2 summarizes the approximate solution of
6.2.1 using Euler’s method and Taylor’s method of degree 3 to approximate y(2).

Now is a good time to say something about the error of Taylor methods. Remember a Taylor polynomial of
degree n has an error of order n + 1, so Euler’s method uses a Taylor polynomial with error of order 2 and Taylor’s
degree 3 method uses a Taylor polynomial with error of order 4. But how does that translate into an error term
for the Taylor method?

Though we will not answer this question completely here, we can get some idea what to expect from Table 6.2.
From the Euler’s method row, we see the error decrease from (roughly) 3.9 to 2.08 to 1.08 as the step size is reduced

by a factor of one half. Since
208 108 (1)’
3.9 208 \2/)

we conclude that FEuler’s method is of first order. Considering the row on Taylor’s degree 3 method, we see the
error decrease from about .024 to .0037 to .00051 as the step size is reduced by a factor of one half. Since

~N e N - =

0037 00051 1 (1\°
.024 .0037 8 ( ) ’
we conclude that Taylor’s degree 3 method is of order 3.

Notice the similarity between this observation and the observation we made about composite integration. In
section 4.4, we argued that the error term for a composite integration formula had order one less than that of a
single application of the underlying integration formula. The same thing happens here. When the truncation error
for the underlying Taylor polynomial has order n, the corresponding o.d.e. solver has order n — 1, an order equal
to the degree of the Taylor polynomial itself.

Reducing a second order equation to a first order system

Taylor’s methods and the upcoming Runge-Kutta methods are all designed to work on first order differential
equations. However, all the equations of motion we have developed are second order differential equations. To
resolve this disconnect, a second order o.d.e. can be reduced to a first order system. The idea is straightforward.
Suppose y is the dependent variable in a second order o.d.e. and we have an equation of the form y" = f(v/,y, x).
We introduce an auxiliary variable u and set u = y’. Consequently, v’ = y" = f(y',y,x) = f(u,y,z). We thus have
the first order system

u = f(my,x)

= u

which can be solved using a numerical method for first order differential equations.

For example, the equation of a pendulum (6.1.1) can be rearranged as 6= —%9 — 9sinf. If we substitute the
auxiliary variable u = ¢ into the equation, it becomes @& = —Su — ¢ sin6, and the system
c
U = ——u— g sin 6
m l
0 = u

is equivalent to (6.1.1). Euler’s method, for example, can be applied to this system in the following way:

Upt1 = Up+h (f%un — %sin F)n)
9n+1 = an + huy,
thy1 = tn+h

where ug, 0y, and tg are taken from the initial conditions.



6.2. TAYLOR METHODS

185

Key Concepts

Taylor method: A method for approximating the solution of a first order o.d.e. in which a Taylor polynomial of
some predetermined order is used at each step to compute the next.

Euler’s method: Another name for the first order Taylor method, having formula y;11 = y; + h - 9(t:, v:).

Exercises

1.

5. Write pseudo-code for Taylor’s method of order 2.

Use Euler’s method with step size h = 0.5 to approxi-
mate y(2).

() ©
Z—Z = 3r—2y
y(1) = 1
(b)
Z—z = 3z2°— Y
y(1) = 3
()
y =ty
y(1) 0.5
(@) ©
cos(z)y’ +sin(z)y = 2cos’(x)sin(z) — 1
y1) = 0
(e)
T+3y =
y(1) =

. Repeat exercise 1 using Taylor’s method of order 2.
[SI{A]

Repeat exercise 1 using Taylor’s method of order 3.
[S][A]

. Execute two steps of Euler’s method for solving y = ty

with y(1) = —0.5 and h = 0.25, thus approximating
y(1.5). 1
[A]

6. Write pseudo-code for Taylor’s method of order 4.

10.

11.

Write computer code that implements Euler’s
method.

Write computer code that implements Taylor’s
method of degree 2. [

Write computer code that implements Taylor’s
method of degree 3.

Write computer code that implements Taylor’s
method of degree 4.

Use your code from exercise 8 to calculate y(2) for the
o.d.e. in la uisng h = 0.5, 0.25, 0.125, and 0.0625. Use
your calculations and the fact that the exact value of
y(2) is 9*272 to verify that Taylor’s method of degree
2 is an order 2 numerical method. I

12.

13.

14.

15.

16.

17.

Use your code from exercise 9 to calculate y(2) for the
o.d.e. in la uisng h = 0.5, 0.25, 0.125, and 0.0625. Use
your calculations and the fact that the exact value of
y(2) is 9*2_2 to verify that Taylor’s method of degree
3 is an order 3 numerical method.

Use your code from exercise 10 to calculate y(2) for the
o.d.e. in la uisng h = 0.5, 0.25, 0.125, and 0.0625. Use
your calculations and the fact that the exact value of
y(2) is 9+f;2 to verify that Taylor’s method of degree
4 is an order 4 numerical method.

Write the equation of motion you derived in exercise 7
on page 179 as a first order system. /"

Given the following parameter values and initial con-
ditions for the referenced system, use Euler’'s method
with a step size h = 0.25 to compute s(0.5) or 6(0.5)
as appropriate.

14a: g =9.81 m/s% ¢ = .31 m; §(0) = Z; 6(0) =0 [A)

14b: g = 32.2 ft/s%; u = .21; a = .25 rad; s(0) = 0;
5(0) = .3 ft /s 4]

14c: g = 32.2 ft/s%; u = .21; a = .25 rad; s(0) = 0;
$(0)=0"F

14d: g = 32.2 ft/s%; u = 21; a = .25 rad; m = .19
Ibm; Fapprica = 15 1b; s(0) = 0; $(0) =1 ft/s

14e: g =9.81 m/sz; w=".15; m = 35 kg; Fappiica = 75
N; 5(0) = 0; $(0) = .03 m/s *I

14f: g =9.81 m/s%; p = .15; B8 = 15 rad; m = 35 kg;
Fupptica = 75 N; 5(0) = 0; 5(0) = .03 m/s

14g: g =9.81 m/s*; p=.15; a = .05 rad; B = 15 rad;
m = 35 kg; Fuppliea = 90 N; 5(0) = 0; 5(0) = .03
m/s (A]

14h: g = 32.2 ft/s% p = .01; s(0) = 0; $(0) = 30 ft/s
A

(A]

14i: g = 322 ft/s%; p = 0l; a = =

rad; s(0) = 0;
$(0) = 10 ft /s I ’

14j: g = 32.2 ft/s%; u = .003; s(0) = 0; 5(0) = 88 ft/s
[A)
14k: g = 32.2 ft/s%; = 0; s(0) = 0; 5(0) = 88 ft /s

14l: g = 9.81 m/s%; ¢ = 4.5; m = 70 kg; s(0) = 10000;
$(0) = =10 m/s 1!

14m: g = 9.81 m/s?; ¢ = 26; m = 70 kg; s(0) = 2000;
$(0) = =55 m/s [

Find a formula for the angle at which a stationary block
on an inclined plane (whose angle of inclination is in-
creasing) will start moving.

Find a formula for the angle at which a block moving
down an inclined plane (whose angle of inclination is
decreasing) will stop moving.



186

CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

18. Undetermined Coefficients. For each differential
equation, a solution with undetermined coefficients is
suggested. Find values for the coefficients that make
the suggested solution an actual solution.

(a) “ly" + 5y —8y = 3¢% y(z) = Aa® + Be + C
(b) 2y — 5y’ +3y' +5y=x+1; y(z) = Az + B
(c) M3y +2y =32+2; y(z) = Az + B

Answers

T3(2): Begin by calculating ¥ = %j}.

(d) [A]y// 7
Bx+C

Wog 4y =t*4+1; y(t) = A+ Bt+Ct>+ Dt* + Et*
#4+2& —x=1+te'; z(t) = Ate' + Be! +C
81 — 9 = e tsint; O(t) = Ae sint + Be tcost

Blg 4 f—oé+9:tcost; 0(t) = Atcost + Btsint +
Ccost + Dsint

() Wi —2i—350 =e™+1; 2(t) = Ate™ + B +C

4y + Ty = 22% + 3z — 1; y(z) = Az® +

d (2y
= — (=4t
Y a (t2 + )

2 (=L +¢%) 12 — 4ty

20t — 4ty

I +1

—2ty + 2t* — 4ty

A +1

m +1

so U(4) = =820 1 3= 3120 — 9 Therefore, T3(t) = 20+ 11(t —4) + 2 (t —4)2 + 3 (t —4)%, and T3(2) = 9.5
so it is close to T5(2) = 11. We can start to believe that y(2) is somewhere around 9.5 or 11.

Details:
to y(to) y(to) T1 expanded about to Tl (to - 25)
4 20 11 20+ 11(t — 4) 17.25
3.75 17.25 9.4625 17.25 4 9.4625(t — 3.75) 14.88437
3.5 | 14.88437 | 7.99732 | 14.88437 + 7.99732(t — 3.5) 12.88504
3.25 | 12.88504 | 6.59787 | 12.88504 + 6.59787(t — 3.25) 11.23557
3 11.23557 | 5.25480 11.23557 4 5.25480(t — 3) 9.92187
2.75 | 9.92187 | 3.95454 | 9.92187 + 3.95454(¢ — 2.75) 8.93323
2.5 8.93323 | 2.67670 | 8.93323 4 2.67670(¢t — 2.5) 8.26406
2.25 | 8.26406 | 1.38958 | 8.26406 + 1.38958(t — 2.25) 7.91666
2 7.91666




6.3. FOUNDATIONS FOR RUNGE-KUTTA METHODS 187

6.3 Foundations for Runge-Kutta Methods

In section 6.2, derivatives were used to generate approximate solutions of ordinary differential equations. However,
approximate solutions can also be generated by integrating, a much more stable numerical process. An o.d.e. of
the form

y = f(ty)
y(to) = o

has an exact solution that can be written in terms of an integral. For any value , and assuming existence of a
solution over the interval from ¢y to t, we can find a value for y(¢) by integrating both sides of § = f(¢,y) with
respect to t:

/t:ydt - /:f(t,y)dt

y(@) —ylty) = / F(ty)di

() = ylto) + / £(t,y)dt. (63.1)

When ¢, and £ are not close to one another, which is what we normally assume, we need to proceed in small steps
as done in section 6.2.

Substituting ¢; for  in equation 6.3.1, y(t1) = y(to) + fttol f(t,y)dt, so we can add fttol f(t,y)dt to the known
value y(to) to get y(t1), our first small step on the way to approximating y(#). Now substituting ¢; for ¢y and o
for £ in equation 6.3.1, y(t2) = y(t1) + fttf f(t,y)dt. So, we can compute y(t2) from knowledge of y(¢;). Similarly
we can compute y(t3) from knowledge of y(t2), y(t4) from knowledge of y(t3), and so on, eventually computing
y(t,) = y(t). With this in mind, we rewrite the integral representation in terms of ¢; and t;; instead of ¢ and #:

tit1
)=o)+ [ Flewae (6:32)
This formula suggests that finding one approximation, y(¢;41), from the previous, y(¢;), boils down to approximating
ftii“ f(t,y)dt. That should not be too challenging at this point. About half of chapter 4 is dedicated to exactly
this task! Every numerical integration formula is a candidate for use here, but let’s start simple. We know y(t;),
the value of the function at the left endpoint of integration, at least approximately, so it makes sense to use a stencil
that includes the left endpoint of integration as one of the nodes. And to make our first stab as easy as possible,
let’s let that node be the only one! That is, let’s find an integration formula for the stencil

0 1
é ]
1 ]

Using the method of undetermined coefficients, we calculate the left hand side of system 4.2.4 (which for us will
only be one equation since we only have one node):

b zo+h zo+h A
[ mlads= [ s = [ 1de = (@ - a2 <

0 0

and the right hand side:

0
Z(Gih)oal = Qo
=0
So ag = h and we get the formula
zo+h
[ Ha)ds = nfao).

Consequently, f:_i“ Ft,y)dt ~ (tio1 — t;) f(ti,y(t;)), and equation 6.3.2 becomes

y(tiv1) = y(ts) + f(ti, y(ti) - (tir — ti).



188 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

Adopting the notation y; = y(t;) and f = ¢ from section 6.2, this formula becomes
Yirr = Y 9t yi) - (tig1 — ti)-

Wait a minute! We’ve seen this before. This is exactly equation 6.2.2.

The search for new methods of approximating solutions of o.d.e.s by integrating has not yielded anything new
yet. It has to be different, however. Integration formulas include evaluation of the integrand at various points
while Taylor methods involve evaluation of derivatives at a single point. Let’s push on. Perhaps the next simplest
integration formula that includes the left endpoint of integration is the trapezoidal rule (see section 4.3),

zo+h
[ f@de =5 (o) + o + )]+ OB ()

Zo

over the stencil

0 1
¢ ¢

Translating the trapezoidal rule to the current notation,

/t o f(t,y)dt = # [f(tisys) + Ftir yisn)] + O((tivr — 1:)°).

i

Therefore our new approximation formula is

Yir1 = Yi + % [f(tisyi) + f (i1, yivr)] -
This equation is great except the right hand side includes y; 1, the quantity we are trying to approximate! One
theory is to leave it at that. The equation for y;y; is implicit in nature and that’s alright. Some root finding
method could be used to determine y; 1 for each step of the method. While this path is not impossible, it is also
not the simplest solution. Since the step size (¢;41 — t;) is likely to be small, perhaps using Euler’s method to
approximate y;4+1 on the right side will not cause irreparable harm to the overall approximation. Giving it a shot,
we let yir1 = y; + (tix1 — ;) - f(t;,y;) on the right hand side to get the new formula

tigt1 —t;

5 f(ti,yi) + f(tivrs yi + (tigr — 1) - f(Li w:))] -

Yit1 = Yi +
Pausing for a moment to consider what we have, we might conclude the formula is getting a little unwieldy. Let’s

see if we can tidy it up a bit. First, substituting h for ¢;;1 — ¢; makes it a little nicer:

Yitl = Yi + g f(tisyi) + f(tig,ya +he f(tiy)]

Second, letting k1 = f(t;,y;) and ko = f(tix1,yi + h- f(ti,y:)) = f(tix1,y: +h - k1), we get a nice, neat, three-step
computation:

ki = f(tiy)
ko = f(tiz1,yi + hk1)
h
Yir1 = Yit §(k1 + k). (6.3.3)

But before getting too carried away with the clean formulation, it would be nice to have some evidence that this
“advanced” method gives a reasonable approximation of the solution to an o.d.e. as expected. Let’s have the
computer compute approximate solutions of o.d.e. 6.2.1 using both Euler’s method and this method based on the
trapezoidal rule, and compare them to the exact solution, y(t) = % + %. The following code snippet, while specific
to this one task can be generalized to find approximate solutions of other o.d.e.s as well.



6.3. FOUNDATIONS FOR RUNGE-KUTTA METHODS 189

O.D.E. solver test code

t=4;
h=-1/4;
f=inline("-y/t+t~2");
exact=inline("t~3/4+16/t");
euler=20;
trap=20;
disp(’ Euler Trapezoid Exact Euler err Trap err’)
disp(’ @ mmmmmmmmmmm e )
for i=1:8
euler=euler+hx*f (t,euler);
k1=f(t,trap);
k2=f (t+h,trap+h*kl);
trap=trap+h/2*(k1+k2) ;
t=t+h;
x=exact (t);
sprintf (°%12.5g%12.5g%12.5g%12.5g%12.5g° ,euler,trap,x,abs(euler-x) ,abs(trap-x))
end’,for

This test code may be downloaded at the companion website (rungeKuttaDemo.m). The only part of this code that
may appear unfamiliar to you at this point is the sprintf () command. The first argument,

*%12.5¢%12.5g%12.5¢%12.5¢%12.5g"

is the formatting string. This particular string means to string together 5 floating point numbers using 12 spaces
each and displaying 5 significant digits. In the sprintf command, %12.5g means “general” formatting of a floating
point number with 12 spaces and 5 significant figures. The computer will decide whether to use scientific notation
in the output. Since it is repeated 5 times, this particular command will format five such floating point values.
The rest of the arguments are the five numbers to print. The command sprintf should not be read as “sprint-eff”
but rather “ess-print-eff” or “string print formatted”. The s is for string and the f is for formatted. If you're
thinking this command seems a bit arcane, you’re right. This type of print formatting command originated in the
C programming language during the 1970s!" The output of running this code is

Euler Trapezoid Exact  Euler err Trap err
ans = 17.25 17.442 17.45 0.20026  0.0080729
ans = 14.884 15.273 15.29 0.4058 0.016741
ans = 12.885 13.479 13.505 0.62006 0.026142
ans = 11.236 12.047 12.083 0.84776 0.036458
ans = 9.9219 10.969 11.017 1.0955 0.04794
ans = 8.9332 10.245 10.306 1.373 0.060938
ans = 8.2641 9.8828 9.9588 1.6947 0.075955
ans = 7.9167 9.9062 10 2.0833 0.09375

Our method based on the trapezoidal rule, which we will call trapezoidal-ode for now, seems to do a better job
of approximating the solution of this o.d.e. than does Euler’s method. The last two columns contain the absolute
errors for each approximation. The errors in trapeziodal-ode are roughly 0.01 to 0.1 while the errors for Euler’s
method are roughly 0.2 to 2. All of the errors in trapezoidal-ode are smaller than all the errors in Euler’s method.
Of course trapezoidal-ode requires two evaluations of f per step, so it better deliver better results for the extra
work if it is to be useful at all.

Buoyed by this success, perhaps it is worth investing some time in other integration formulas, like Simpson’s
rule, for example. Recall from section 4.3, Simpson’s rule states

zo+2h
[ rayda =

0

w| =

[f(z0) + 4f(xo + h) + fzo + 2k)] + O(R° FH) (&),

1See https://en.wikipedia.org/wiki/Printf_format_string for some details.


http://lqbrin.github.io/tea-time-numerical/ancillaries.html
https://en.wikipedia.org/wiki/Printf_format_string

190 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

which in the notation of this section we might write as

tit1
/tv ft,y)dt = % [f (s ys) + 4 (tig1 /2, Yirr/2) + [ (Fiv1s viv1) ]

ignoring the error term, and using the notation ;41,5 to mean t; + 3h and y; 11/ to mean y(t; + 3h). So an o.d.e.
solver based on Simpson’s rule might look like

h
virr=vitg [t yi) + Af (b2, Yiv1y2) + [ (v, vir1)] -

Again, this is an implicit formula. Again, we can use Euler’s method to estimate y; 11, and, in fact, we can use
Euler’s method to estimate y;1 /2 too! Since t;; /7 is closer to t; than is t;,1, we estimate y; /o first. That is, we

replace y;11/2 by yi + B f(t;,y:). Using a multiple-step calculation as before, that gives us
ki = f(tiy)
h h
ti+ 5.y + 5k
f( + 2 Yi + 5 1)

so far. This takes care of the first two terms in brackets. Now we estimate y; 1 by approximating f(t;11,¥it1)-
But we now have an estimate of f at t; + %, and t; + % is closer to t;41 than is ¢;. So, even though we could use
yi + hf(ti,y;) = y; + hky to approximate y;+1 (as done before), we might expect y; + hks to be a better estimate.
With this hope in hand, we complete the method by calculating as follows:

)

ky = f(ti,yi)
h h
ky = f(ti+27yi+2k1)
ks = f(tiv1,yi + hkz)
h
Yirl = Yi+ s (k1 + 4ko 4 ks3] .

For now, we will refer to this method as Simpson’s-ode.
Before trying to assess whether this new method is better than the previous ones, let’s derive a couple more,
and compare them all together. The formula

zo+3h 3h
[ r@de = (7ot )+ Flao+ 20)] + ORS(4)

[¢]

(an open Newton-Cotes formula from section 4.3) leads to the method

ki = f(tivi)
h h
ko = f(ti+37yi+3k1)
2h 2h
ks = f (ti Tyt 3/€2>
h
Yier = Uit g (k2 + k3] .

Can you fill in the steps to derive this method? Answer on page 193. We will call this method open-ode. Finally,
we use the stencil

0 1 2 3
—¢——o o | ——

to derive yet another integration formula. This is not an open Newton-Cotes formula nor is it a closed Newton-Cotes
formula. Tt is not one that was covered in section 4.3. Perhaps it might be called a “clopen” (half closed and half
open) Newton-Cotes formula. Can you derive the corresponding integration method? Details on page 194. The
result is

zo+3h 3h
| s () + 3o+ 2m)

[¢]



6.3. FOUNDATIONS FOR RUNGE-KUTTA METHODS 191

disregarding the error term. This leads to the o.d.e. solver

ky = f(ti,v)
h h
k = tz PR =k
2 f( + 3 Y; + 3 1)
2h 2h
ks = i+ — v+ 5k
3 f( + 3 Yi + 3 2)
h
Yi+l = y¢+Z[k1+3/€3].

We will call this method clopen-ode. Notice two things. First, even though ks is not used in the final line, it is still
computed since it is used to compute k3. Second, the calculations of k1, ko, and k3 are identical to those in the
open-ode method. The only difference is how the k; are combined. The integration methods combine the values of
the function at the nodes differently. This idea of using the same k; for different purposes will come up again!.

So now we have three new methods to test out—one based on Simpson’s rule (Simpson’s-ode), one based on an
open Newton-Cotes formula (open-ode), and a third based on a “clopen” Newton-Cotes formula (clopen-ode). Can
you write test code for comparing the three new formulas (similar to the code used to compare Euler’s method with
trapezoidal-ode)? Answer on page 195. Results are summarized in the following output:

Simpsons Open Clopen Simp err Open err Clop err
ans = 17.44806 17.44999 17.45022 0.00220 0.00028 0.00004
ans = 15.28557 15.28953 15.29008 0.00461 0.00065 0.00010
ans = 13.49781 13.50395 13.50494 0.00730 0.00116 0.00017
ans = 12.07297 12.08146 12.08307 0.01036 0.00187  0.00027
ans = 11.00347 11.01450 11.01700 0.01393 0.00290 0.00040
ans = 10.28804 10.30185 10.30566 0.01821 0.00440 0.00059
ans = 9.93523 9.95208 9.95789 0.02354 0.00669 0.00088
ans = 9.96952 9.98969 9.99866 0.03048 0.01031 0.00134

Simpson’s-ode does the poorest job of finding an approximate solution and clopen-ode does the best. But why?

We’ve done a pretty thorough job of sweeping error analysis under the rug up until now. The bulk of that
investigation will happen in the next section, but we can do a quick analysis here. From section 4.3, we know
that the trapezoidal rule and the open Newton-Cotes formula we used here both have error terms of O(h?), while
Simpson’s rule has error term O(h%). The integration methods based on the stencils

0 1
é ]
T ]

0 1 2 3
4f—o—oH%

(which led to Euler’s method and the clopen method) have yet undetermined error terms. Can you show that
their error terms are O(h?) and O(h*), respectively? Answer on page 195. Based on the error terms of the
underlying integration methods, we should expect these o.d.e. solvers to be, in order from least accurate to most
accurate, Euler’s method (based on a O(h?) integration formula), open-ode (based on a O(h?) integration formula),
clopen-ode (based on a O(h*) integration formula), and Simpson’s-ode (based on a O(h®) integration formula); with
trapezoidal-ode to be on par with open-ode. Table 6.3 shows the errors in calculating y(2) for 6.2.1 for the five
methods of this section using various values of h. Since the value of / in each row is half that of the previous row,

. . . . ¢
we would expect the ratio of the errors in consecutive rows to be approximately (%) where the rate of convergence

for the method is O(h*). For Euler’s method, dividing the error in row 3 by that of row 2, we get (%)e R~ fgéég R %
07013

and dividing the error in row 6 by that in row 5, we get (%)é R Haos R %, for example. This evidence suggests that
¢ =1 for Euler’s method, and therefore, Euler’s method has an O(h) convergence. Repeating the same calculation
for the other methods yields Table 6.4.

With the exception of Simpson’s-ode, Table 6.4 suggests that o.d.e. solvers have an error term of one less degree
than their underlying (single step) integration formula. In section 4.4 we noted that composite integration formulas
also have error terms of one less degree than their corresponding single-step integration formulas (and we made a




192 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

Table 6.3: A comparison of absolute errors for five o.d.e. solvers

h Euler’s Trap-ode Open-ode Clopen-ode  Simpson’s-ode
— 2.0833 0.09375 0.010311 0.0013444 0.030482
1 1.0809 0.023437 0.0025929 0.00017446 0.0077168
—% 0.55114 0.0058594 0.00064977  2.2207(10)~° 0.0019412
—# 0.27837 0.0014648 0.00016261  2.8008(10)~ 0.00048679
—s1  0.1399 0.00036621  4.0672(10)=°  3.5166(10)~" 0.00012188
—ﬁ 0.07013  9.1553(10)=°  1.017(10)=®  4.4055(10)~%  3.0494(10)~5

Table 6.4: The error terms of five o.d.e solvers and their underlying integration methods
Euler’'s Trap-ode Open-ode Clopen-ode Simpson’s-ode
Integration method ~ O(h?) O(h?) O(h?) O(h?%) O(h?)
O.D.E. solver O(h) O(h?) O(h?) O(h?) O(h?)

similar observation about Taylor methods in section 6.2). There is reason to believe in this parallel as the methods
proposed in this section are essentially composite integration techniques. So, it should be a little troubling that
Simpson’s-ode does not fit the pattern. A deeper exploration of the error term is needed to explain this anomaly.

Exercises

1. Derive an o.d.e. solver based on the stencil and corresponding integration formula.

0 1 2 3
(a) O . —
% (f(wo) +3f (:ro + %h)) +O(h")
0 1 2
(b) [A] { ® ] >
hf (xo + %h) + O
0 1 2 3
(c) W—4 . —
L (35 (0 + 54) — £(a)) + OG)
0 1 2 3
(@ 1 ° —
hf (xo + %h) +o(h?)
0 1 2 3
(e) B . LS
% (Bf (xo + %h) + f(@o + h)) +0(hY)

(3f (.To + %h) _af (wo ¥ %h) 430t (x0+ %h)) + o)



6.3. FOUNDATIONS FOR RUNGE-KUTTA METHODS 193

0 1 2 3
(h) i i ’

NS

(3£ (w0 + %h) + S0+ h)) +O(h)

h VE—V3 1 VE+V3 7

2. Conduct a numerical experiment on test o.d.e. 6.2.1 to determine the rate of convergence of the method derived in
question 1. Based on the error term of the integration formula, is the rate of convergence of the o.d.e. solver as
expected?

3. Write computer code that implements Euler’s method. (4]
4. Write computer code that implements trapezoidal-ode.
5. Write computer code that implements clopen-ode.
6. Write computer code that implements the solver you derived in exercise 1b. This is called the midpoint method or
the modified Euler method. It is based on the midpoint rule for integration. [A]
7. Write computer code that implements the solver you derived in exercise 1a. This is called Ralston’s method. [A]
8. Use your code from exercise 3 to compute y(2) for the o.d.e. in exercise 1 on page 185 using step size h = 0.05.
[ST{A]
9. Use your code from exercise 4 to compute y(2) for the o.d.e. in exercise 1 on page 185 using step size h = 0.05.
[ST{A]
10. Use your code from exercise 5 to compute y(2) for the o.d.e. in exercise 1 on page 185 using step size h = 0.05.
[SI[A]
11. Use your code from exercise 6 to compute y(2) for the o.d.e. in exercise 1 on page 185 using step size h = 0.05.
[SI{A]
12. Use your code from exercise 7 to compute y(2) for the o.d.e. in exercise 1 on page 185 using step size h = 0.05.

(S1[A]

Answers

Filling in the gaps: Beginning with the integration formula

xo+3h 3h .
[ fa)dn =5 (fan + 1)+ Flao + 20)]+ S (€)

we “shrink” the interval of integration to [zg,z¢ + s] by making the substitution s = 3h:

vots s 1 2
| f@xds =3 |+ g5) + Flao + 50)| + 065" 60)

With the integration formula rephrased in terms of step size s, the o.d.e. solving method is

h
Yi+1 = Yi + 3 [f(ti+1/37yi+1/3) + f(ti+2/37yi+2/3)} ;



194 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

where we revert to using h for step size. We then use Euler’s method to estimate y; 11,3 and y;; /3, starting
with y;11/3. That is, we replace y;11/3 by y; + %f(ti, y;). Then we estimate Yiv+2/3- Using a multiple-step
calculation as before, that gives us

ki = f(ti, yi)

h h
k? = f<t1+37y1+3k1)7

taking care of the first term in brackets. It remains to estimate f(;12/3,%i12/3). But we now have an estimate
of f (the derivative of y) at t; + %, and t; + % is closer to t; /3 than is ¢;. So, we approximate y; /3 by

yi+§hk21
kv = f(ti,vi)
h h
ky = f (ti + g;yi + 3k1>
2h 2h
ks = i+ — v+ 5k
3 f(ti+ 30Y + 3 2)
h
Yir1 = Yi+ 3 (ko + k3] .
0 1 2 3

Clopen Newton-Cotes: * e e ?

For this stencil, a = z¢, b = z¢o + 3h, and 0; = ih, i = 0,1,2. Therefore, we will have a system of three
equations in the three unknowns. First, the left-hand sides:

/abpo(x)dm = /%tho(x)dz

Zo

Zo

zo+3h
/ ldz = (z — o) " = 3h

0

b xo+3h xo+3h 1
[o@ae= [ n@d = [ @ ade = 5o a0

o Zo

b xo+3h zo+3h 1
/ po(x)dr = / po(z)dr = / (z — x0)%dr = 5(9: —z0)?

Zo 0

Now putting them together with the right-hand sides (and swapping sides):

2

Z(Gih)oai = ag+a;+ax=3h
=0

2 9
> (6:h)'a; = hay +2hay = §h2
=0

2
> (6:h)’a; = h’ay +4h*ay = 9h®
=0

This system is small enough to solve by hand (without the use of a computer algebra system):

h2a1 +4h2a2 = 9h3
—  (h%a1  +2h%ay = %h3) = a9 = %h.
2h%ay = 2R3

Substituting as = %h into hai + 2has = %hz, we can solve for aq:

9
2h-~h = =h?
hay + 2h 4h 2h
9 9
ha1+§h2 = §h2 = a; =
hCLl = 0



6.3. FOUNDATIONS FOR RUNGE-KUTTA METHODS 195

Substituting a; = 0 and as = %h into ag + a1 + as = 3h, we can solve for ag:

3h

9
a0+0+1h

9 3
Qg = Sh — Zh = ag = Zh,

Therefore, Z?:o aif(zo+0;h) = 3h- f(z0) + 0 f(zo + h) + Sh - f(x0 + 2h) and the integration formula is

xo+3h
| fa)dn = 2 (fo) + 36 o+ 20).

0
Test code: Comparing Simpson’s, open, and clopen methods:

t=4;
h=-1/4;
f=inline("-y/t+t"2");
exact=inline("t~3/4+16/t");
simp=20;
open=20;
clop=20;
disp(’ Simpsons Open Clopen Simp err Open err Clop err’)
disp(’ = —mmmmmmmm e )
for i=1:8
kilsimp=f (t,simp);
klopen=f (t,open) ;
kiclop=£f (t,clop);
k2simp=f (t+h/2,simp+h/2*klsimp) ;
k2open=f (t+h/3,open+h/3*klopen) ;
k2clop=f (t+h/3,clop+h/3*klclop) ;
k3simp=f (t+h, simp+h*k2simp) ;
k3open=f (t+2%h/3, open+2*h/3*k2open) ;
k3clop=f (t+2*h/3, clop+2¥h/3*k2clop) ;
simp=simp+h/6* (klsimp+4*k2simp+k3simp) ;
open=open+h/2* (k2open+k3open) ;
clop=clop+h/4*(klclop+3*k3clop);
t=t+h;
x=exact (t);
sierr=abs(simp-x);
operr=abs (open-x) ;
clerr=abs(clop-x);
sprintf (°%12.5g%12.5g%12.5g%12.5g%12.5g%12.5g’ ,simp,open,clop,sierr,operr,clerr)
end),for

This test code may be downloaded at the companion website (rungeKuttaDemo2.m).
Error terms: The error term for

xo+3h
[ fw)dn = 3 (f o) + 35 oo+ 20)

xo
is derived in the section 4.3 solutions. See page 7?7. The error term for
xo+h
|t b
Zo

is derived similarly. We are given that the error is O(h?), so we can skip the discovery. Expanding f(x) in a
Taylor polynomial with error term,

f(x) = fzo) + (x — x0) f' (&)


http://lqbrin.github.io/tea-time-numerical/ancillaries.html

196 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

So

ro+h ro+h
/ f(@)de — hf(z0) = / (f(20) + (& — 20) f'(€x)) d — hf (zo)

xo+h

= @ [ ) f s~ hi(eo)
zo+h

= Wfleo)+ [ (@ z0)(€)dn — hf(ao)

Zo

zo+h
S RS

By the weighted mean value theorem, there exists ¢ € (zg,zo + h) such that f;)ﬁh(x — x0)f'(&)dx =
1'(¢) ffoﬁh(a: — xg)dz = 5 f'(c)h?. Hence

xo+h 1
[ s = bfa) = £ @8 < MIEF ()

[¢]

where we have replaced ¢ by &j,.



6.4. ERROR ANALYSIS 197

6.4 Error Analysis

Section 6.3 ended with the mysterious (and unsettling?) observation that Simpson’s-ode did not live up to expec-
tations. Based on other o.d.e. solvers, we would expect the rate of convergence of Simpson’s-ode to be O(h*) since
Simpson’s rule, on which Simpson’s-ode is based, has local truncation error O(h®).

The explanation is rooted in the fact that we are solving an o.d.e. of the form ¢ = f(¢,y), in which the derivative
is a function of two variables, ¢ and y. To understand the error analysis, heavy use of partial derivatives and the
chain rule are required. As ever, we consult Taylor’s theorem and write

1 1 ..
y(to +h) = y(to) + hijto) + Sh*j(to) + Gh* ¥ (to) + -

Each derivative of y can be replaced by some function of f and its partial derivatives, starting with g, which is
given by the o.d.e. we are trying to solve.

gy o= [f(ty)
G= g = ) = filty) + ()i = flt) + () ()

Eliminating the explicit use of arguments ¢ and y,

gy = f

i = fitfyf

Y= fut fuf + (foe + Fou D) f + fy(fe + fuf)
= fu+2fuf + 2+ fify + 11 F

so y(to + h) = y(to) + hi(to) + 2h%j(to) + £h3¥ (to) + -+ in terms of f is
1 1
y(to +h) = y(to) + hf + §h2(ft + fyf) + ghg(ftt +2fey f + Ly f? + fify + f;f) oy
and as an o.d.e. solver (replacing y(to) by y; and y(to + h) by yit1),
1 1
Yit1 =Yi + hf + ihZ(ft + fyf) + ghs(ftt +2fu f + fuuf? + fiofy + f;f) +oeee (6.4.1)
Rewriting high degree Taylor polynomials in terms of f quickly becomes complicated. We will focus on analysis

requiring only ¥, 4, and ¥.
The o.d.e. solvers of section 6.3 have the form

kv = f(tiui)
ky = f(ti+ B2h,yi + Bahky)
ks = f(ti + B3h,y; + B3hkz)
ks = f(tz + ﬂshv Yi + 6shk5—1)
Yir1 = yi—|—h[041k‘1 +052]<12—|-043k3—|—"'+055k‘5]. (642)

We did not actually see any o.d.e. solvers with s > 3 in section 6.3, but the process we followed would clearly
require it should there be more than three nodes in the underlying integration formula.

The difference between y(to + h) from (6.4.1) and y;41 from (6.4.2) is the local truncation error of the o.d.e.
solver (the error in taking a single step). In order to write this truncation error in the form O(h*), though, we need
to expand each k; in its Taylor polynomial. Taylor’s theorem in two variables is needed.



198 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

Theorem 8. Suppose f(t,y) and all its partial derivatives of order n+1 and lower are continuous on the rectangle
D ={(tyy):a <t <bec<y<d}, and let (to,yo) € D. Then for every (t,y) € D, there exist £ € (a,b) and
w € (¢, d) such that

flty) = Flto,yo) + [(t —to) - filto, vo) + (¥ — o) - fy(to, vo)]
—|—% [(t— t0)? fet (to, o) + 2(t — to) (Y — yo) - fey(to, o) + (y — Z/O)nyy(to,yo)]
N n—j i of
n! ;( 7; ) (t—10)"""(y — vo) W(to,yo)
1 n+1 +1 1 i an+1f
+m ;}(n] )(t—to) +1 (Y — o) m(f,u)

As with Taylor’s theorem (of one variable), the first n + 1 terms form the Taylor polynomial and the last term is
the remainder term.

To illustrate, we let f(t,y) = —¥% +1t2 and compute its second Taylor polynomial with remainder term expanded
about (tg,yo) = (1,1). For this, we will need all partial derivatives of f up to and including order 3.
fr = t% + 2t
1
fy - _g
fa = —25+2
1
fty = fyt - th
fow =0
Juee = 6%4
2
ftty:ftyt:fytt = _t73
ftyy:fyty:fyyt = 0
fyyy = 0.
It follows that
f(1,1) =
ft(17 ]-) =
fy(1,1) = -1
ftt(17 1) - O
fty(l, 1) =1
fyy(lv 1) =0
I
fre(§op) = 6?4
2
ftty(§7 /1’) = _573
fryy(&p) = 0
fyyy(&p) = 0.
Therefore, the second Taylor polynomial for f(¢,y) is
1
+3 [(t =12 fu(1,1) +2(t = D(y = 1) - fi (1, 1) + (y = 1)* fy (1, 1)]

= 04+3t—-1)—(y—1D+0t—-1)2+@t—-1Dy—-1)+0(y—1)>3
= 3(t-D—-@w-D+@t-Dy-1)



6.4. ERROR ANALYSIS 199

with remainder term

Ry(t,y) = é[(t—l)?’fttt(f,ﬂ)'f‘?)(t_1)2(11_1)ftty(fa,u)+3(t_1)(1/—1)2ftyy(§,u)+(y—1)3fyyy(§7,u)]
= % (t71)3~6§ﬂ473(t71)2(y—1)-€%+3(t—1)(y71)2-0+(y71)3~0
= -0 -1

More generally, suppose we are interested in Taylor polynomial expansions of expressions like f(t; + 8;h,y; +
Bjhkj_1), as we have in our o.d.e. solvers. Expanding about (¢;,v;), we let to = ¢;, yo = s, t = t; + B;h, and
y = y; + Bjhkj—1. Thus t —ty = B;h and y — yo = Bjhk;—_1, and the second Taylor polynomial without explicit
listing of the arguments ¢; and y; on the right-hand side is

f@ti+ Bihyyi + Bihkj—1) = f+hB;[fi +kj—1fy] + %hzﬁf— [fie + 2kj—1 foy + K71 fyy]

with remainder term O(h?).
In particular, when we set j =1, 8; = 51 = 0, we get

ki = f(ti,y:) = f.

When we set j = 2,

ko [ (ti + Bah,yi + Bahky)

= PRSI FR)+ 5h8R [ 2 fuy - F ]+ O().

The calculation of k3 is a little bit messier since it involves k3. Before diving in headlong, though, consider what
we will do with k3 first. After computing k1, k2, and k3, we will substitute each into the formula

Yi+1 = Y; + h [Oélkil + agks + Oégk‘g} (643)

and subtract the result from (6.4.1). For purposes of this discussion, we seek a method with local truncation error
O(h*). Therefore, we need only retain constant terms and terms containing a factor of h3, h2, or h in equation
(6.4.3). Terms with higher powers of h are irrelevant. They will be assumed (or should I say consumed?) by the
O(h*). Since the sum ok + agks + asks is multiplied by h, we need only retain terms with factors of up to h? in
k1, ko, and k3. Taking a look at the expansion of kj:

ks = f(ti+ Bsh,yi + Bshks)
= hBs[fot Raf) 4 5h26 [fue o 2oty + R3]

we see only the term %h2ﬂ§ - k2f contains k3, and it already has a factor of h2. Consequently, we only need to
include the constant term of k3. The rest of the terms of k3 become part of the O(h*). That’s not so bad!

k3 = f*4+0(h).

Similarly, when we substitute expressions for ko into k3, we will be careful to avoid any terms that would give a
factor of h to any power greater than 2:

ks = [f+hBs[fe+ (f+hB2[fe + f1y]) [yl
5288 [fua 200 foy + (1) fn] + O0)
= [+ hBsfe+hBaf fy + W BaBa(fefy + F1])
+%h25§ [fee +2f fry + [ fyy] + O(RP).

After all that detailed computation, now is a good time to lean back and take a look at what we have so far.
We have expanded all the terms of (6.4.2) for s = 3 and are ready to compare the result to the Taylor expansion



200 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

of the o.d.e. in (6.4.1). The difference of the two is the local truncation error, so we will be interested in the least
power of h that remains after subtraction. Copying the two equations here for convenience, we are subtracting

Yiv1 = Yi +hf+ %hQ(ft + fyf) + éh?’(ftt +2fuyf + fyu f2 4 fify + 1) + O(nY)
from

Yir1 = Y+ hloaks + agks + azks]
Yi + ha1k1 + hazkz + hagkg
Yi + hay f

+haoe (f +hBe [fe + ffy] + %h25§ [fer 4+ 2f fry + f2fyy] + O(h3)>

+has <f + hBsfe + hBsf fy + B BaBs(fefy + [ o) + %hZﬂg [fre +2f foy + £ fyn] + O(h3)> .

The constant term (term containing no factor of h) for each equation is simply y;, so no constant will remain after
subtraction. The difference of the terms involving h is hf — (haq f + haof + hasf) = hf(1 — (a1 + a2 + @), so if
there is to be no h left in the difference, we must have

011+052+063:1.

The difference of the terms involving h? f; is $h?f; — (R B2 fy + W23 B3 fi) = h% fi(5 — (a2B2 + asfs)), so if there
is to be no h2f; left in the difference, we must have

1
aofla + a3f3 = 3

Similarly, we consider the differences of the rest of the terms to get the following conditions on the o; and j;.

term leads to condition
Rif,f  aoBa+asBs =
h® fu @33 + a3 fi =
Wy f  af3+ asfs
hgfyny 0426% + 0435;% =
h2 fify azfaB3 = %
h3f5f aszfBafs = G

Ol 00| eo| =

We have considered all 8 different terms, but have only arrived at 4 distinct conditions:

Ol1-|-042+043 =

aofls + asfls =
afs +asf; =

azfafls =

=Wl =N =

(6.4.4)

Since we have 5 variables and only 4 conditions, we should think that there are multiple o.d.e. solvers of the form
(6.4.2) with s = 3 and local truncation error O(h?).

Evidence from section 6.3 suggests that clopen-ode should have local truncation error O(h?). Let’s check. For
that method, we have

1 0 3
a1 = — Qg = az = —
1 4; 2 i 3 4
1 2
52*57 63*53



6.4. ERROR ANALYSIS 201

S0
artaztag = i+0+%:1
asfs +azfs = O~%+Z.§:%
ot < (Y 30
azfafs = %%%:é

Indeed, clopen-ode satisfies all the conditions of an o.d.e. solver with local truncation error (at least) O(h*). We
would actually have to show that at least one term containing an h* remains in the difference to prove that the
local truncation error is not of greater degree.

Before finally answering the question of what happened to Simpson’s-ode, our hard work so far is sufficient
to check that trapezoidal-ode and open-ode have local truncation error O(h?) and that Euler’s method has local
truncation error O(h?). For trapezoidal-ode, we have a; = %, ay = %, ag =0, f2 = 1, and f3 undefined (we may
assign any particular number we choose since having a3 = 0 makes f35 irrelevant to the method), which gives us

—_

1
C¥1+042+043 = §+§+0:1
1 1
azf2 +azfs = 5'14'0:5
2
1/1 1 1
asfli +azf; = 2<3) +0:ﬁ¢§
1
azfBafB3 = 0756

The first two conditions are satisfied, but the last two are not. Recall, though, that the first two conditions were
derived from the h and h? terms while the last two conditions were derived from the h? terms. So, for trapezoidal-
ode, the local truncation error is O(h?).

For Euler’s method, we have a1 = 1, ag = a3 = 0, and f2 and f3 undefined (or whatever we choose), which
gives us

ar+as+as = 1404+0=1
1
azfs +azfs = 0+0:07é§
1
azfl3 +asfi = 0+0=07é§
1
asPafs = 07’56

The second equation, which was derived from terms involving h2, is not satisfied but the first equation, which was
derived from terms involving h, is, so the local truncation error for Euler’s method is O(h?).

Finally, for Simpson’s-ode, we have a; = %, ag =3, a3 = %, Ba = %, and B3 = 1, which gives us
1 2 1
o] o +a3 = 6+§+6:1
2 1 1 1
- 2. -4-.1==
azf2 + azfs 3316 >
2
2 /1 1 1
asfs +azfi = 3 (2) + 6(1)2 =3
1 1 1
asPafs = 6'5'1#6'

The first two equations are satisfied, so the local

truncation error is (at least) O(h%), but the last equation is

not satisfied, so the local truncation error is no more than O(h?). No terms containing factors of h or h? (that
don’t also contain higher powers of h) appear in the local truncation error, but the term h3asB205(f: fy+f ny) =

Eh3(fefy + F172) does, so it is O(h?).



202 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

A Note About Convention and Practice

We have derived five o.d.e. solvers so far with little nod to established practice. It’s time to fix that. What we have
been calling trapezoidal-ode (since it was derived from the trapezoidal rule) is better known as the improved Euler
method, though some will refer to it as the explicit trapezoidal method. What we have been calling clopen-ode
is better known as Heun’s third order method. These methods can easily be found in the literature. They are
prototypical examples of efficient methods. The improved Euler method requires two function evaluations per step
and gives a local truncation error O(h?). Heun’s third order method requires three function evaluations per step
and gives a local truncation error O(h*).

What we have been calling open-ode has not been named as it would never be used in practice. It is not an effi-
cient method, requiring three function evaluations but having a local truncation error of only O(h?). Consequently,
you are not likely to see it appear in the literature as it is not a useful method in practice. Heun’s third order
method or the improved Euler method would both be preferable to open-ode. Heun’s third order method gives a
smaller truncation error for the same amount of computation (three function evaluations) and the improved Euler’s
method gives the same truncation error for less computation (two function evaluations). Simpson’s-ode has the
same shortcomings as open-ode, and thus you are not likely to see it in the literature either. It is also an inefficient
method.

Methods of the form (6.4.2) are part of a class of methods called Runge-Kutta methods, named after the German
mathematicians Carl Runge and Martin Kutta. The basic idea for such methods was laid out by Runge in a paper
published in 1895, where Runge introduced the improved Euler method and others. His work was continued by Heun,
whose paper of 1900 brought us Heun’s third order method and others. In 1901, Kutta derives the most famous
Runge-Kutta method, what is sometimes now referred to as the classic Runge-Kutta method or the Runge-Kutta
method of order 4, RK4. We will see shortly that it is a modification of Simpson’s-ode.[7]

Higher Order Methods

Higher order Runge-Kutta methods can be derived by considering methods of the form (6.4.2) with a number of
stages, s > 3. Of course higher order methods must satisfy more conditions. In fact, the number of conditions
grows faster as the desired order increases than does the number of variables as the number of stages increases. In
other words, there is a point where the number of stages to achieve order p exceeds p. Order 1 methods can be
derived with one stage (Euler’s method) and no less. Order 2 methods can be derived with two stages (improved
Euler’s method) and no less. Order 3 methods can be derived with three stages (Heun’s third order method) and no
less. Order 4 methods can be derived with four stages (example upcoming) and no less. However, order p methods
with p > 4 require a number of stages s > p, which, in turn means more than p function evaluations. So, the most
efficient methods are to be found with order 4 or less.

Simpson’s-ode failed to live up to its potential because it did not have enough stages, not because there is no
Simpson’s-rule-derived formula with local truncation error O(h®). The classic Runge-Kutta method of order 4 (local
truncation error O(h®)) has four stages and is given by

kr = f(ti,vi)
h h
ke = f(ti+27yi+2k’1)
h h
ks = ti+ o,y + 5k
3 f ( + 5 Yi + B 2)
ky = f(ti+ h,y; + hks)
h
Yit1 = Yit+ 5 (k1 + 2kg + 2ks + k4] .
Compare this to Simpson’s-ode:
ky = f(ti,vi)
h h
ky = tit+ 5.y + 5k
2 f( + 5 Yi + ) 1)
ks = f(tiy1,yi + hk2)
h
Yirl = Y+ s [k1 + 4ko + k3] .

They are very similar. If we separate the second stage of Simpson’s-ode into two stages, we get Runge-Kutta’s order
4 method. That is the difference. Two stages are used to approximate y(t; + %) instead of one!



6.4.

ERROR ANALYSIS 203

Crumpet 33: Derivation of The (Classic) Runge-Kutta Order 4

To derive any Runge-Kutta method of order 4, the stages of the computation must be expanded in a third Taylor
polynomial:

J(ti + Bih,yi + Bihkj—1) = f+hB;[fe +kj—1fy] + %hQ/Bf [fee + 2k5 -1 foy + kj_1 fu]

+éh3ﬁf [foee + Bkj1 foy + 3K5_1 fryy + K51 Fyyy] + O(R?)
and f(to,yo) must be expanded in a fourth Taylor polynomial:
ylto +h) = y(to) + hito) + 5h%5(t0) + h* T (to) + 5" ¥ (t0) + O().
But ¥, in terms of f, is

oy d 5 2
() = 2 (fu+2fufl+ fof* + fofy + 1)

= founf® +3Funf” + Afy fouf? + 3 fun f + 5Fe fuf + fof
+3fefyuf + fofo + fufy + feee + 3fefry

SO
Yt = gH RS SRR S+ g+ 26+ i d o fudy + 1)
o (Fud® + 3 f® + 48y fyud? + 3 +5Fuufyf + 31

+3ftfyu f + ftfyz + feefy + feer + 3ftfty) + O(h5).

Furthermore,
kv = f(ti,y:) = f

and

ke

f (ti + B2h, yi + B2hk:)
f+hBalfe Fhul+ 5H262 [fun + 2 fou + ]

+éh3,33 [fm ~+ 3f frey + 3f2ftyy =+ foyyy} =+ O(h4)-

Consequently, k3 = f2 + 2hB2 [f: + ffy] f + O(h?) and k§ = f* + O(h). Therefore

ks = F+hBslf+kafil + S8 [fu+ 2hafuy + R3]
51883 [fun + Bhafury + 3K Fugy + K Fy]
= fha [fot (£ 182U+ F1)+ 5428 [+ 20 fey + 1)) 1]
51288 [foe +2(F + 1B [+ FA) fou + (5 + 2483 [+ £ ) Fun]
+3H83 [fiat + 30 Fuy + 30 fom + £ i) + O(Y)
= [ RBslfet FR)+ WG [+ AL fy+ 3928E [fon 4 20 fow + £ o)
+3026583 [fu+ 20 fou + £2Fy) Fy + W38 [Fo+ £ 1) ey + £ i)

51383 [fue + 3 fury + 352 foyy + 1 fu] + O(Y).



204 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

So, k2 = f2 + 2hBs [fs + ££,] f + O(h?) and k2 = f3 + O(h). Therefore
Bo = fhBalfetkefy]+ 2762 [fu + 2hsfuy + Kfun)

B [foe + 3 foy + 38 fogy + K Fyn] + O(Y)

= T nBa [fu+ (£ 0B [+ S0+ 128as [fo+ F1) oy + 50263 [Fu+ 20 fuy + 0] ) £o]
30262 [fu+ 2 (F + 1B [fo+ FR) oo+ (72 + 2088 e+ £1,0 1) fun]
2126 [t 30 Fuy + 30 foy + I ] + O(BY)

= BBl + A+ R280Ba o+ A Fy + gh283 [fuu 26 fou + 52 o)
R 8aB9Ba Lfs + £ 12+ 5h°BaB3 [foe + 2 fuu + 12 Fun] o

B30 [fo+ £ 1) U + FFun) + B [fu + 38 fuy + 35 o + £ Fun] + O(RY).

Matching coefficients in
1 1
yerr = Yt hf B (ot fuf) + g (e + 2fenf + funf* + Fify + 17 )

b (Fonsf® + 3o S + Ay fuuf + 3fun +5fnfuf + 135
+3f1fynf + fefa + fuefy + fon + 3fefry) + O(R®).

with coefficients in
Yit1 = Yi + h a1k + asks + asks + aaka]

up to order 4 yields the conditions

atartaztas = 1 (6.4.5)
1
azf2 + azfs +aafls = 5 (6.4.6)
1
0283 + asf3 + aufi = 3 (6.4.7)
1
asPafs +oufsfs = ¢ (6.4.8)
1
s +asf +aufi = (6.4.9)
2 2 1
asfafz+oufifs = ¢ (6.4.10)
1
200333 B2 + 20413 + s P3fh + ufuf; = 3 (6.4.11)
2 2 2 2 5
asB3fB2 + aaBifs + asBsfa + aafafz = 51 (6.4.12)
1
asfsfl +aufafi = o5 (6.4.13)
1
asfefsfs = o (6.4.14)

Any four-stage (s = 4) fourth order Runge-Kutta method of the form (6.4.2) will have to satisfy these 10 equations
with only 7 degrees of freedom (7 variables). Either the equations form a dependent set or solutions will be rare.
In an attempt to solve the system, we solve (6.4.14) for ay:

1
B 24828384

Substituting our formula for au into (6.4.8) and solving for as:

4B -1
©24B3ps°

Substituting our formulas for aiz and ay into (6.4.13) and solving for Ss:

B3 = —4B2 + 3.

Qg

Qs



6.4. ERROR ANALYSIS 205

Substituting our formulas for as, as and B3 into (6.4.10) and solving for Ba:
Ba = (6 — 1682 + 1653)52.
Substituting our formulas for as, as, B3 and B4 into (6.4.6) and solving for as:

o= 27 1652 + 5282 — 4803
2 2433 (3 — 48,)

Substituting our formulas for a, as, aa, B3 and B4 into (6.4.7) and simplifying:

1685 — 1263 + 482 — 1 = 0.

The roots of this last equation are f2 = %, &%ﬁ, so we conclude that B2 = % Back substituting, we find
1
P = 3
1
ay = =
: 3
Bs = 1
1
53 = 5
o =
T3
1
ay = =.
! 6
Substituting these values of aa, az, and a4 into (6.4.5), we find
ol
1=

These seven values are the unique simultaneous real solution of the equations (6.4.14), (6.4.8), (6.4.13), (6.4.10),
(6.4.6), (6.4.7), and (6.4.5). So the seven parameters are determined by 7 of the ten conditions. It remains to
show that these seven values also satisfy (6.4.9), (6.4.11), and (6.4.12), which they do. Finally, note that these
are the values of the parameters for the (classic) Runge-Kutta method of order 4.

Key Concepts

Taylor’s theorem in two variables: Suppose f(t,y) and all its partial derivatives of order n + 1 and lower are
continuous on the rectangle D = {(t,y) : a <t < b,c <y < d}, and let (tg,y0) € D. Then for every (¢,y) € D,
there exist £ € (a,b) and u € (¢, d) such that

fty) = f(to,vo) + [(t—to) - fe(to,yo) + (¥ — yo) - fy(to, vo)]
+% [(t = t0)? fee(to, yo) + 2(t — to) (¥ — yo) - fey(to,%0) + (¥ — ¥0)* fyy (to, %0)]
+ e +
1 - n n—j j nf
o} jgo ( j ) (t —t0)"""(y — vo) m(to,yo)

1 n+1 n+1 i ) 8"+1f
+(n+1)! Z( j )(t—fo) i J(?/‘?JOVm(&M)

Jj=0



CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

Exercises

1. Determine analytically the local truncation error for

the o.d.e. solver derived in exercise 1 on page 192.
Compare it to the local truncation error of the under-
lying integration formula. Are they the same? Also
compare it to the experimentally determined rate of
convergence (see exercise 2 on page 193). Is it one de-
gree higher, as should be expected? [S]04

. Execute one step of Runge-Kutta order four for solv-
ing ¥y = ty with y(1) = 0.5 and h = 1, thus approx-
imating y(2). Compare your answer to that of sec-
tion 6.2 exercise lc on page 185 in which you used
Euler’s method with two steps. The exact solution is

e3

y(2) = £ ~ 2.240844535169032.

3. Explain geometrically, and in your own words, im-

proved Euler’s method.

Write computer code that implements improved Eu-
ler’s method (same as exercise 4 on page 193 except this
time the method has a proper name). [A]

Write computer code that implements Heun’s third
order method (same as exercise 5 on page 193 except
this time the method has a proper name). !

Write computer code that implements RK4. [A]

Use your code from exercise 6 to compute y(2) for
the o.d.e. in exercise 1 on page 185 using step size
h=0.05. 1"



6.5. ADAPTIVE RUNGE-KUTTA METHODS 207

6.5 Adaptive Runge-Kutta Methods

Two of the o.d.e. solvers derived in section 6.3 used the exact same set of calculations for ki, ko, and k3, but
combined the results differently to compute y;41. At the time, these were called open-ode and clopen-ode. In the
analysis of section 6.4 it was noted that open-ode was not an efficient method while clopen-ode was, at which point
we began referring to clopen-ode by its proper name, Heun’s third order method.

Crumpet 34: Heun’s third order method

In this article from 1900 [16] Karl Heun puts forth the third order method that bears his name. Even if you can
not read the German, his formula VI) is clear!

references/heun1900/00000036. jpg

Due to its inefficiency, open-ode should never be used in practice by itself, but combined with Heun’s third order
method, it has some potential usefulness.



208 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

According to Heun’s third order method

kv = f(ti,ui)
h h
k = t’L PREA] =k
2 f( + 3 Yi + 3 1)
2h 2h
ks = ti+ 5,y + 5k
3 f( + 3 Yi + 3 2>
h 4
Yir1 = Yit 1 (k1 + 3ks] + O(h%).

Using the same k1, k2, and k3, the open-ode method is calculated as
h 3
Vi1 =vit 5 (ko + k3] + O(h”).
The difference between these estimates is
h 3 4

for some constant M, and represents the local truncation error of the lower order method, open-ode. This error
estimate can be used to adapt the size of h from one step to the next, decreasing the step size when the local
truncation error is bigger than some tolerance and increasing the step size when the local truncation error is smaller
than some tolerance.

To illustrate the algrorithm and the benefits of adaptive routines, let’s return to o.d.e. 6.2.1, y = =¥ +12, which
we have generously leaned upon already. As before we will estimate y(2) given initial condition y(4) = 20. This
time the number of steps to compute will be determined by the algorithm, not by us, at least after the first step.
Unfortunately, there is no standard or fool-proof way to choose the size of the first step. Because we are looking
for a computation that can be done by hand, let’s try h = —1 to begin, % of the width of the interval [2,4], over
which we will integrate.

As was needed for adaptive quadrature, a desired level of accuracy, or tolerance, is needed here too. Again
because we are looking for a computation that can be done by hand, let’s try 0.1, a pretty modest accuracy.
Finally, we are ready to compute:

ki o= f(4,20)=11
1 1
ky = f (4 —3 205 11) ~ 8.98989898989899
2 2
ks = f (4 ~3.20— - 8.9898.. ) ~ 6.90909090909091.

Before computing y; from these values, we need to check that the expected accuracy of the calculation would not
violate the 0.1 requirement:

kl — 2/€2 + kg] =~ 0.017.

i

The approximate error in stepping to t; = 3 is about 0.02, well below the desired threshhold. We are clear to
proceed:

h
Y1 = Yo+ 1 [k1 + 3ks3] ~ 12.06818181818182
ty, = to+h=3.

Hence we have y(3) ~ 12.07. Continuing with h =1,

ki = [(3,12.068...) = 4.977272727272728
1 1
ka = f (3 3 12.068. .. — 3 4.9773 .. > ~ 3.20770202020202

2 2
ks = f (3 — 3 12.068... — 3 -3.2077 .. > ~ 1.188852813852814.



6.5. ADAPTIVE RUNGE-KUTTA METHODS 209

Before computing y, from these values, we need to check that the expected accuracy of the calculation would not
violate the 0.1 requirement:

h
The approximate error in stepping to to = 2 is about 0.06, well below the desired threshhold. We are clear to
proceed:

h
Yo = Y1+ 1 [k1 + 3k3] =~ 9.932224025974026
ty, = to+h=2

Hence we have y(2) ~ 9.932. After two steps, the actual error is about |10 — 9.932] = 0.068. Of course, we could
have simply executed Heun’s third order method with step size h = 1 (and no error checking) and gotten the same
answer. The difference is we would not have had any idea what to expect for an error! With the adaptive method,
you can be reasonably sure each step incurs only the error you request. At the risk of belaboring the point, consider
redoing the calculation with step size h = —2:

ki o= f(4,20)=11
2 2
ke = f (4 — 5,20 -3 11) ~ T7.311111111111111
4 4
ks = f <4 3 20 — 3 7.3111.. ) ~ 3.266666666666667.
If we proceed with Heun’s third order method (and no error checking), we get
h
1= Yo+ 1 [k1 + 3k3] = 9.6
t = to+h=2.

However, without the exact answer, which will be the usual when using a numerical method, we have no way to
know how accurate this estimate is! In that regard, the value 9.6 is a somewhat useless estimate.

On the other hand, since we know the exact value of y(2) is 10, we know the error is 0.4, larger than the desired
0.1. The adaptive Heun should catch this and arrive at a more accurate estimate:

h
ke — 2ks + ks]

— ~ 0.177.
i

The adaptive method would reject this step because the approximate error is greater than the desired accuracy,
without calculating ;! So what should it do instead? The adaptive method will try again with a smaller step size.

Since
ky — 2ky + k3]| ~ Mh3,

i

we have Mh? = 0.177 for any step size close to the one just attempted. If we scale the step size by a factor of ¢, say,

we should expect the new error to be approximately M (qh)?, or ¢*Mh?® ~ 0.177¢. Since we would like that error
to be no more than 0.1, we should choose g so that 0.177¢® < 0.1 or ¢* < 5%1-, which implies ¢ < {/ ;3% ~ 0.8254.

But it would slow down the algorithm immensely if the step size were too large very often, so instead, we will take
a somewhat conservative next step of 0.9¢h ~ 0.9(0.8254)(—2) ~ —1.485. Recalculating with the new step size:

ki = f(4,20) =11
1.485 1.485
ke = f (4 ——3 ,20 — 7 11) ~ 8.130924301356263
4 4
ks = f (4 -3 20 — 3 -7.3111.. ) ~ 5.087191526760124.
and )
’4 [k1 — 2ko + k3| =~ 0.06487930780869297,




210 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

so this step is accepted:

h
Y2 = Y1+ 1 [k1 + 3k3] =~ 10.24469652063055
t1 = to+ h=2.514132737997418.

Now we keep the new step size until it proves to be inappropriate. In this case, that happens right away. Another
step of —1.485 would take the solution to to ~ 1.028, well past the desired ¢t = 2. So, we shorten the step size to
2 —t; = —0.514132737997418. There is no worry about shortening the step size as that is expected to reduce the
error! Finally, with h = —0.514132737997418:

ki = f(2.514...,10.244...) ~ 2.246020292164824
0.5141... 0.5141...
ke = f (2.514 T T 10.244... — 2? -2.246 .. ) ~ 1.279876276642283
5141 .. 5141 ...
ks = f <2.514 e 05?, 10.244 ... — ZL -1.279.. > ~ (0.1988478127940674.

and N
’4 [k — 2ks + k3| ~ 0.01476646399275057,

this step is accepted:

h
y2. = Y1+ 1 [k1 + 3k3] ~ 9.879332752200975
t1 = to+h=2.

We have y(2) ~ 9.879332752200975 with some confidence that the error will not be terribly much more than about
0.2, since we took two steps each of which may have incurred an error of about 0.1. There is no guarantee the error
will be less than 0.2, but at least we have some confidence that it’s not drastically greater. And because we used

a conservative estimate for step size, the actual error is probably a bit smaller (as it turns out, the error is about
0.12).

Adaptive Runge-Kutta (pseudo-code)

There are many different adative Runge-Kutta schemes, but the one discussed here uses second and third order
methods, so might be called RK2(3). Technically, it is an order 2 method since the error estimate is for the lower
order method. In practice, however, it is often the higher order method that is used for the o.d.e. solution. While
there is never any guarantee the higher order method is more accurate than the lower order method, it rarely causes
any adverse problems. Besides hedging our bets with the 0.9 safety factor when adjusting the step size, we also
disallow any scaling of h by any factor less than 0.1 or any factor greater than 5. These extra safeties are not
terribly restrictive since they allow for exponential growth or decay of h, but they can help avoid problems when
the error estimates are simply bad. Moreover, the estimates are only good for a small range since the constant of
proportionality may change dramatically for large changes in h. A more detailed discussion of the algorithm can
be found in [26] Section 16.2.

Assumptions: y = f(t,y), y(a) = yo has a unique solution over the interval from a to b.

Input: Initial value (a,yg); function f(¢,y); interval endpoints, a and b; initial step size h; desired accuracy
tol; maximum number of iterations N.

Step 1: Set i =1;t=a; y = yo; done = false;
Step 2: While not done and i < N do Steps 3-6:
Step 3: If (b— (t+h))- (b—a) <0) then set h = b — t; done = true;
Step 4: Set ky = f(t,y); ko = f(t+ 2,y + 2k1)s ks = f(t+ 2,y + Lky); err = |2 (k1 — 2ko + ks3)|;
Step 5: If done or err < tol then set y =y + %(kzl + 3ks3); temp =t + h;
Step 6: If temp = ¢ then do Steps 7-8:

Step 7: Print “Method failed. Step size reached zero.”
Step 8: Return



6.5. ADAPTIVE RUNGE-KUTTA METHODS 211

Step 9: Set i =i+ 1;

Step 10: If err < %01 or err > tol then do steps 11-14:

1
Step 11: Set ¢ =0.9 (gTO%) °

Step 12: If ¢ < 15 then set ¢ = 5
Step 13: If ¢ > 5 then set ¢ =5
Step 14: Set h = ¢h

Step 15: If not done then Print “Method failed. Maximum iterations exceeded.”
Output: Approximation y(b) or message of failure.
The formulas for k; and err will need to be changed for different adaptive Runge-Kutta schemes, as will the

recalculation of h in Steps 11-14, but the basic algorithm does not require modification for other embedded methods.

General Runge-Kutta Schemes

Up to now, we have considered Runge-Kutta methods of the form (6.4.2), copied here for convenience:

ki = f(ti, i)

ky = f(ti+ B2h,y; + B2hky)
ks = f(ti + Bsh,y; + B3hks)
ks = f(tz + ﬂsh7 Yi + 5shk571)
Y41 = Vi + hloaks + agks + agks + - - + asks] .

In methods of this type, ki is used in the computation of ks; ko is used in the computation of k3; k3 is used in the
computation of k4; and so on. However, there is nothing preventing one from deriving a method where both &
and ko are used in the computation of k3; all of k1, ko, and k3 are used in the computation of k4; and in general
allowing all of ki, k2,...,k;—1 to be used in computing k;. Doing so gives more degrees of freedom for satisfying
the error analysis equations, lending hope that there are many more Runge-Kutta methods possible. Any method
of this more general form is called an explicit Runge-Kutta method and can be formulated as

kvo= f(ti,v)
ky = f(ti+d2h,y; + Barhki)
ks = f(ti +03h,y; + Barhky + Baahk2)
s—1
ks = f(tz + 5sh7yi + Zﬂsjhkj)
j=1
Yit1 = yi—|-h[oqk1 +02]{12+a3k3+"'+()¢sk3]. (652)

Methods of this form are often summarized in a Butcher tableau,

0
62 /621
53 631 ﬂ32
s le ﬂsQ t ﬂs(s—l)
a1 Qo cee Qg1 Qg

much like the coefficients of a system of linear equations might be summarized in a matrix. The Butcher tableau
for any of the Runge-Kutta methods we have considered so far will take the form



212

CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

0
02 | B2
03 | 0 Ba2
o4 | O 0 fas
o | 00 - 0 Py
o7} [ %) Qs g1 A

For example, Heun’s third order method would be summarized in a Butcher tableau as

Wi Wik O
O wi=

O (Wi

=
N[

For our purposes, adaptive Runge-Kutta schemes, also called embedded methods, will be coded in a Butcher tableau
by adding one more line for the coefficients «; of the lower order method. For example the Butcher tableau for

RK2(3) as presented above would be

wh wi—= O

O [wIn

O || O wie

[
[T N

The most general Butcher tableaux for non-embedded methods take the form

0 ﬂll 512 /813
52 521 ﬁ22 523
55 le /852 Bss

(o7} (%) .. Qg

If any of the §;; with j > 7 are nonzero, the associated Runge-Kutta scheme is an implicit method. Each step
of the method will require solving a system of equations. Implicit Runge-Kutta methods can be considered for
approximating the solutions of stiff o.d.e. since explicit methods are often exceedingly bad at it.

Crumpet 35: A Stiff Ordinary Differential Equation

The ordinary differential equation

2 3
xr —x

z(0) = § (6.5.3)

has no closed form solution. The best one can do is derive an implicit solution, so a numerical solution is necessary
to approximate values of the function. Some basic analysis can give an idea what the solution is like, however. It
has an equilibrium at = 0, which means if z(¢9) = 0 for some o, then z(¢) = 0 for all ¢. The function remains
constant for all time. It is in equilibrium. It does not change. This follows from the fact that when z = 0,



6.5.

ADAPTIVE RUNGE-KUTTA METHODS

213

# = 0% — 0® = 0. Similarly, the o.d.e. has an equilibrium at z = 1 (because 1 is another root of the polynomial
2 — x3), and it has no others. However, the two equilibria are very different from one another. The equilibrium
at = 0 is unstable while the equilibrium at = = 1 is stable. If z(to) is near enough to 1 (Jz(to) — 1| < 1 will do),
then z will tend toward 1 as ¢ — co. However, there is no such condition near x = 0. No matter how close z(to)
is to zero, if it is positive, x will still tend to the other equilibrium, 1, as ¢ — co. More to the point, though, is

how the values of x approach 1 as t — oco.

The hope for an adaptive o.d.e. solver is that it will take large steps where the function is not varying quickly
(has a small first derivative) and will be more careful by taking small steps where the function is varying quickly
(has a large first derivative). More often than not, this is exactly what happens. Stiff o.d.e.s are an exception to
the rule where an adaptive method takes many small steps even in a region where the function has a small first
derivative. The following figures show the solution of (6.5.3) using RK2(3) with tolerance 1075 § = 1073, and
initial step size 3 over the interval [0, 2]. First, the solution over [0,980] acts as we would hope. The solver takes
large steps, including one step from ¢ &~ 93 to ¢t ~ 210, a step size h > 117 at the beginning where the function
changes very slowly.

0.045
0.04 - -
0.035 -
0.03 -
0.025 -
0.02
0.015 -
0.01 -
0.005
0 = b = rt fr

0 100 200 300 400 500 600 700 800 900

In the middle, the solution over [980,1020] continues to act as we would hope. The solution begins to vary more
quickly here and, consequently, the solver takes a number of smaller steps.

1
980 985 990 995 1000 1005 1010 1015 1020

Toward the end, the solution over [1020,2000] demonstrates the consequence of stiffness. The exact solution is
very nearly constant over this region, gradually approaching 1 from below. A good solver would again take large
steps across this region, but adaptive explicit Runge-Kutta schemes do not. The numerical solution oscillates
within tolerance about 1, so it does what it is supposed to do, but it takes many short steps to do so.

1.000002
1.000001 ~
1.000001
1.000000

525 R A

0.999999
0.999998

0.999998 1 1 1 1 1 1 1 1 1
1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

t




214 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS

Key Concepts

Embedded Runge-Kutta method: A Runge-Kutta method in which there are two schemes of different orders
derived from the same set of function evaluations.

Adaptive Runge-Kutta method: A Runge-Kutta method that takes advantage of an embedded Runge-Kutta
scheme to automatically adapt the step size as it estimates the solution of an o.d.e.

Butcher tableau: A tabular representation of a Runge-Kutta method.

RKm(n): Shorthand for an embedded Runge-Kutta method containing schemes with rates of convergence (com-
monly called orders) m and n.

Exercises 0
1. Write computer code that implements RK2(3) as 1)1
presented in pseudo-code. % %

. i implicit methods?
2 ?A\A]]hmh are the Butcher tableaux of implicit methods 5. Show that the method given by the Butcher tableau

has order 2 for any § € [1,1].

0
1 1 1 0
1 8 8
i 0 i 6 é
2 2 1 1
(@) 31 3 g 9 ‘ =% =
1 16 16
3 12 8
1]1-% 2 -% 7 6. Demonstrate numerically that the method suggested
y gg ¢
7 32 12 32 7
3 = & 2 L by the Butcher tableau has rate of convergence O(h”).
0 0
1 1 1 1
1 1 3| 3
3 9
m 1| a 3 @ 3]0 3
1 1 5 1 1 0 0 1
2 18 12 36
1|5 -5 =5 2 0§ 0 g
1 2 1
s 0 0 35 3 0
2 2
0 7| 7
1|1 s
aF 0 |- .
1 1 5
© o 3 s| 2 -3 s
110 0 1 % % % %
i1 1 1
6 3 6 0
0 1 _V5 V5 1 L1
12 12 12 12 (C) 2 2
5-v6 | L 1 0-7v5 V5 3|19 3
10 2 1 60 60 1 1
(d) Y5 | L 1047V5 1 _V5 2 1 4
10 2 60 1 60 9 3 9
1 1 5 5 1
12 12 12 12 7. Euler’s method and the improved Euler method use the
%2 1% % % same function evaluations. Thus, they can be combined
into an embedded, and therefore adaptive, method.
3. Show that this is the Butcher tableau for Euler’s Write the Butcher tableau for the Euler/improved Eu-
method. ler embedded method.
olo 8. Write computer code that implements the adaptive
method suggested in exercise 7.
1
9. %-rule Runge-Kutta method. Demonstrate nu-
4. Show that this is the Butcher tableau for the improved merically that the g—rule method, given by the Butcher

Euler method. © tableau, has rate of convergence O(h*).



6.5. ADAPTIVE RUNGE-KUTTA METHODS 215

0 (a) The method of exercise 6b and the following.
1 1
3 3 0
il 1 2 | 2
7 7
1 1 -1 1 4 8 4
7 | T35 5
1 3 3 1
i 5 % s 6| 2 _2 s
7| a2 36
1l 1 s o1
10. Write computer code that implements the RK3(4) 6 6 12 4
adaptive method ([6] page 301) given by the Butcher = = £ L &

] ] S
=3 .
(b) BO ackl Sllalllpll]e Ik2(3) The ne h()d ()f ex-

8]

0 ercise 6¢ and the following.

1 1

1| 1 0

e | 4

2| 5 B slo 3

L] 5§ -5 -5 2 1|2 L
s 0 0 5% L1l
A

13. Butcher [6] credits Merson (1957) with the earliest

11. Cash-Karp RK4(5). Write computer code that proposed embedded Runge-Kutta method, given by the

implements the Cash-Karp adaptive method given by Butcher tableau. What are the orders of the two meth-

‘7
the Butcher tableau. ! ods?
0
0
1 1
1 1 3| 3
5 5 1 1 1
3 3 9 3 6 6
10 10 10 1 X 0 3
3 3 _9 8 2 8 8
5 10 10 5 X 3
1l _u s _m 35 113 0 -5 2
54 2 27 27 T P—
7 1631 175 575 44275 253 H 0 0 5 3
8 55296 512 13824 110592 1096
i 9 3 2z 1
37 0 250 125 0 512 10 0 5 %
378 621 594 1771
2825 18575 13525 277 1
27648 0 18384 55296 14336 1 14. Merson (1957). Write computer code that imple-

~ e 13, 4]
12. The following pairs of Runge-Kutta methods use the ments the adaptive method of exercise 13.

same function evaluations, but have different rates of 15. The initial value problem
convergence. They can each therefore be paired to form "
an embedded Runge-Kutta scheme. Write the Butcher y =  + 2e¥ cos(e”)
tableau for the embedded method. I+ev
y(0) = 2 (6.5.4)

(a) The method of exercise 6a and open-ode.
can not be solved analytically. The solution must be

approximated. Use your code from the given exercise to
approximate y(4) with an error of no more than 10™%.

(b) The £-rule (exercise 9) and the following. (A)

0
1 1 (a) 1 1
3 3
5 L (b) 8
5|5 1
(c) 10
0 11
2 2 (d) 11 (A]
(c) The 2-rule (exercise 9) and the following. (e) 12a
(f) 12b *
0 (g) 12¢
1 1
3 3 (h) 12a
575 1 (i) 12b
11 -1 1 G) 13
3 -2 0 1 (k) 14




216 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS
16. The initial value problem due to their failure to proceed beyond z = y/e.
5 They get “stuck” taking tinier and tinier steps
y = x 'H; near x = +/e, as they should since the solution
=y does not exist beyond that point.
y(0) = 5 (6.5.5)
can not be solved analytically. The solution must be 18. Atten}pt to apprommate y(4) .for the 1n1t1a.1 value
approximated. Use your code from the given exercise to problem 11? exercise 16. .Use a vz.a,rlety of adaptive and
approximate y(3) with an error of no more than 10, non-adaptive methods with a varl'ety of tolerances. You
should find that you can not obtain dependable results.
(a) 1 (5] Can you explain why not? HINT: You may wish to plot
(b) 8 the approximate solutions. If your solvers are written
so as to store the points in arrays, it is a simple mat-
() 10 ter to plot the solutions, as demonstrated for RK2(3),
(d) 11 4 using the code from the solution of exercise 1.
(e) 12a
(f) 1ob [4] [y,x]=rk23(£,0,5,4,.0001,1000);
plot(x,y)
(g) 12¢
(h) 12a 19. The initial value problem
(i) 12b Y = In(@+y)
(j) 13 1
(k) 14 v = 3
17, Consider the initial value problem can not be solved analytically. The solution must be

, 2 4y
y = -

y(l) = 1.

(a) Use your code from exercise 5 on page 206 (Heun’s
third order method) to estimate y(2) with step
size 0.01.

(b) Use your code from exercise 6 on page 206 (RK4)
to estimate y(2) with step size 0.01.

2zy

(c) Compare the results of parts (a) and (b). You
should notice that they are rather different. The
rest of this exercise explores the reason for the
discrepancy.

(d) Use your code from exercise 1 (rk2(3)) to estimate
y(2) with tolerance 0.001 and maximum number
of steps 1000.

(e) Use your code from any of the parts of exercise 12
to estimate y(2) with tolerance 0.001 and maxi-
mum number of steps 1000.

(f) You should have found that the method fails in
both parts (d) and (e). However, if you look at the
last calculated values of x and y anyway (x(1001)
and y(1001) ), you should find that in both cases,
r ~ 1.648 and y ~ 0. The failure to approxi-
mate y(2) is not a shortcoming of the numerical
method. The solution of the initial value problem
only exists over the interval [1,/e) & [1,1.648).
For dependable results, care must be taken that
the solution of the o.d.e. exists and is unique over
the entire interval from a to b. That said, the ba-
sic (non-adaptive) solvers plow right along and
give an approximation for y(2) that is entirely in-
correct. Without some further analysis, you may
not notice that the basic solvers are producing
bogus information. On the other hand, the adap-
tive solvers give some clue as to what is going on

20.

21.

22.

approximated. Apply the indicated method to com-
pute y(5) using tolerance 10™* and an initial step
size %. Is the global error (the error in approximat-
ing y(5)) around 107*? significantly smaller? sig-
nificantly larger? Accurate to 10 significant digits,
y(5) = 6.409445034. *]

(a) Cash-Karp (exercise 11)

(b) Bogacki-Shampine (exercise 12b)
(¢c) Merson (exercise 14)

)

(d) RK2(3) (exercise 1)

Modify the code you used in exercise 19 to count
the number of function evaluations performed. Which
method was most efficient? The method with the
fewest evaluations was the most efficient.

There are many embedded methods not mentioned
in this text, mostly of high order. Look some of
them up, write code to implement them, and test your
code. In particular, you may look for the methods of
Fehlberg, Verner, or Dormand & Prince.

The Cash-Karp RK4(5) method [8] was designed to
contain embedded methods of all orders from 1 through
5, not just orders 4 and 5. Show that the three em-
bedded methods given in the Butcher tableau have the
indicated orders.

0
1 1
5 5
3 3 9
10 10 10
3 3 _9 6
5 10 10 5
19 10 55
54 O — 97 54 Order 3
3 5
-5 5 0 0  Order 2
1 0 0 0  Order1




6.5. ADAPTIVE RUNGE-KUTTA METHODS 217




218 CHAPTER 6. ORDINARY DIFFERENTIAL EQUATIONS




Bibliography

1]

Robert E. Barnhill and Richard F. Riesenfeld, editors. Computer Aided Geometric Design : Proceedings of
a conference held at the University of Utah, Salt Lake City, Utah, March 18-21, 197/. Academic Press, New
York, 1974.

Michael F. Barnsley. Fractals Everywhere. Academic Press, Boston, 1988.

R. P. Brent. An algorithm with guaranteed convergence for finding a zero of a function. The Computer Journal,
14(4):422-425, 1971.

John Briggs and F. David Peat. Turbulent Mirror, page 69. Harper & Row Publishers, New York, 1989.
Richard L. Burden and J. Douglas Faires. Numerical Analysis. Thomson Brooks/Cole, 8th edition, 2005.

J.C. Butcher. The Numerical Analysis of Ordinary Differential Equations : Runge-Kutta and General Linear
Methods. John Wiley & Sons, 1987.

J.C. Butcher. A history of runge-kutta methods. Applied Numerical Mathematics, 20:247-260, 1996.

J.R. Cash and Alan H. Karp. A variable order runge-kutta method for initial value problems with rapidly
varying right-hand sides. ACM Transactions on Mathematical Software, 16(3):201-222, September 1990.

Bill Casselman. From Beézier to Bernstein. http://www.ams.org/samplings/feature-column/fcarc-bezier,
June 2014.

Paul de Faget de Casteljau. De Casteljau’s autobiography : My time at Citroén. Computer Aided Geometric
Design, 16(7):583-586, August 1999.

David Goldberg. What every computer scientist should know about floating-point arithmetic. http://docs.
oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html, Accessed June 2014.

S. W. Golomb. Checker boards and polyominoes. Amer. Math. Monthly, 61:675-682, 1954.

Richard Guichard. Calculus :  Early transcendentals. http://www.whitman.edu/mathematics/
multivariable/, January 2014.

Denny Gulick. Encounters with Chaos, page 2. McGraw-Hill, New York, 1992.
Bryce Harrington and Johan Engelen. Inkscape. Software available at http://www.inkscape.org/.

K. Heun. Neue methode zur approximativen integration der differentialgleichungen einer unabhéngigen verén-
derlichen. Zeitschrift fiir Mathematik und Physik, 45:23-38, 1900.

Jeffery J. Leader. Numerical Analysis and Scientific Computing. Pearson, 2004.
Eugene Loh and G. William Walster. Rump’s example revisited. Reliable Computing, 8(3):245-248, 2002.

Edward N. Lorenz. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, 20(2):130-141, March
1963.

219


http://www.ams.org/samplings/feature-column/fcarc-bezier
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://www.whitman.edu/mathematics/multivariable/
http://www.whitman.edu/mathematics/multivariable/
http://www.inkscape.org/

220

Index

Michael R. Matthews. Time for science education : how teaching the history and philosophy of pendulum
motion can contribute to science literacy. Kluwer Academic/Plenum Publishers, New York, 2000.

Michael R. Matthews, Michael P. Clough, and Craig Ogilvie. Pendulum motion: The value of idealization in
science. http://www.storybehindthescience.org/pdf/pendulum.pdf.

Cleve Moler. Numerical Computing with MATLAB, chapter 4. The MathWorks, Natick, MA, 2004. https:

//www.mathworks.com/moler/index_ncm.html.

David E. Miiller. A method for solving algebraic equations using an automatic computer. Mathematical Tables
and Other Aids to Computation, 10(56):208-215, October 1956.

L. Mumford. Technics and Civilization. Harcourt Brace Jovanovich, New York, 1934.

Ron Naylor. Galileo, copernicanism and the origins of the new science of motion. The British Journal for the
History of Science, 36(2):151-181, June 2003.

William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery. Numerical Recipes in C :
The Art of Scientific Computing. Cambridge University Press, New York, 2nd edition, 1999.

The GNOME Project. Dia. Software available at http://live.gnome.org/Dia.

Siegfried M. Rump. Algorithms for verified inclusions: Theory and practice. In R. E. Moore, editor, Reliability
in Computing: The Role of Interval Methods in Scientific Computing, pages 109-126, Boston, 1988. Academic
Press.

J. R. Sharma. A family of methods for solving nonlinear equations using quadratic interpolation. Computers
and Mathematics with Applications, 48(5-6):709-714, September 2004.

Avram Sidi. Generalization of the secant method for nonlinear equations. Applied Mathematics E-Notes,
8:115-123, 1999. Available free at mirror sites of http://www.math.nthu.edu.tw/~amen/.

Gilbert Strang. Calculus. http://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.
pdf. Accessed June 2014.

Ruedeger Timm et al. Libreoffice. Software available at http://www.libreoffice.org/.

Unknown. Huygens’ clocks. http://www.sciencemuseum.org.uk/onlinestuff/stories/huygens_clocks.
aspx.

Charles F. Van Loan. Introduction to Scientific Computing : A Matriz Vector Approach Using MATLAB.
Prentice-Hall, Upper Saddle River, NJ, 2nd edition, 2000.

Christopher Vickery. IEEE-754 analysis. http://babbage.cs.qc.cuny.edu/IEEE-754/. Accessed June 2013.


http://www.storybehindthescience.org/pdf/pendulum.pdf
https://www.mathworks.com/moler/index_ncm.html
https://www.mathworks.com/moler/index_ncm.html
http://live.gnome.org/Dia
http://www.math.nthu.edu.tw/~amen/
http://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf
http://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf
http://www.libreoffice.org/
http://www.sciencemuseum.org.uk/onlinestuff/stories/huygens_clocks.aspx
http://www.sciencemuseum.org.uk/onlinestuff/stories/huygens_clocks.aspx
http://babbage.cs.qc.cuny.edu/IEEE-754/

	Preface
	About Tea Time Numerical Analysis
	Acknowledgments
	A note on the language agnostic version

	Preliminaries
	Accuracy
	Measuring Error
	Sources of Error
	Key Concepts
	Exercises

	Taylor Polynomials
	Key Concepts
	Exercises

	Speed
	Key Concepts
	Exercises


	Root Finding
	Bisection
	The Bisection Method (pseudo-code)
	Analysis of the bisection method
	Exercises

	Fixed Point Iteration 
	Root Finding
	The Fixed Point Iteration Method (pseudo-code)
	Key Concepts
	Exercises

	Order of Convergence for Fixed Point Iteration 
	Convergence Diagrams
	Steffensen's Method (pseudo-code)
	Key Concepts
	Exercises

	Newton's Method
	A Geometric Derivation of Newton's Method
	Newton's Method (pseudo-code)
	Secant Method
	Secant Method (pseudo-code)
	Seeded Secant Method (pseudo-code) 
	Key Concepts
	Exercises

	More Convergence Diagrams
	Exercises

	Roots of Polynomials
	Synthetic division revisited
	Finding all the roots of polynomials
	Newton's method and polynomials
	Müller's Method
	Key Concepts
	Exercises

	Bracketing
	Bracketing
	Inverse Quadratic Interpolation
	Stopping
	Key Concepts
	Exercises
	Answers


	Interpolation
	A root-finding challenge
	The function f and its antiderivative
	The derivative of f and more graphs

	Lagrange Polynomials
	An application of interpolating polynomials
	Neville's Method
	Uniqueness
	Key Concepts
	Exercises

	Newton Polynomials
	Sidi's Method 
	More divided differences
	Key Concepts
	Exercises
	Answers


	Numerical Calculus
	Rudiments of Numerical Calculus
	The basic idea
	Issues
	Stencils
	Derivatives
	Integrals
	Key Concepts
	Exercises
	Answers

	Undetermined Coefficients
	The basic idea
	Derivatives
	Integrals
	Practical considerations
	Stability
	Key Concepts
	Exercises

	Error Analysis
	Errors for first derivative formulas
	Errors for other formulas
	Gaussian quadrature
	Some standard formulas
	Key Concepts
	Exercises

	Composite Integration
	Composite Trapezoidal Rule
	Adaptive quadrature
	Key Concepts
	Exercises

	Extrapolation
	Differentiation
	Integration
	Key Concepts
	Exercises
	Answers


	More Interpolation
	Osculating Polynomials
	Bèzier Curves
	Key Concepts
	Exercises

	Splines
	Piecewise polynomials
	Splines
	Cubic splines
	An application of natural cubic splines?
	Exercises


	Ordinary Differential Equations
	The Motion of a Pendulum
	A brief history
	The equation of motion
	Forces in a free body diagram
	Solutions of ordinary differential equations
	Initial Value Problems
	Key Concepts
	Exercises

	Taylor Methods
	Euler's Method (pseudo-code)
	Higher Degree Taylor Methods
	Taylor's Method of Degree 3 (pseudo-code)
	Reducing a second order equation to a first order system 
	Key Concepts
	Exercises

	Foundations for Runge-Kutta Methods
	Exercises
	Answers

	Error Analysis
	A Note About Convention and Practice
	Higher Order Methods
	Key Concepts
	Exercises

	Adaptive Runge-Kutta Methods
	Adaptive Runge-Kutta (pseudo-code)
	General Runge-Kutta Schemes
	Key Concepts
	Exercises


	Bibliography
	Index

