Chaos and Fractals - Midterm Review

Our Midterm exam is next Thursday, October 5. Here are some practice problems.

1. Write down careful and complete statements of the following:
(a) Fixed point of a function $f: \mathbb{R} \rightarrow \mathbb{R}$
(b) Attractive fixed point of a function $f: \mathbb{R} \rightarrow \mathbb{R}$
(c) The quadratic escape criterion for $f_{c}(z)=z^{2}+c$
(d) The filled Julia set and the Julia set of a quadratic for $f_{c}(z)=z^{2}+c$
(e) The Mandelbrot set
2. Let $f_{c}(x)=x^{2}+c$, where $x \in \mathbb{R}$. Show that

$$
x=\frac{1-\sqrt{1-4 c}}{2}
$$

is an attractive fixed point for f_{c} when $-3 / 4<c<1 / 4$.
3. Find and classify the fixed points of $f(z)=i z^{3}+\frac{3}{2} z$.
4. Let $f_{c}(z)=z^{2}+c$, let $g_{c}(z)=z^{2}+2 z+c$, and let $\varphi(z)=z+1$.
(a) Show that $f_{c} \circ \varphi=\varphi \circ g_{c}$.
(b) What does part (a) say about the relationship between the Julia set of f_{c} and the Julia set of g_{c} ?
5. Let $f(z)=z^{2}+1$ and suppose that $z_{0} \in \mathbb{C}$ satisfies $\left|z_{0}\right|>2$. Show that the orbit of z_{0} under iteration of f diverges to ∞.
Note: The idea is to understand why the quadratic escape criterion is true; so no fair applying the quadratic escape criterion.
6. Use any theorem you like to establish the following statements.
(a) The Julia set of $z^{2}-2$ is connected.
(b) The Julia set of $z^{2}-2.1$ is totally disconnected.
(c) The Julia set of $z^{2}-0.1$ is connected.
7. Match the points on the Mandelbrot set in figure 1 with the corresponding Julia sets.
8. Draw some good cobwebs on figure 2.

Figure 1: The Mandelbrot set with some points and corresponding Julia sets

Figure 2: A function for a cobweb plot

