# Mean and standard deviation

edited August 2020

(10 pts)

Generate four numbers by taking the positions in the alphabet of the first four letters of your first name (append your last name, if necessary). For example, my name is "Mark" so my numbers are

$$13,1,18,11.$$

Compute the sample mean and standard deviation of that list of numbers - showing your work using AscIIMath input!

My solution would be

mu = (13+1+18+11)/4 = 10.75

and

sigma = sqrt(((13-10.75)^2 + (1-10.75)^2 + (18-10.75)^2 + (11-10.75)^2)/3) ~~ 7.13559.

Note that I am definitely hoping that you use the auto-typesetting facility built into the site. For example, to type my solution into the webpage, I typed:

``````My solution  would be

mu = (13+1+18+11)/4 = 10.75

and

sigma = sqrt(((13-10.75)^2  + (1-10.75)^2 + (18-10.75)^2 + (11-10.75)^2)/3) ~~ 7.13559.
``````

The general form here is called ASCIIMath and is quite simple but powerful

«1

• edited August 2020

μ= [10+1+14+5] / 4 = 7.5

σ= √[(10-7.5)^2 + (1-7.5)^2 + (14-7.5)^2 + (5-7.5)^2] /3  ≈ 5.69

• Brandon
mu = (1+2+14+18)/4 = 8.75
 sigma = sqrt(((1-8.75)^2+(2-8.75)^2+(14-8.75)^2+(18-8.75)^2)/3) ~~ 8.54

• edited August 2020

Patrick Dimond
P,A,T,R

mu = (16+1+20+18)/4 = 11

sigma = sqrt(((16-11)^2 + (1-11)^2 + (20-11)^2 + (18-11)^2)/3) ~~ 12.85

• edited August 2020

Taylor
20, 1, 25, 12, 15, 18

μ = (20+1+25+12+15+18)/6=15.167
σ =√((20-15.167)^2 + (1-15.167)^2 + (25-15.167)^2 + (12-15.167)^2+ (15-15.167)^2 + (18-15.167)^2) / 5 ≈ 8.23

• edited August 2020

Harry
7, 1, 17, 17

μ = (7+1+17+17) / 4 = 10.5

σ = sqrt((7-10.5)^2 + (1-10.5)^2 + (17-10.5)^2 + (17-10.5)^2) / 3 ≈ 7.8952

• edited August 2020

Hailey

8, 1, 9, 12, 5, and 25

mu = (8 + 1 + 12 + 5 + 25)/6 = 10

and

sigma = sqrt(((8-10)^2 + (1-10)^2 + (9-10)^2 + (12-10)^2 + (5 - 10)^2 + (25 - 10)^2)/6 ~~ 7.53.

• edited August 2020

mu = (5+22+1+14)/4 = 10.5

sigma = sqrt(((5-10.5)^2 + (22-10.5)^2 + (1-10.5)^2 + (14-10.5)^2)/3) ~~ 232.083.

• edited August 2020

My solution would be

mu = (1+21+4+18)/4 = 11

and

sigma = sqrt(((1-11)^2 + (21-11)^2 + (4-11)^2 + (18-11)^2)/3) ~~ 9.97.

• edited August 2020

μ = 1 + 12 + 5 + 24 + 1 +53/ 5= 10.6
σ = √(1-10.6)^2 + (12-10.6)^2 + (5-10.6)^2 + (34-10.6)^2 + (1-10.6)^2 / 4 ≈ 13.83

• edited August 2020

mu = (3+1+12+5)/4 = 5.25

and

sigma = sqrt(((1-5.25)^2 + (3-5.25)^2 + (5-5.25)^2 + (12-5.25)^2)/3) ~~ 4.79.

• edited August 2020

μ=20+15+13+7=13.75
σ=√(20−13.75)2+(15−13.75)2+(13−13.75)2+(7−13.75)24≈4.69707.

• edited August 2020

mu = (23+1+4+5)/4 = 8.25

sigma = sqrt(((23-8.25)^2 + (1-8.25)^2 + (18-8.25)^2 + (11-8.25)^2)/3) ~~ 9.979.

• edited September 2020

mu = (10+1+3+11)/4 = 6.25

and

sigma = sqrt(((10-6.25)^2 + (1-6.25)^2 + (3-6.25)^2 + (11-6.25)^2)/3) ~~ 7.13559.

• edited August 2020

Sims
mu=(18+8+12+18)/4 = 14
sigma = sqrt(((18-14)^2+(8-14)^2+(12-14)^2+(18-14)^2)/3) approx 4.90

• Leon -> 12,5,15,14

mu = (12+5+15+14)/4 = 11.5

sigma=sqrt(((12-11.5)^2+(5-11.5)^2+(15-11.5)^2+(14-11.5)^2)/3)~~ 4.50925

• edited August 2020

Amber
mu=(1+13+2+5+18)/5=7.8

and

sigma=sqrt(((1-7.8)^2+(13-7.8)^2+(2-7.8)^2+(5-7.8)^2+(18-7.8)^2)/4)~~7.39594

• edited August 2020

Chris --> 3, 8, 18, 9

μ = (3 + 8 + 18 + 9)/4 = 9.5

σ = sqrt(((3-9.5)^2 + (8-9.5)^2 + (18-9.5)^2 + (9-9.5)^2)/3)≈6.244998

• edited August 2020

Albert- 1,12,2,5

mu = (1+12+2+5)/4 = 5

sigma = sqrt(((1-5)^2 + (12-5)^2 + (2-5)^2 + (5-5)^2)/3) ~~ 26.6

• edited August 2020

Conor-3,15,14,15

mu = (3+15+14+15)/4 = 11.75

sigma = sqrt ( ( (3-11.75)^2 + (15-11.75)^2 + (14-11.75)^2 + (15-11.75) ^2)/3) ~~ 5.852349955

• edited August 2020

Anjuli:

1,14,10,21

mu=(1+14+10+21)/4=11.5
sigma = sqrt(((1-11.5)^2+(14-11.5)^2+(10-11.5)^2+(21-11.5)^2))/3=approx8.34

• edited August 2020

bella- 2, 5, 12, 12
mu=(2+5+12+12)/4=7.75
sigma=sqrt(((2-7.75)^2+(5-7.75)^2+(12-7.75)^2+(12-7.75)^2)/3)--5.058

• edited August 2020

Denley
mu = (4+5+14+12)/4 = 8.75

sigma = sqrt(((4-8.75)^2 + (5-8.75)^2 + (14-8.75)^2 + (12-8.75)^2)/3) ~~ 4.99.

• edited August 2020

mu = (4+13+13+1)/4 = 7.75

sigma = sqrt(((4-7.75)^2 + (13-7.75)^2 + (13-7.75)^2 + (1-7.75)^2)/3) ~~ 6.18.

• Laura
mu = (12+1+21+18)/4 = 14
and
sigma = sqrt(((12-13)^2 + (1-13)^2 + (21-13)^2 + (18-13)^2)/3 ~~ 8.83176.

• edited August 2020

2,12,1,9

mu=(2+12+1+9)/4=6

and

sigma=sqrt((2-6)^2+(12-6)^2+(1-6)^2+(9-6)^2)/3~~5.356

• edited August 2020

mu = (10+1+11+5)/4 = 6.75

and

sigma = sqrt(((10-6.75)^2 + (1-6.75)^2 + (11-6.75)^2 + (5-6.75)^2)/3) ~~ 4.645.

• J, o, h, n = 10, 15, 8, 4

mu = (10+15+8+4)/4 = 11.75

sigma = sqrt(((10-11.75)^2 + (15-11.75)^2 + (8-11.75)^2 + (4-11.75)^2)/3) ~~ 3.304038.

• edited August 2020

g, r, a, c, e = 7,18,1,3,5

mu = (7+18+1+3+5)/5 = 6.8

sigma = sqrt(((7-6.8)^2 + (18-6.8)^2 + (1-6.8)^2 + (3-6.8)^2 + (5-6.8)^2)/4) ~~ 6.64831.

• edited August 2020

16, 9, 16, 5

mu = (16+9+16+5)/4= 11.5

sigma = sqrt(((16-11.5)^2 + (9-11.5)^2 + (16-11.5)^2 + (5-11.5)^2)/3) ~~ 5.4467115

• edited August 2020

my solution:

19, 20, 5, 18

mu = (19+20+5+18)/4 = 15.5

and

sigma = sqrt(((19-15.5)^2+(20-15.5)^2+(5-15.5)^2+(18-15.5)^2)/3) ~~ 7.047

This discussion has been closed.