Calc I - Review for Exam III

The third exam will be next Monday, November 20. Here are some problems that might help.

1. Let $f(x)=x^{3}-5$.
(a) Find the corresponding Newton's method iteration function $N(x)$.
(b) Perform two Newton iteration steps from the initial point $x_{1}=1$.
2. Suppose the volume of a sphere changes at the rate of 4 cubic centimeters per second. At what rate is the radius of the sphere increasing when it's 5 centimeters?
3. Suppose I pull the bottom of a 10 foot tall ladder away from a wall at the rate of 2 feet per second. At what rate is the top of the ladder moving towards the floor when it is 3 feet away from the floor?
4. The velocity of an object is given by $v(t)=2 t-1$ and, at time zero, the position of the object is $p_{0}=1$. Find the position $p(t)$ of the object as a function of time.
5. Suppose I'm standing on a cliff 100 feet high and I throw an object off the cliff with a vertical velocity of 24 feet per second. Find a function $y(t)$ that indicates the objects height as a function of time and use that function to determine when the object hits the ground.
6. Evaluate the following indefinite integrals.
(a) $\int\left(x^{12}-8 x^{10}-\sin (x)+\cos (x)-e^{x}\right) d x$.
(b) $\frac{x^{2}(x-1)}{\sqrt{x^{3}}} d x$.
7. Use the Fundamental Theorem of Calculus to evaluate the following definite integrals
(a) $\int_{0}^{2}\left(3 x^{2}+x+2\right) d x$
(b) $\int_{1}^{e}\left(\frac{1}{x^{2}}+\frac{1}{x}\right) d x$
8. The complete graph of a function is shown in figure 1t it consists of two line segments and a quarter circle. Evaluate

$$
\int_{-2}^{4} f(x) d x
$$

9. Write down a right Riemann with $n=4$ terms sum to estimate

$$
\int_{-1}^{1} \cos (x) d x
$$

10. Use Σ ummation notation to write down a right Riemann sum with $n=555$ terms to estimate

$$
\int_{0}^{1} \sin \left(x^{3}\right) d x
$$

11. Find the derivative $f(x)=\arcsin (2 x)+\arctan \left(x^{3}\right)$.
12. Figure 2 shows the graph of $f(x)=x^{3}+\frac{1}{2} x-\frac{3}{2}$ together with the dashed line $y=x$.
(a) Sketch the graph of f^{-1} on the same set of axes.
(b) Find an equation for the line that is tangent to the graph of f^{-1} at the point where $x=0$.

Figure 1: the graph of a function

Figure 2: A function together with the line $y=x$

