Intro in class Python lab

January 12, 2016

This is our first, in class Python lab. As such, it’s pretty straight forward. We’ll just familiarize ourselves

with the software a bit and do a few basics. If you haven’t already, the first thing you should do is download
the Anaconda Python distribution: https://www.continuum.io/downloads.

Be sure to grab Python 3.5! Once it’s installed, fire up the Jupyter notebook by typing jupyter notebook

into your terminal. On Windows, you might need to activate the Anaconda Prompt to do this.

1

The basics

Let’s start with a few basic computations. Note that the computer type looking stuff after the In[]
prompts is the actual code I’d like you to type in to practice.

In

In

In

In

In

In

[1: (2+3)/42
[1: 2%xx1234-1
[1: 2.0%x1234-1
[]1: x=23/4
y = x¥*%3 - 2xx + 1
[]:y
[1: r =10
A = pi*r**2

While simple, there are already some important points to note.

e Syntax is important!

— a® is represented as a*xb.

— Defining a variable as in a=2 suppresses the output. You can always execute just a to see the
output.
e Although Python is dynamically typed, it is typed. There are several different number types.

— Try 1 == 1.0and 1 is 1.0 at the prompt.

— Integers have unlimited precision (which is why 2*%1234 makes sense) and the can be used for
things like indexing arrays. They are typically represented internally by a C type int.

— Floats represent real numbers and are typically represented internally by a C type double. These
are the types of numbers that we will mostly work with in this class.

— 2+3 returns the integer 5 but 2/3 returns a float that approximates 2/3. This behavior was
modified in the change from Python 2 (where 2/3 rounds down to the integer 0) to Python 3.

e Some seemingly standard quantities (like) are not defined; but a lot of stuff is available via libraries.

Here’s an example of an import from the Numpy library:

In []: import numpy as np

r =10
A = np.pi*r*x*x2
A

Note that NumPy is quite large and we will often choose to import it into its own namespace like this.
Thus, all functionality from NumPy will be accessed via np.function_we_want. Here’s how to find out how
many items have been imported:

In []: len(dir(mp))

2 Text and TeX in the notebook

This lab isn’t just about Python - it’s about the Jupyter notebook, as well. Note the Cell menu near the top
of the window. This allows you to specify the Cell Type. If you choose Markdown, you can use markdown,
HTML, and even TeX to format your cell. Once you hit the enter button, it should look really spiffy. That’s
how I got the list above, computer type, and groovy math like

/ e~ dr = /7.

— 00

It’s easiest to just demo this in class, so let’s take some time to do so!

3 The Collatz conjecture: Or functions, booleans, and loops

Define a function on the natural numbers by

fln) =

3n+1 ifniseven
n/2 if n is odd.

Now suppose that we iterate f starting from some initial seed. The Collatz conjecture states that the
resulting sequence will eventually land at 1. From there, it’s easy to see that 1 — 2 — 4 — 1, so that
the process essentially terminates. As this is really an integer based problem, it might not be an ideal
example in numerical analysis. Nonetheless, it’s cool problem that leads naturally to the important concepts
of functions, booleans and loops. Furthermore, the basic techniques are exactly the kinds of things we’ll be
doing with floats.

3.1 Functions

We use the def keyword to define functions. For example, we might represent the mathematical function
f(z) = 2® by

In []: def £(x): return x**2
£(-2)

It’s important to understand, though, that a function is Python is not necessarily a mathematical function;
it’s any organized, reusable block of code that’s wrapped up in this fashion.

3.2 Booleans

The term boolean (named after logician George Boole) refers specifically to the Python keywords True and
False and, more generally to truth testing in computer science motivated by Boolean Algebra. True and
False are values in Python and Boolean valued operators typically return one or the other. For example:

In []: a =10
a == 10
#

Should return True

In [J]: a< 0
Should return False

We often use these with if statements to direct flow. We can combine these ideas with the mod operator
(denoted %) like so:

In []: if(a’%2 == 0):
print(’even’)
else:
print(’odd’)

3.3 The Collatz function

OK, let’s use this to define the actual Collatz function!

In []: def f(n):
if n%2 == 0:
return int(n/2)
else:
return 3*n+1
£(7)

w00t!! How exciting is that? I guess not very actually. Maybe we should do something more.

3.4 A loop

To demonstrate the Collatz conjecture, let’s start at g = 7 and iterate until we reach 1. To do so, we’ll use
a while statement. Rather, than just printing the output, we’ll define a list called orbit and append the
results to orbit as we go along.

In []: x0 =7
orbit = [x0]
while x0 != 1:
x0 = £(x0)
orbit.append(x0)
orbit

Well, that’s a bit cool, at least!

4 Loops, iterables, and vectorization

Often, we’ll loop through a sequence, list, or other iterable type. For example, here’s the cosine of the first
1000 integers:

In []: loop_values = []
for x in range(1000):
loop_values.append(np.cos(x))

If we want to investigate the contents of a lengthy output like this, we might grab just a portion via a
notation like so:

In []: loop_values[:10]
Should return just the first 10 values.

Perhaps, that’s not super illuminating. A plot might help? We’ll investiagate that soon. First, let’s look
at another approach to genenerate this same list, we’ll just apply NumPy’s cosine function to the whole list.

In []: vector_values = np.cos(range(1000))
We can check to see if we got the same result:

In []: loop_values == vector_values
Should be a whole array of Trues
we can allways wrap that result in ‘all’

This is a common theme in NumPy called vectorization. Note that this approach is often much faster.
Let’s time the two approaches using the %%timeit magic function. And don’t ask me what a magic function
is - that’s why it’s called magic!

In []: %ktimeit
vector_values = np.cos(range(1000))

In [1: %ktimeit
loop_values = []
for x in range(1000):
loop_values.append(np.cos(x))

By the way, a microsecond ps or one millionth of a second is much smaller than a millisecond ms - a
thousand times smaller, in fact!

5 Plotting with matplotlib

Of course, it’s nice to plot results. Let’s plot the points we just computed.

In []: Ymatplotlib inline
import matplotlib.pyplot as plt
plt.plot(np.cos(range(1000)),’.7)

Well, that’s pretty darn cool!
Often,we’ll like to plot a function over a particular interval. NumPy provides some nice tools for gener-
ating ranges of numbers. The two most commonly used ones are:

e np.linspace(a,b,n) - generates n numbers even spaced out from a to b
e np.arange(a,b,dx) - generates {a +idx,0 <i < (b—a)/dx}

Also, multiple calls to plt.plot draws to the same object. Thus, we can plot f(x) = x cos(x?) together
with the line y = z as follows:

In []: def f(x): return x*np.cos(x**2)
xs = np.linspace(-2,2,100)
plt.plot(xs,f(xs))
plt.plot(xs,xs)

	The basics
	Text and TeX in the notebook
	The Collatz conjecture: Or functions, booleans, and loops
	Functions
	Booleans
	The Collatz function
	A loop

	Loops, iterables, and vectorization
	Plotting with matplotlib

