Calc I - Review for exam I

The first exam will be this Wednesday, September 20. Here are some problems that might help.

1. Use the following steps to estimate the derivative of $f(x)=6^{x}$.
(a) Write down the difference quotient for f.
(b) Use a little algebra to separate the x s from the $h \mathrm{~s}$.
(c) Refer to the following table to help you find your final estimate.

t	0.1	0.01	0.001	0.0001	0.00001	0.000001
$\frac{6^{h}-1}{h}$	1.96231	1.80791	1.79337	1.79192	1.79178	1.79176

2. Let $f(x)=x^{2}-x$.
(a) Draw the graph of f.
(b) Write down the difference quotient for f and simplify it to the point where you can cancel the h in the denominator.
(c) Write down the estimate for the slope of the graph of f at $x=1$ yielded by the difference quotient using $h=0.2$.
(d) Write down an equation for the corresponding secant line through $(1, f(1))$ and $(1.2, f(1.2))$ and draw it on your graph.
(e) Write down and equation for the precise tangent line at $x=1$ and draw that on your graph as well.
3. Figure 1 shows the complete graph of a function f; its domain is $(-1,2]$.
(a) What are $f(1.5)$ and $\lim _{x \rightarrow 1.5} f(x)$?
(b) What are $\lim _{x \rightarrow 1^{-}} f(x), \lim _{x \rightarrow 1^{+}} f(x)$, and $\lim _{x \rightarrow 1} f(x)$?
(c) What can you say about $\lim _{x \rightarrow-1^{+}} f(x)$.
4. Compute the following limits.
(a) $\lim _{x \rightarrow 2} \frac{3 x^{2}-7 x+2}{x-2}$
(b) $\lim _{x \rightarrow 3^{+}} \frac{3 x^{2}-7 x+2}{x-3}$
5. Write down a complete sentence referring to the intermediate value theorem explaining why $f(x)=3 x^{7}-x-1$ has a root between $x=0$ and $x=1$.
6. Find the derivatives of the following functions, using the definition of the derivative.
(a) $f(x)=2 x^{2}-4 x$
(b) $f(x)=1 / \sqrt{x}$
(c) $f(x)=x^{5}$
7. Find the derivatives of the following functions, using any technique you see fit.
(a) $f(x)=2 x^{2}-4 x$
(b) $f(x)=1 / \sqrt{x}$
(c) $f(x)=x^{5}$
(d) $f(x)=x^{5}\left(x^{2}-x-1\right)$
(e) $f(x)=\left(x^{2}-x-1\right) / x$
(f) $f(x)=2^{x}+7^{x}+e^{x}+x^{e}$
8. The complete graph of a function f is shown in figure 2, it consists of a line segment, a quarter-circle, and a semi-circle. Sketch the graph of f^{\prime}.
9. The complete graph of a function f is shown in figure 3 .
(a) On what intervals is $f^{\prime}>0$?
(b) On what intervals is $f^{\prime \prime}>0$?
(c) At what points is $f^{\prime}=0$?
(d) At what points is $f^{\prime \prime}=0$?
(e) At what points is f discontinuous and why?
(f) At what points is f not differentiable and why?
10. If f and g are differentiable function, prove that

$$
\frac{d}{d x}(2 f(x)+3 g(x))=2 f^{\prime}(x)+3 g^{\prime}(x)
$$

11. Use the defintion of the derivative to show that

$$
\frac{d}{d x}\left(x^{2} f(x)\right)=2 x f(x)+x^{2} f^{\prime}(x)
$$

Figure 1: The graph for problem 4

Figure 2: The graph for problem 8

Figure 3: The graph for problem 9

