Mark
Use the definition of limit to prove that
\lim_{z \to i}\frac{z^2+1}{z-i} = 2i.
Use the definition of limit to prove that
Let’s try this.
Claim: \lim_{z \to i} \frac{z^2 +1}{z-i}=2i.
Proof:
First notice that \lim_{z \to i} \frac{z^2 +1}{z-i}=2i \Leftrightarrow \lim_{z \to i} \frac{(z+i)(z-i)}{z-i} = 2i \Leftrightarrow \lim_{z \to i} (z+i) =2i.
Now we need to show (\forall \varepsilon>0)(\exists\delta>0)(0<|z-i|<\delta \Rightarrow |(z+i)-2i|< \varepsilon).
So let \varepsilon > 0 and let \delta = \varepsilon. So then 0<|z-i|<\delta implies that
|(z+i)-2i|=|z-i|<\delta= \varepsilon.
Thus, we have shown that which was to be demonstrated.
Proof:
First notice that
now we need to show
So let,