Use the definition of the derivative to find the derivative of
Non-integer power rule by definition
Here’s my best shot
\lim_{h \to 0}\frac{\frac{1}{\sqrt{x+h}}-\frac{1}{\sqrt{x}}}{h}
\lim_{h \to 0}\frac{\frac{\sqrt{x}(1)}{\sqrt{x}\sqrt{x+h}}-\frac{\sqrt{x+h}(1)}{\sqrt{x}\sqrt{x+h}}}{h}
\lim_{h \to 0}\frac{\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x}\sqrt{x+h}}}{h}
\lim_{h \to 0}\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x}\sqrt{x+h}}*\frac{1}{h}
\lim_{h \to 0}\frac{1}{h}*\frac{\sqrt{x}-\sqrt{x+h}}{\sqrt{x}\sqrt{x+h}}*\frac{\sqrt{x}+\sqrt{x+h}}{\sqrt{x}+\sqrt{x+h}}
\lim_{h \to 0}\frac{1}{h}*\frac{(\sqrt{x}-\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})}{(\sqrt{x}\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})}
\lim_{h \to 0}\frac{1}{h}*\frac{x-(x+h)}{(\sqrt{x}\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})}
\lim_{h \to 0}\frac{1}{h}*\frac{x-x-h}{(\sqrt{x}\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})}
\lim_{h \to 0}\frac{1}{h}*\frac{-h}{(\sqrt{x}\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})}
\lim_{h \to 0}\frac{-1}{(\sqrt{x}\sqrt{x+h})(\sqrt{x}+\sqrt{x+h})}
\lim_{h \to 0}\frac{-1}{(\sqrt{x}\sqrt{x+0})(\sqrt{x}+\sqrt{x+0})}
f'(x)=\frac{-1}{(\sqrt{x(x})(\sqrt{x}+\sqrt{x})}
f'(x)=\frac{-1}{(\sqrt{x^2})(\sqrt{x}+\sqrt{x}))}
f'(x)=\frac{-1}{(x\sqrt{x}+x\sqrt{x})}
f'(x)=\frac{-1}{2x\sqrt{x}}
f'(x)=-\frac{1}{2}x^{-1}x^{-\frac{1}{2}}
f'(x)=-\frac{1}{2}x^{-\frac{3}{2}}
Sorry about the number of brackets, but here is my go at it:
I thought that it would be okay to leave it in this fraction form to end? I realise the x could be moved to the top making its power negative but wondered if that was a big deal or not.