An archived instance of a Discrete forum

Another summation induction

mark

Use induction to prove that

\sum _{i=1}^n \left(3 i^2+i\right) = n (n+1)^2.
ksimmon1

Proof by induction:

\sum _{i=1}^n \left(3 i^2+i\right) = n (n+1)^2.

Base Case:

(3 i^2+i) = n (n+1)^2
(3 (1)^2+(1)) = (1) (1+1)^2.
4 = 4

Assume that for a fixed value of n that:

\sum _{i=1}^n \left(3 i^2+i\right) = n (n+1)^2

We want to show that:

\sum _{i=1}^{n+1} \left(3 i^2+i\right) = (n+1)(n+2)^2

Well,

\sum _{i=1}^{n+1} = \sum _{i=1}^{n} + 3(n+1)^2+1
= n(n+1)^2 + 3(n+1)^2+1
=(n+1)(n(n+1)+3(n+1)+1)
=(n+1)(n^2+4n+4)
=(n+1)(n+2)^2