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Our textbook is a very concrete text relying on examples, computation, and geometric intuition to
develop students’ understanding. The objective is to develop understanding that’s strong enough to use
confidently in applications, with a particular emphasis on computer applications. The author views this
is an alternative to a more traditional proof based approach and clearly points out in the text’s front
matter that it is not “the intention of this book to develop students’ formal proof-writing abilities”.

As much as I like the text and share the computational and geometric vision, I still think that a bit of
practice writing proofs is essential at this level. More generally, writing is one of the most important
skills you’ll develop throughout college and mathematical writing, in particular, incorporates a high
level of logical precision.

As such, I’m going to supplement our text here and there just a bit.

In this particular set of class notes, we’re going to focus on the most basic proof technique in linear
algebra, one which you might even see in Calc III, namely - a componentwise proof.

Vectors in ℝ𝑛

I guess the very simplest componentwise proofs involve vectors in ℝ𝑛, which we might think of as
simple lists of 𝑛 numbers. Sometimes you might hear ℝ𝑛 referred to as Euclidean space; we’ll think
of ℝ𝑛 as the simplest example of what we’ll ultimately call a vector space.

The definitions

We might think of the very definition of a vector in ℝ𝑛 as componentwise, since it’s stated in terms of
components. We say that a vector u in ℝ𝑛 is a list of real numbers of length 𝑛; we often arrange such
a list vertically in a column:

u = ⎡⎢
⎣

𝑢1
⋮

𝑢𝑛

⎤⎥
⎦
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Note that all the examples on this page are written abstractly like this; rather than examples with specific
numbers like 1, 2, and 3, we’ll have examples with symbols 𝑢1, 𝑢2, … , 𝑢𝑛. Even the number of those
symbols 𝑛 will be arbitrary, since we want our notation to work in any dimension.

We’ve already talked a bit about vector addition and scalar multiplication, even their definitions are
componentwise as well:

Definitions of the algebraic operations for vectors:
If 𝜆 ∈ ℝ is a scalar and u and v are vectors written

u = ⎡⎢
⎣

𝑢1
⋮

𝑢𝑛

⎤⎥
⎦

and v = ⎡⎢
⎣

𝑣1
⋮

𝑢𝑛

⎤⎥
⎦

,

then

𝜆u = ⎡⎢
⎣

𝜆𝑢1
⋮

𝜆𝑢𝑛

⎤⎥
⎦

and u + v = ⎡⎢
⎣

𝑢1 + 𝑣1
⋮

𝑢𝑛 + 𝑣𝑛

⎤⎥
⎦

.

Properties

Two key facts about these operations are that they obey some basic algebraic rules we’re familiar with.
Furthermore, we can prove these rules by examining them at the component level and use the corre-
sponding facts for real numbers.

The following is listed as Observation 2.1.8 in our text.

Prop 1: Vector addition is commutative; that is, if u and v are vectors in ℝ𝑛, then

u + v = v + u

Proof : Since u, v ∈ ℝ𝑛, we can write

u = ⎡⎢
⎣

𝑢1
⋮

𝑢𝑛

⎤⎥
⎦
and v = ⎡⎢

⎣

𝑣1
⋮

𝑣𝑛

⎤⎥
⎦

.

Then,
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u + v = ⎡⎢
⎣

𝑢1
⋮

𝑢𝑛

⎤⎥
⎦

+ ⎡⎢
⎣

𝑣1
⋮

𝑣𝑛

⎤⎥
⎦

= ⎡⎢
⎣

𝑢1 + 𝑣1
⋮

𝑢𝑛 + 𝑣𝑛

⎤⎥
⎦

= ⎡⎢
⎣

𝑣1 + 𝑢1
⋮

𝑣𝑛 + 𝑢𝑛

⎤⎥
⎦

= ⎡⎢
⎣

𝑣1
⋮

𝑣𝑛

⎤⎥
⎦

+ ⎡⎢
⎣

𝑢1
⋮

𝑢𝑛

⎤⎥
⎦

= v + u.□

Reading proofs: In a proof like this, you should be able to attribute every equals sign something very
simple - typically, either

• A definition,
• An algebraic property of the real numbers, or
• A previously proven proposition.

In the proof we just saw, for example, the five equals signs in order can be attributed to

1. The notational definitions of u and v,
2. The definition of vector addition,
3. The commutative property of real addition,
4. The definition of vector addition, and
5. The notational definitions of u and v.

In a componentwise proof, it’s often the case that we apply definitions to expand a compact notation
to a more detailed form allowing to see directly how the real numbers interact with each other. Ideally,
we can then apply the properties of real numbers to modify that detailed form to another detailed form
that collapses back down to the compact version that we’re looking for.

In a componentwise proof, it’s often the case that we apply definitions to expand a compact notation to a
more detailed form, allowing you to see directly how the real numbers interact with each other. Ideally,
we can then apply the properties of real numbers to modify that detailed form to another detailed form
that collapses back down to the compact version that we’re looking for.

Prop 2: Scalar multiplication is distributive over vector addition; that is, if u and v are vectors in
ℝ𝑛 and 𝜆 ∈ ℝ is a scalar, then

𝜆(u + v) = 𝜆u + 𝜆v.

Proof: Since u, v ∈ ℝ𝑛, we can write

u = ⎡⎢
⎣

𝑢1
⋮

𝑢𝑛

⎤⎥
⎦
and v = ⎡⎢

⎣

𝑣1
⋮

𝑣𝑛

⎤⎥
⎦

.

Then,
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𝜆(u + v) = 𝜆 ⎛⎜
⎝

⎡⎢
⎣

𝑢1
⋮

𝑢𝑛

⎤⎥
⎦

+ ⎡⎢
⎣

𝑣1
⋮

𝑣𝑛

⎤⎥
⎦

⎞⎟
⎠

= 𝜆 ⎡⎢
⎣

𝑢1 + 𝑣1
⋮

𝑢𝑛 + 𝑣𝑛

⎤⎥
⎦

= ⎡⎢
⎣

𝜆(𝑢1 + 𝑣1)
⋮

𝜆(𝑢𝑛 + 𝑣𝑛)
⎤⎥
⎦

= ⎡⎢
⎣

𝜆𝑢1 + 𝜆𝑣1
⋮

𝜆𝑢𝑛 + 𝜆𝑣𝑛

⎤⎥
⎦

= ⎡⎢
⎣

𝜆𝑢1
⋮

𝜆𝑢𝑛

⎤⎥
⎦

+ ⎡⎢
⎣

𝜆𝑣1
⋮

𝜆𝑣𝑛

⎤⎥
⎦

= 𝜆u + 𝜆v.□

It’s worth mentioning that Prop 2 has a natural counterpart where the roles of the scalar and the vector
flip. We might call this Prop 2a.

It’s worth mentioning that Prop 2 has a natural counterpart in which the roles of the scalar and the vector
are reversed. We might call this Prop 2a.

Prop 2a: Scalar multiplication is distributive over scalar addition; that is, if u is a vector in ℝ𝑛

and 𝛼, 𝛽 ∈ ℝ are scalars, then
(𝛼 + 𝛽)u = 𝛼u + 𝛽u.

Let’s leave the proof of this as an exercise.

Matrix×vector multiplication

The definition

Generally, we think of an 𝑚 × 𝑛 matrix as a rectangular array of numbers:

𝐴 = [𝑎𝑖𝑗]𝑚,𝑛
𝑖,𝑗=1 = ⎡⎢

⎣

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑚1 ⋯ 𝑎𝑚𝑛

⎤⎥
⎦

.

As we begin with matrix multiplication, though, we might also think of a matrix as a list of its
columns:

𝐴 = [𝐴1 ⋯ 𝐴𝑛] ,
where

𝐴𝑗 = ⎡⎢
⎣

𝑎1𝑗
⋮

𝑎𝑚𝑗

⎤⎥
⎦

.

This gives us a natural way to think of matrix×vector multiplication.
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Def (of matrix×vector multiplication): Let 𝐴 ∈ ℝ𝕞×𝕟 denote the 𝑚 × 𝑛 matrix

𝐴 = [𝐴1 ⋯ 𝐴𝑛]

and let x ∈ ℝ𝕟 denote the 𝑛-dimensional vector

x = ⎡⎢
⎣

𝑥1
⋮

𝑥𝑛

⎤⎥
⎦

.

Then, the matrix×vector product 𝐴x is defined by

𝐴x = 𝑥1𝐴1 + ⋯ + 𝑥𝑛𝐴𝑛.

In words, 𝐴x is the linear combination of the columns of 𝐴 using coefficients determined by x.

Componentwise formulation

There’s a componentwise formulation of matrix×vector multiplication that makes explicit reference to
the components of the matrix and vector, which (again) are

𝐴 = ⎡⎢
⎣

𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑚1 ⋯ 𝑎𝑚𝑛

⎤⎥
⎦

and x = ⎡⎢
⎣

𝑥1
⋮

𝑥𝑛

⎤⎥
⎦

.

Prop 3 (Componentwise formula for matrix×vector multiplication): Referring back to the com-
ponentwise formulations of 𝐴 and x, we have

𝐴x = ⎡⎢
⎣

𝑎11𝑥1 + ⋯ + 𝑎1𝑛𝑥𝑛
⋮

𝑎𝑚1𝑥1 + ⋯ + 𝑎𝑚𝑛𝑥𝑛

⎤⎥
⎦

.

In words, the 𝑖th entry in the vector 𝐴x is exactly the dot product of the 𝑖th row of 𝐴 with the
vector x.

Proof : The proof is a simple matter of writing out the definition of matrix×vector multiplication, well,
componentwise:
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𝐴x = 𝑥1𝐴1 + ⋯ + 𝑥𝑛𝐴𝑛 = 𝑥1
⎡⎢
⎣

𝑎11
⋮

𝑎𝑚1

⎤⎥
⎦

+ ⋯ + 𝑥𝑛
⎡⎢
⎣

𝑎1𝑛
⋮

𝑎𝑚𝑛

⎤⎥
⎦

= ⎡⎢
⎣

𝑥1𝑎11
⋮

𝑥1𝑎𝑚1

⎤⎥
⎦

+ ⋯ + ⎡⎢
⎣

𝑥𝑛𝑎1𝑛
⋮

𝑥𝑛𝑎𝑚𝑛

⎤⎥
⎦

= ⎡⎢
⎣

𝑎11𝑥1 + ⋯ + 𝑎1𝑛𝑥𝑛
⋮

𝑎𝑚1𝑥1 + ⋯ + 𝑎𝑚𝑛𝑥𝑛

⎤⎥
⎦

.□

Algebraic properties

The fundamental algebraic properties of matrix×vector multiplication are stated as Proposition 2.2.3
of our text:

Prop 4: Let 𝐴 ∈ R𝑚×𝑛 be an 𝑚×𝑛 dimensional matrix, let u, v ∈ ℝ𝑛 be 𝑛 dimensional vectors,
and let 𝜆 ∈ ℝ. Then,

• 𝐴0 = 0
• 𝐴(𝑐v) = 𝑐𝐴(v)
• 𝐴(u + v) = 𝐴u + 𝐴v.

Proof : We’ll prove just the third, leaving the others as exercises.

As usual, we set notation by writing

𝐴 = [𝐴1 ⋯ 𝐴𝑛] , u = ⎡⎢
⎣

𝑢1
⋮

𝑢𝑛

⎤⎥
⎦
and v = ⎡⎢

⎣

𝑣1
⋮

𝑣𝑛

⎤⎥
⎦

.

Thus,

𝐴(u + v) = [𝐴1 ⋯ 𝐴𝑛] ⎛⎜
⎝

⎡⎢
⎣

𝑢1
⋮

𝑢𝑛

⎤⎥
⎦

+ ⎡⎢
⎣

𝑣1
⋮

𝑣𝑛

⎤⎥
⎦

⎞⎟
⎠

= [𝐴1 ⋯ 𝐴𝑛] ⎡⎢
⎣

𝑢1 + 𝑣1
⋮

𝑢𝑛 + 𝑣𝑛

⎤⎥
⎦

= [(𝑢1 + 𝑣1)𝐴1 ⋯ (𝑢𝑛 + 𝑣𝑛)𝐴𝑛]
= [𝑢1𝐴1 + 𝑣1𝐴1 ⋯ 𝑢𝑛𝐴𝑛 + 𝑣𝑛𝐴𝑛]
= [𝑢1𝐴1 ⋯ 𝑢𝑛𝐴𝑛] + [𝑣1𝐴1 ⋯ 𝑣𝑛𝐴𝑛] = 𝐴u + 𝐴v.□
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A final comment: As already mentioned in our comment on reading, you should always be able to
attribute every equals sign something very simple when reading these proofs. Can you see, for example,
where we used Prop 2a?

Exercises

Here are a few proof writing exercises. You should emulate the style that you see here while writing a
careful proof of each of the following.

1. Prove that vector addition is associative. That is, if u, v, and w are vectors in ℝ𝑛, then

(u + v) + w = u + (v + w).

2. Prove Prop 2a
3. Prove the second part of Prop 4
4. Section 2.2 of our text ends with a Caution that not all properties of real numbers always extend

to matrix and vector operations. In particular, the texts points out that

a) It’s not generally true that 𝐴𝐵 = 𝐵𝐴 and that
b) It’s not generally true that 𝐴𝐵 = 0 implies that 𝐴 = 0 or 𝐵 = 0.

Find a counterexample for each of those statements.
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