
Fractal Geometry

Mark McClure

Contents

List of illustrations page v

1 Introduction 1

1.1 The idea behind fractal geometry 1

1.2 Notes 3

2 Self-similarity 4

2.1 The Cantor set 4

2.2 The Sierpinski gasket 6

2.3 Iterated function systems 6

2.4 Applying iterated function systems 11

2.5 The ShowIFS command 12

2.6 Examples 16

2.7 A modified algorithm 22

2.8 A stochastic algorithm 24

2.9 Fractal Spirals 28

2.10 Mathematica implementation 31

2.11 Notes 34

Exercises 34

3 Some mathematical details 38

3.1 Invariant sets 38

3.2 Fractal Dimension 42

Exercises 54

4 Generalizing self-similarity 55

4.1 Self-affinity 55

4.2 Digraph Iterated Function Systems 72

Exercises 88

5 Fractals and tiling 90

iv Contents

5.1 Tiling and self-similarity 91

5.2 Fractal boundaries 105

5.3 The SelfAffineTiles package 109

5.4 Aperiodic tiling 110

Appendix A A brief introduction to Mathematica 111

A.1 The very basics 111

A.2 Brackets [], braces , and parentheses () 113

A.3 Entering typeset expressions 114

A.4 Defining constants and functions 115

A.5 Basic graphics 117

A.6 Solving equations 121

A.7 Random sequences 122

A.8 Graphics primitives 123

A.9 Manipulating lists 128

A.10 Iteration 131

A.11 Pattern matching 132

A.12 Programming 133

A.13 Notes 137

Exercises 137

Appendix B Linear Algebra 139

Appendix C Real Analysis 149

Appendix D The Golden Ratio 154

References 157

Illustrations

1.1 Some fractal sets 1
1.2 The Barnsley Fern with detail 2
2.1 Construction of the Cantor set 5
2.2 Construction of the Sierpinski gasket 6
2.3 The action of a contractive similarity on a set E in the plane. 8
2.4 The Koch curve 9
2.5 A Koch type curve with reflection 10
2.6 Approximating the Sierpinski gasket with finite sets of points. 12
2.7 Approximating the Sierpinski gasket with an arbitrary set 13
2.8 The altitudes of a triangle and the associated pedal triangle 20
2.9 The modified algorithm for the Sierpinski pedal triangle 23
2.10 Several self-similar sets 35
2.11 Approximations to a self-similar set 36
2.12 Skeletons of pentagonal self-similar sets 37
3.1 Definition of the Hausdorff distance 41
3.2 The invariant set corresponding to r1 = 1/2 and r2 = 1/4. 45
3.3 A covering, packing, and box covering of a finite set. 47
3.4 A maximal packing and the induced cover. 49
4.1 Approximations to a self-affine set. 56
4.2 Approximations to a self-affine set with reflection 57
4.3 Approximations to a self-affine set with shears 58
4.4 Barnsley’s Fern 58
4.5 Construction of Barnsley’s fern 59
4.6 An IFS approximating a disk 61
4.7 An IFS with fewer functions approximating a disk 62
4.8 A self-affine set to analyze 62
4.9 Covering the self-affine set with boxes 63
4.10 Family of self-affine sets dependent upon a parameter 66
4.11 A self-affine set for Falconer’s formula 69
4.12 A harder self-affine set for Falconer’s formula 71

vi Illustrations

4.13 Digraph self-similar curves 72
4.14 The digraph for the curves 73
4.15 Decomposition of a golden rectangle and square into a digraph

pair. 78
4.16 A modification of the square 78
4.17 A level zero cover of the digraph curves 84
4.18 A level one cover of the digraph curves 84
4.19 A level two cover of the digraph curves. 84
4.20 The digraph for the golden rectangle fractals 87
4.21 Figures for exercise 1. 88
5.1 Three simple tilings 90
5.2 A fractal tiling 91
5.3 The terdragon 93
5.4 The chair tiling 94
5.5 A tiling by Sierpinski snowflakes. 94
5.6 A complete residue system as a digit set 96
5.7 Modification of the square’s digit set 97
5.8 Shifting the modified square 98
5.9 The twin-dragon 98
5.10 Type 1 terdragon 99
5.11 A symmetric type 1 terdragon 101
5.12 The Heighway dragon 104
5.13 The adjacent neighbors of the twindragon and intersections that

form the boundary 105
A.1 Graphics exercises 138
A.2 A heptagon 138
B.1 A rotating square 148
D.1 A golden cut 154
D.2 A golden rectangle 155
D.3 A spiral of squares filling a golden rectangle 155
D.4 The golden triangles 156

1

Introduction

1.1 The idea behind fractal geometry

The term fractal was coined around 1975 by Benoit Mandelbrot to intu-

itively describe an object as complicated, rough, or fractured. Mandelbrot

was inspired by objects in nature like the shape of a cloud or the path of

a river, but his ideas had many precursors in pure mathematics. In this

book, we study fractals as they arise in pure mathematics, focusing on the

computational aspects of the subject.

Figure 1.1 suggests the flavor of the subject.

The Sierpinski gasket A fractal spiral

Barnsley’s fern Gosper’s Snowflake

Figure 1.1 Some fractal sets

2 Introduction

While different in appearance, these objects all have features in common

with most of the objects considered in this book. First of all, they are all

sets of points in the plane generated by some mathematical process. More

importantly, they all have detailed structure at infinitely many levels of

magnification. This is the central idea in fractal geometry from Mandel-

brot’s perspective. The basic objects of Euclidean geometry don’t have this

property. When modelling a natural object (say the coastline of an island),

with Euclidean objects (say a collection of line segments), the model loses

much of the structure when examined on a fine scale. That is, if we zoom in

too much, we see the straight line segments and the physical nature of the

picture is lost. While the pictures in figure 1.2 are only finite approximations

to fractal sets, they are generated by algorithms that can, in principle, be

used to generate detail on as fine a level as desired. This idea is illustrated

using the Barnsley fern in figure 1.2. The outlined region has been magni-

fied to reveal a branch with a similar level of detail as the whole. Off of this

branch are other branches, again with a similar level of detail.

Figure 1.2 The Barnsley Fern with detail

Our zoom into Barnsley’s fern reveals another important aspect of frac-

tal geometry - the sets all display some degree of self-similarity. This self-

similarity is most clearly seen in the Sierpinski gasket, which is composed of

three smaller copies of itself. In fact, this strict self-similarity of the Sierpin-

ski gasket implies the fact that it has structure on all levels of magnification,

since each of the three smaller copies of the set are in turn composed of three

smaller copies each, etc. Gosper’s snowflake is also strictly self-similar, as it

is composed of seven smaller copies of itself. It is the boundary of that set

which is truly of interest and its analysis is a bit more involved.

1.2 Notes 3

This book is divided roughly into two parts - chapters 2 through 4 on

general theory and subsequent chapters on applications to other parts of

pure mathematics. In chapter 2, we examine the idea of self-similarity from

an algorithmic perspective, describing how to generate self-similar sets using

iterated function systems. Chapter 3 takes a closer look at the mathematics

lurking in the background of chapter 2 and introduces the concept of fractal

dimension, which is a quantitative measure of the size of a set. When the

fractal dimension is not an integer, this might indicate some degree of com-

plexity in the set. In chapter 4, we generalize the notion of self-similarity to

include somewhat more complicated objects. Later chapters examine how

fractal geometry can be applied to graphs of functions, tilings of the plane,

and physical problems. There are also several appendices which cover back-

ground material.

1.2 Notes

The most famous book on fractal geometry is undoubtedly Mandelbrot

(1982). In this beautifully illustrated book, he lays down the argument that

his techniques are the most natural ones to describe a large variety of nat-

ural objects. The foundations of fractal geometry were laid down in pure

mathematics long before Mandelbrot, however. The prototypical fractal is

certainly the Cantor set, which dates back to the 1880’s and is described

in the next chapter. Most mathematicians of Cantor’s time found his set

to ”pathological”; it seemed to be the exception rather than the rule. The

fractal perspective has made Cantor’s set seem quite natural, however. This

was made possible by the work of many mathematicians throughout the

early twentieth century, most notably Hausdorff, Besicovitch and his stu-

dents. Some of the seminal works on fractal geometry are collected in Edgar

(1993).

There are now several excellent books on fractal geometry from the math-

ematical perspective. For the collegiate math major who would like to gain

a deep understanding of fractal dimension, I would suggest Edgar (2009).

For another excellent and broader view of fractal geometry there is Falconer

(2003). Both these authors have more advanced texts, namely Edgar (1998)

and Falconer (1997). Another text focusing on iterated function systems is

Barnsley (1993).

2

Self-similarity

In this chapter, we describe the simplest types of fractal objects - self-similar

sets. An intuitive definition of a self-similar set is one that is composed of

smaller copies of itself. The prototypical example of such a set is the Cantor

set.

2.1 The Cantor set

Cantor constructed his set in the 1880’s to help him understand a problem

in Fourier series. While the set seemed unnatural to mathematicians of the

time, it has become a central example in real analysis. Cantor’s construc-

tion is as follows. Start with the unit interval I = [0, 1], the set of all real

numbers between 0 and 1 inclusive. Remove the open middle third
(

1
3 , 2

3

)

of the interval I to obtain the two intervals I1 =
[

0, 1
3

]

and I2 =
[

2
3 , 1
]

.

Then remove the open middle thirds of the intervals I1 and I2 to obtain

the intervals I1,1 =
[

0, 1
9

]

, I1,2 =
[

2
9 , 1

3

]

, I2,1 =
[

2
3 , 7

9

]

, and I2,2 =
[

8
9 , 1
]

.

Repeating this process inductively, we obtain 2n intervals of length 1 /3n at

the nth stage. The cantor set C consists of all those points in I which are

never removed at any stage. More precisely, if Cn denotes the union of all

of the intervals left after the nth stage of the construction, then

C =

∞
⋂

n=1

Cn.

This process is illustrated in figure 2.1.

It’s clear that C should be self-similar, since the effect of the construction

on the intervals I1 and I2 is the same as the effect on the whole interval I,

but on a smaller scale. Thus C consists of two copies of itself scaled by the

factor 1/3.

2.1 The Cantor set 5

Figure 2.1 Construction of the Cantor set

The Cantor set has many non-intuitive properties. In some sense, it seems

very small; if we were to assign a “length” to it, that length would have to be

zero. Indeed, by it’s very construction it is contained in 2n intervals of length

1 /3n. Thus the length of Cn is 2n/3n which tends to zero as n → ∞. Since

C is contained in Cn for all n, the length of C must be zero. It might even

appear that there is nothing left in C after tossing so much out of the original

interval I. In reality, the Cantor set is a very rich set with infinitely many

points. Recall that only open intervals are removed during the construction.

Thus all of the infinitely many endpoints remain. For example, 1/3, 2/3, and

80/81 are all in C. There are still many more points in C, however.

There is a general technique for finding points of the Cantor set. The first

stage in the construction consists of the two intervals I1 and I2. Choose one

and discard the other. Now the interval we chose, say I1 for concreteness,

contains two disjoint intervals, I1,1 and I1,2, in the next stage of the con-

struction. Choose one of those and discard the other. If we continue this

process inductively, we obtain a nested sequence of closed intervals which

will collapse down to a point in the Cantor set. For example, we might have

chosen the interval I1 at the first stage. Then we could have chosen the

interval I1,2 at the next stage. We might then choose to alternate between

the first or second sub-interval at any point generating intervals of the form

I1,2,1,2,...1,2. These intervals collapse down to a single point which is not the

endpoint of any removed interval.

The process for finding points in C constructs a one to one correspondence

with the set of infinite sequences of 1s and 2s. The sequence corresponding to

a particular point in C might be called the address of that point. As we will

see, this addressing scheme can be generalized to other situations and pro-

6 Self-similarity

vides a powerful tool for understanding self-similar sets. Note, for example,

that the addressing scheme implies that the Cantor set is uncountable.

A major question that we will address later in the book asks, “What is

the dimension of the Cantor set?” Certainly, it is too small to be consid-

ered a one dimensional set; it is just a scattering of points along the unit

interval with length zero. It is uncountable, however; perhaps it is too large

to be considered as zero dimensional. We will develop a notion of “fractal

dimension” that quantitatively captures this in-betweeness.

2.2 The Sierpinski gasket

A similar process can be used to construct the Sierpinski gasket, also called

the Sierpinski triangle. We start with a closed, filled in equilateral triangle.

The line segments joining the midpoints of the sides of this triangle divide

it into four equilateral sub-triangles. We can discard the one in the center,

keep the others and then repeat the process on the remaining triangles. This

process is illustrated in figure 2.2.

Figure 2.2 Construction of the Sierpinski gasket

Many of the comments regarding the Cantor set are applicable to the

Sierpinski gasket as well. It is a self-similar set consisting of 3 copies of

itself, each scaled by the factor 1/2. Its dimensional properties are, in a

sense, between dimension one and dimension two.

2.3 Iterated function systems

We now enter the careful, mathematical portion of the text by defining one

of the central tools of fractal geometry - the iterated function system or

2.3 Iterated function systems 7

IFS. The idea behind the IFS technique is to focus on how the parts of a

set might fit together to create the whole. Thus, we focus on what makes

two sets similar; we do this with the notion of a similarity. An IFS is a

collection of similarities and a self-similar set is the attractor of an IFS.

Thus, we actually need to make several definitions, which we will illustrate

with examples afterwards.

We assume we are working in Rn, n-dimensional Euclidean space. The

dimension n will almost always be 2 in this book, although n = 1 might be

the natural setting for the Cantor set. Our sets will generally be subsets of

the plane. Given x in Rn, |x| will refer to the distance from x to the origin.

Thus, |x − y| represents the distance from x to y. A function f : Rn → Rn

will be called a contraction if there is a real number r such that 0 < r < 1

and |f(x) − f(y)| ≤ r|x − y| for all x, y in Rn. If |f(x) − f(y)| = r|x − y|
for all x, y in Rn, then f is called a similarity and the number r is called its

contraction ratio. An iterated function system on Rn is simply a non-empty,

finite collection of contractions of Rn. We will usually express an IFS in the

form {fi}m
i=1 where m is the number of functions in the IFS. If {fi}m

i=1 is

an IFS of similarities, the list {ri}m
i=1 of corresponding contraction ratios is

called the contraction ratio list of the IFS.

As we will see, associated with any IFS there is always a unique non-

empty, closed, bounded subset E of Rn satisfying

E =

m
⋃

i=1

fi(E) (2.1)

The set E defined in equation 2.1 is called the invariant set or attractor

of the IFS. If the IFS consists entirely of contractive similarities, then E is

called self-similar.

We will make frequent use of equation 2.1, so let’s make sure we under-

stand what it is saying. First, the notation fi(E) refers to the image of the set

E under the action of the function fi. For the general function f : Rn → Rn

and set E ⊂ Rn,

f(E) = {f(x) : x ∈ E}.
If the function f happens to be a similarity, then application of f transforms

E into a set which is geometrically similar to E. This idea is illustrated in

figure 2.3.

Let us examine several examples of iterated function systems. Given a self-

similar set, there are always many iterated function systems which generate

8 Self-similarity

1 2 3

1

2

E
f(E)

Figure 2.3 The action of a contractive similarity on a set E in the plane.

that set. We would usually like to find a particularly simple IFS to generate

a given set. The Cantor set C is a subset of the real line which consists of

two copies of itself each scaled by the factor 1
3 . Therefore, it is most easily

described using an iterated function system consisting of two similarities

{f1, f2} mapping R to R. One way to choose the functions is f1(x) = 1
3x

and f2(x) = 1
3x+ 2

3 . Then f1(C) = C ∩ I1 and f2(C) = C ∩ I2, where I1 and

I2 are the intervals from the first stage of construction of C.

As most of our examples will be subsets of the plane, we need a convenient

notation for describing similarity transformations of R2. Linear algebra pro-

vides such notation. The general similarity transformation f : R2 → R2 can

be expressed in the form

f(x) = Mx + b,

where M is a 2-dimensional matrix, b is a translation vector, and M acts on x

by matrix multiplication. Not all matrices lead to similarity transformations,

but any similarity transformation can be expressed this way. For example,

we can express a contraction about the origin with contraction factor 1/2

using the matrix

M =

(

1
2 0

0 1
2

)

. (2.2)

Armed with this notation, we can attempt to find an IFS for the Sierpinski

gasket. Recall that this set consists of three copies of itself scaled without

rotation by the factor 1/2. Thus we should be able to express an IFS for the

gasket using the matrix M above together with shift vectors. Here is an IFS

for the gasket using the matrix M defined by formula 2.2:

2.3 Iterated function systems 9

f1(x) = Mx

f2(x) = Mx +

(

1/2

0

)

f3(x) = Mx +

(

1/4√
3
/

4

)

The function f1 maps the gasket onto the lower left copy of itself, f2 maps

it onto the lower right, and f3 maps it onto the upper copy.

Our next example is called the Koch curve. Figure 2.4 shows how the

Koch curve, denoted K, is composed of 4 copies of itself scaled by the factor

1/3.

K

K1
K2 K3 K4

Figure 2.4 The Koch curve

The IFS for K is more complicated than the IFS for the Sierpinski gasket,

since it involves rotation. Rotation through the angle θ about the origin can

be represented by the matrix

R(θ) =

(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)

(2.3)

Thus an IFS for K is

10 Self-similarity

f1(x) = 1
3x

f2(x) = 1
3R
(

π
3

)

x +

(

1/3

0

)

f3(x) = 1
3R
(

−π
3

)

x +

(

1/2√
3
/

6

)

f4(x) = 1
3x +

(

2/3

0

)

(2.4)

Each function fi maps K onto the sub-portion labeled Ki in figure 2.4.

We can add reflection to the Koch curve example to generate the image

in figure 2.5.

R

R1

R2
R3

R4

Figure 2.5 A Koch type curve with reflection

In this example, the similarities mapping the whole curve R to the portions

labeled R1 and R3 both involve reflection. Reflection about the x or y axes

can be represented using the matrices

(−1 0

0 1

)

or

(

1 0

0 −1

)

respectively. Reflection about an arbitrary line through the origin can be

achieved by first rotating, then reflecting, and rotating back. Thus an IFS

for R is

2.4 Applying iterated function systems 11

f1(x) = 1
3

(

1 0

0 −1

)

x

f2(x) = 1
3R
(

π
3

)

x +

(

1/3

0

)

f3(x) = 1
3R
(

−π
3

)

(

1 0

0 −1

)

x +

(

1/2√
3
/

6

)

f4(x) = 1
3x +

(

2/3

0

)

(2.5)

2.4 Applying iterated function systems

We turn now to the question of how to generate self-similar images. Ulti-

mately, we will consider several algorithms for this purpose. It turns out

they are all related to theoretical questions presented in the next chapter.

For example, we will present a constructive proof that any IFS yields a

unique closed, bounded invariant set. This construction is essentially our

first algorithm, which we call the basic deterministic algorithm.

Given an iterated function system {fi}m
i=1 , we can define a function T

which maps the collection of closed, bounded subsets of Rn to itself by

T (F) =

m
⋃

i=1

fi(F). (2.6)

We can use the function T to generate the invariant set using iteration,

an important theme in fractal geometry. To iterate a function f which maps

a set X into itself, start with a some point x0 in X, set x1 = f (x0) , and for

larger natural numbers n set xn = f (xn−1) . Equivalently, we can write xn =

fn (x0) , the result of n-fold composition of f applied to x0. In the current

situation, the set X is the set of all non-empty, closed, bounded subsets

of Rn and the function is the transformation T defined in equation 2.6. It

turns out that if we start with an arbitrary non-empty, closed, bounded

subset of Rn and iterate the function T, then the generated sequence of sets

converges in a natural sense to the invariant set of the IFS. We’ll examine

this statement more carefully in the next chapter, but in this chapter we’ll

demonstrate the statement visually through experimentation.

Figure 2.2, for example, was generated in exactly the manner described

above. The initial set F was taken to be the solid equilateral triangle with

vertices (0, 0), (1, 0), and
(

1/2,
√

3
/

2
)

. The transformation T is obtained

12 Self-similarity

by applying equation 2.6 to the Sierpinski IFS. The subsequent images cor-

respond to application of T up to 5 times.

The previous example might be misleading, since the relationship between

the initial approximation and the fractal attractor is so close. Indeed, the

choice of initial approximation has no effect on the final attractor, although

the images illustrating convergence can be affected. Figure 2.6, for example,

illustrates the sequence of sets generated by applying this same IFS to the

initial approximation consisting of the single point at the origin. Succes-

sive approximations fill the set out more and more completely. Figure 2.7

illustrates the algorithm taking the initial set to be the shape from figure

2.3.

Figure 2.6 Approximating the Sierpinski gasket with finite sets of points.

The point of this demonstration bears repeating: the iterated function

system determines the self-similar set and the initial approximation has no

effect on the final outcome.

2.5 The ShowIFS command

Like most of the algorithms in this book, the IFS scheme has been imple-

mented in Mathematica and is included in one of the FractalGeometry pack-

ages. Review of the appendix on Mathematica might be a good idea prior to

starting this section. In particular, we’ll make heavy use of Graphics primi-

2.5 The ShowIFS command 13

1

1

1

1

1

1

1

1

1

1

1

1

222

222

Figure 2.7 Approximating the Sierpinski gasket with an arbitrary set

tives to describe basic shapes. First, let’s load the IteratedFunctionSystems

package.

Needs@"FractalGeometry`IteratedFunctionSystems`" D;

To use the package, we need a way of representing the IFS. The natural

way to do this is as a list of pairs of the form {M,b}, where M is a matrix and

b is a shift vector. Thus the IFS for the Sierpinski gasket can be represented

as:

M = 881 � 2, 0 <, 80, 1 � 2<<;

gasketIFS = :
8M, 80, 0 <<,
8M, 81 � 2, 0 <<,

:M, :1 � 4, 3 � 4>>
>;

Next, we need some initial approximation to the invariant set. In princi-

ple, this could be any list of Graphics primitives, but some initial approx-

imations lead to more natural pictures than others. An equilateral triangle

whose base is the unit interval makes a nice initial approximation to the

Sierpinski gasket.

14 Self-similarity

vertices = :80, 0 <, 81, 0 <, :1 � 2, 3 � 2>>;

gasketInit = 8GrayLevel @.6 D, EdgeForm @Black D, Polygon @vertices D<;
Graphics @gasketInit D

Now we can use the package function ShowIFS. The syntax is as follows.

ShowIFS@IFS, depth, Initiator ® initiator D;

In this command, IFS is the IFS defining the set using the representation we

have described and depth is a non-negative integer representing the num-

ber of times the IFS is iterated. The option Initiator should be set to a

Graphics primitive or a list of Graphics primitives describing the initial ap-

proximation. Thus the following command generates a level 5 approximation

to the Sierpinski gasket.

ShowIFS@gasketIFS, 5, Initiator ® gasketInit D

2.5 The ShowIFS command 15

If we don’t specify the Initiator, then the single point at the origin is

used as the default.

ShowIFS@gasketIFS, 6 D

16 Self-similarity

2.6 Examples

The wide variety of beautiful forms which can be generated by fractal al-

gorithms is part of the lure of the subject. We’ve now developed enough

theory and code to look at a few new examples. The first example is a nat-

ural generalization of the Sierpinski gasket. That construction can be easily

based on any (not necessarily equilateral) triangle. Simply construct the IFS

which contracts by the factor 1
2 about each vertex. Note that if the matrix

M defines a contraction about the origin, then the affine function defined

by {M,x0 − Mx0} defines a contraction about the point x0. Thus here is

Mathematica code which generates the IFS for the Sierpinski type triangle

with vertices at the points A,B, and C.

SierpIFS @8A_, B_, C_ <D : = With @8M = 881, 0 <, 80, 1 << � 2<,
88M, A -M.A<, 8M, B -M.B<, 8M, C -M.C<<D;

Here’s SierpIFS in action.

vertices = 880, 0 <, 81, 0 <, 81, 1 <<;
skewedGasketIFS = SierpIFS @vertices D;
ShowIFS@skewedGasketIFS, 7,

Initiator ® Polygon @vertices DD

We can do the same thing with randomly chosen vertices.

2.6 Examples 17

SeedRandom@1D;
vertices = RandomReal@80, 1 <, 83, 2 <D;
randomGasketIFS = SierpIFS @vertices D;
ShowIFS@randomGasketIFS, 6,

Initiator ® Polygon @vertices DD

Our next example, called the Sierpinski carpet, is similar to the Sierpinski

gasket but based on a square rather than a triangle.

M = 881 � 3, 0 <, 80, 1 � 3<<;
carpetIFS = 8
8M, 80, 0 <<, 8M, 81 � 3, 0 <<, 8M, 82 � 3, 0 <<,
8M, 80, 1 � 3<<, 8M, 82 � 3, 1 � 3<<,
8M, 80, 2 � 3<<, 8M, 81 � 3, 2 � 3<<, 8M, 82 � 3, 2 � 3<<
<;

unitSquare = Polygon @880, 0 <, 81, 0 <, 81, 1 <, 80, 1 <<D;
ShowIFS@carpetIFS, 5, Initiator ® unitSquare D

To generate the Koch curve, we need to use rotation and the unit inter-

18 Self-similarity

val makes a more natural initiator. Rotation can be added using the rota-

tion matrix defined in equation 2.3. This is implemented in Mathematica as

RotationMatrix.

RotationMatrix @ΘD �� MatrixForm

K Cos@ΘD -Sin@ΘD
Sin@ΘD Cos@ΘD O

Using this rotation matrix, we can implement the Koch curve IFS from

equations 2.4 in Mathematica as follows.

M = 881 � 3, 0 <, 80, 1 � 3<<;

KochCurveIFS = :
8M, 80, 0 <<,
8RotationMatrix @Π � 3D � 3, 81 � 3, 0 <<,

:RotationMatrix @-Π � 3D � 3, :1 � 2, 3 � 6>>,

8M, 82 � 3, 0 <<
>;

KochCurveInit = Line @880, 0 <, 81, 0 <<D;
ShowIFS@KochCurveIFS, 6, Initiator ® KochCurveInit D

Here is another IFS where the unit interval is a natural initiator.

M = 881 � 3, 0 <, 80, 1 � 3<<;

zCurveIFS = :
8M, 80, 0 <<,

:RotationMatrix @Π � 4D 2 � 6, 81 � 3, 0 <>,

8RotationMatrix @-Π � 2D � 3, 81 � 2, 1 � 6<<,

:RotationMatrix @Π � 4D 2 � 6, 81 � 2, -1 � 6<>,

8M, 82 � 3, 0 <<
>;

zCurveInit = Line @880, 0 <, 81, 0 <<D;
ShowIFS@zCurveIFS, 6, Initiator ® zCurveInit D

2.6 Examples 19

There is a major difference between the z-curve in the last example and our

other examples. The contraction ratio list for the z-curve is
{

1
3 ,

√
2

6 , 1
3 ,

√
2

6
1
3

}

;

this is the first example where the contraction ratios are not all the same.

This can be a problem for our algorithm. A nice example illustrating this is

called the Sierpinski pedal triangle.

The Sierpinski pedal triangle is related to a standard construction in clas-

sical geometry - the construction of an altitude of a given triangle T. This

is a line segment perpendicular to a given side of T and passing through the

opposite vertex. Assuming T is acute, the points of intersection of the sides

of T with the three altitudes of T determine the vertices of an inscribed tri-

angle called the pedal triangle of T. This is not an arbitrary construction; the

pedal triangle is the triangle of smallest perimeter which can be inscribed

in T.

Figure 2.8 illustrates the pedal construction and the corresponding decom-

position of the triangle. In Sierpinski like fashion, we can discard the light

pedal triangle in the interior, perform the same procedure on the darker

remaining triangles, and iterate. This leads to a fractal figure called the

Sierpinski pedal triangle.

It is not hard to show that the darker gray triangles in figure 2.8 are

similar to the whole. Segment aB, for example, can be considered as a leg

of the right triangle ∆AaB. The definition of the cosine function then yields

the fact that aB is AB scaled by the factor cos(θ), where θ is the measure of

∠ABC. A similar argument shows that segment Bc is BC scaled by cos(θ).

Thus ∆aBc is similar to ∆ABC by the side-angle-side criterion and the

scaling factor is cos(θ). The exact same argument applies to the other dark

triangles in figure 2.8.

Since all the non-discarded triangles are similar to the original, the Sier-

pinski pedal triangle is a self-similar set. We would like to set up the IFS to

generate it. Thus we look for three similarities that map the whole triangle

onto the darker sub-triangles. Perhaps the easiest way to do this is to assume

that each transformation is given in the form {M,v}, where M is a matrix

and v is a shift vector, and write down equations to determine the entries

20 Self-similarity

a
b

c
A B

C

Figure 2.8 The altitudes of a triangle and the associated pedal triangle

of M and v. For example, if we are a trying to map △ABC to △Abc then

we must have

MA + v = A,MB + v = b,MC + v = c. (2.7)

Of course, there are standard projection formulae for b and c in terms of

A, B, and C. To obtain b, for example, set u = B − A, v = C − A and

compute

A + projvu = A +
u · v
v · v v.

Expanding equations 2.7 out yields a linear system of six equations in

the unknown entries of M and v. Solving this system yields the similarity.

While tedious by hand, Mathematica makes this sort of work easy. Here

is code which accepts the vertices A,B, andC of a triangle and returns

the IFS defining the Sierpinski pedal triangle determined by A, B, and

C. (This function is also encoded as SierpinskiPedalTriangleIFS in the

IteratedFunctionSystems package. Note the difference in case to distin-

guish between the two functions.)

2.6 Examples 21

sierpinskiPedalTriangleIFS @8A_, B_, C_ <D : = Module @
8a, b, c, d, x, y, v, eqs, M, fA, fB, fC,

A1 = C + HHB- CL. HA- CLL � HHB- CL. HB- CLL HB- CL,
B1 = C + HHA- CL. HB- CLL � HHA- CL. HA- CLL HA- CL,
C1 = A+ HHB- AL. HC- ALL � HHB- AL. HB- ALL HB- AL<,

M= 88a, b <, 8c, d <<;
v = 8x, y <;
eqs = 8M.A + v � A, M.B + v � B1, M.C + v � C1<;
8fA < = 888a, b <, 8c, d <<, 8x, y << �.

Solve @eqs, 8a, b, c, d, x, y <D;
eqs = 8M.A + v � A1, M.B + v � B, M.C + v � C1<;
8fB < = 888a, b <, 8c, d <<, 8x, y << �.

Solve @eqs, 8a, b, c, d, x, y <D;
eqs = 8M.A + v � A1, M.B + v � B1, M.C + v � C<;
8fC < = 888a, b <, 8c, d <<, 8x, y << �.

Solve @eqs, 8a, b, c, d, x, y <D;
8fA, fB, fC <
D;

For example, the triangle we have been using for illustration has the following

vertices.

j = GoldenRatio;

vertices = 980, 0 <, 81, 0 <, 91 � j2, 1 � j==;

We can generate the IFS for the corresponding Sierpinski pedal triangle

as follows.

pedalIFS = N@sierpinskiPedalTriangleIFS @vertices DD
88880.276393, 0.447214<, 80.447214, -0.276393<<, 80., 0.<<,
8880.5, -0.5<, 8-0.5, -0.5<<, 80.5, 0.5<<,
888-0.223607, -0.0527864<, 8-0.0527864, 0.223607<<, 80.5, 0.5<<<

This can now be passed to the ShowIFS function.

ShowIFS@pedalIFS, 8, Initiator ® Polygon @vertices DD

22 Self-similarity

This is an interesting image and it points towards a challenge for our

algorithm. Some parts of the fractal are being approximated faster than

other parts. This is due to the fact that different functions in the IFS have

different contraction ratios. In the next section we look at an algorithm

which frequently works better for iterated function systems with varying

contraction ratios.

2.7 A modified algorithm

We now describe a simple modification of the basic deterministic algorithm

which yields a much more uniform approximation to the invariant set when

the IFS has different contraction ratios. As it turns out, these same ideas

will help us analyze the dimension of this type of set in the next chapter.

We begin by illustrating the idea behind the modification for the particular

case of the Sierpinski pedal triangle. The input is a positive parameter r

and a level zero approximation consisting of a single acute triangle. The

algorithm will yield a finite sequence of improving approximations to the

attractor; the nth level approximation consists of a collection of triangles

and we consider each of these separately to get to level n + 1. Let T be a

triangle in the nth level approximation. T will be subdivided according to

the pedal scheme only if the length of its longest side exceeds r. Otherwise,

T appears unchanged at level n + 1. This recursive process stops when the

maximum side length of all triangles in the approximation is less than r.

This process is illustrated in figure 2.9 using the parameter r = 0.4. The

longest side of each dark triangle is labeled by its length. The process termi-

nates after three steps since all labels are less than r. Note that once the top

triangle (labeled 0.23) appears, it never subdivides further since 0.23 < 0.4.

The triangle on the bottom right (labeled 0.707) subdivides once, and one

of its sub-triangles subdivides further. As a result, the ratio of the largest

triangle to the smallest is not too large and the approximation is relatively

uniform.

In order to generalize this scheme to an arbitrary IFS {fi}m
i=1, we need to

develop a bit of notation. A string with symbols chosen from {1, . . . ,m} is

simply a finite sequence with values in {1, . . . ,m}. A string α of length k will

be denoted α = i1 · · · ik and Jk will denote the set of all strings of length k.

Strings can be concatenated to form longer strings. Thus if α = i1 · · · ik and

β = j1 · · · jl, then αβ = i1 · · · ikj1 · · · jl. Given a string α = i1 · · · ik ∈ Jk, let

fα = fi1 ◦ · · · ◦ fik and rα = ri1 · · · rik . Note that the invariant set E of the

IFS satisfies

2.7 A modified algorithm 23

Level 0

1

Level 1

Level 2 Level 3

0.526

0.230.23

0.23

0.707

0.37

0.37

0.37

0.37

0.120.12

0.270.27 0.5

0.160.16

0.26

0.11

0.35

Figure 2.9 The modified algorithm for the Sierpinski pedal triangle

E =
⋃

α∈Jk

fα(E).

Thus, Jk induces a kth decomposition of E. This decomposition is not as

useful as it could be since the sizes of the sets fα(E) can vary greatly. Our

objective is to use this notation to develop an alternative decomposition.

We start now with a positive parameter r and the set J [0] containing just

the empty string e. The function fe is, by convention, the identity function

and the corresponding ratio re is 1. We get from J [n] to J [n+1] as follows by

considering each α ∈ J [n] in turn. The string α will be replaced with the m

strings α1, α2, ..., αm formed by concatenation, only if rα ≥ r. Otherwise,

α is left unchanged at level n + 1. This recursive process stops with the set

of strings J ′ when rα < r for all α ∈ J ′.
The set J ′ can now be used to generate a fractal picture. Given an initial

approximation E0 to the invariant set E, an approximation to E can be

generated by applying all function from J ′ to E0. In symbols,

24 Self-similarity

E ≈
⋃

α∈J ′

fα (E0) .

This process is implemented by the ShowIFS function. Simply call the

function using a real number as the second parameter. Of course, the pa-

rameter should be less than 1 and smaller values lead to better approxima-

tions. Here is an approximation to our Sierpinski pedal triangle using this

algorithm.

ShowIFS@pedalIFS, 0.01,
Initiator ® Polygon @vertices DD

2.8 A stochastic algorithm

There is a stochastic algorithm for generating invariant sets of iterated func-

tion systems. Rather than applying every function in the IFS to a given

initiator and iterating, we randomly apply the functions one at a time and

iterate. With each application of a function from the IFS, the generated

point should get closer to the attractor and the randomness of the algorithm

will (hopefully) generate a somewhat uniform distribution of points over the

attractor. This algorithm is encapsulated in the ShowIFSStochastic com-

mand. The general syntax is as follows:

ShowIFSStochastic @IFS, numPoints D;

Thus, assuming that gasketIFS is defined as before and the IteratedFunctionSystems

package has been loaded, we can generate a 20000 point approximation to

the Sierpinski gasket as follows.

2.8 A stochastic algorithm 25

ShowIFSStochastic @gasketIFS, 20 000 D

The functions of the IFS need not be chosen with equal probabilities. The

Probabilities option can be used to skew the choices. Here is the effect of

choosing the contraction about the top vertex with greater probability than

the other two.

ShowIFSStochastic @gasketIFS, 20 000,
Probabilities ® 81 � 6, 1 � 6, 2 � 3<D

26 Self-similarity

In some situations, the probabilities for choosing the similarities from an

IFS should be skewed in order to get a uniform distribution of points. For

example, consider the following image of a Sierpinski pedal triangle.

j = GoldenRatio;

vertices = 980, 0 <, 81, 0 <, 91 � j2, 1 � j==;

pedalIFS = SierpinskiPedalTriangleIFS @vertices D;
ShowIFSStochastic @pedalIFS, 20 000,

Probabilities ® 81 � 3, 1 � 3, 1 � 3<D

2.8 A stochastic algorithm 27

The similarities were all chosen with equal probability 1/3, yet the dis-

tribution of points is non-uniform. The basic problem is that the variation

in the ratio list leads to a non-uniformity in the points approximating the

image. However, the stochastic algorithm allows for a way to compensate

for this by varying the probabilities by which we choose the functions. In

general, the probability of choosing a similarity from an IFS should depend

upon the contraction ratio of the similarity; larger contraction ratios should

correspond to larger probabilities. A precise statement of this idea will have

to wait until we discuss dimension, but we can experiment with the function

in the IFS package which implement the probability adjustment. For exam-

ple, the default choice of probabilities made by ShowIFSSTochastic gives a

more uniform distribution of points.

ShowIFSStochastic @pedalIFS, 20 000 D

28 Self-similarity

The command FindProbabilities returns the probabilities used by ShowIFSStochastic.

FindProbabilities @pedalIFS D
80.346572, 0.564856, 0.0885727<

Total @%D
1.

2.9 Fractal Spirals

Beautiful spiral images can be generated using iterated function systems

with only two transformations. The basic idea is to combine a rotation and

mild contraction at the origin with a shift and stronger contraction. The

rotation induces the spiral effect. Here is a simple example of this idea.

simpleSpiralIFS = 8
8.93 RotationMatrix @Pi � 6D, 80, 0 <<,
8.1 IdentityMatrix @2D, 81, 0 <<
<;

ShowIFSStochastic @simpleSpiralIFS, 10 000 D

2.9 Fractal Spirals 29

Experimentation with the contraction and rotation values can lead to

dramatic effects.

anotherSpiralIFS = 8
8.993 RotationMatrix @Pi � 20D, 80, 0 <<,
8.05 IdentityMatrix @2D, 81, 0 <<
<;

ShowIFSStochastic @anotherSpiralIFS, 15 000 D

30 Self-similarity

A particularly beautiful class of fractal spirals is motivated by phyllotaxis

- the study of circular arrangements of lateral components in plants. For

example, the seeds in a sunflower or the scales on a pine cone tend to arrange

themselves in intriguing spiral patterns involving Fibonacci numbers and

the golden ratio. A careful analysis of this fact suggests that these patterns

allow the components to be packed together as tightly as possible, a prime

example of economy in nature. If we look closely at the seeds in a sunflower

first at the seed farthest away from the center, then at the seed next farthest

away, and so on, we notice that successive seeds are separated by an angle of

approximately 137.5
◦

. Further analysis suggests that the exact value of the

angle should be 2π
/

ϕ2 , where ϕ =
(

1 +
√

5
)/

2 is the golden ratio. This

discussion motivates the following IFS.

phyllotacticSpiralIFS = 8
8.99 RotationMatrix @2 Pi � GoldenRatio^2 D, 80, 0 <<,
8.04 IdentityMatrix @2D, 81, 0 <<
<;

ShowIFSStochastic @phyllotacticSpiralIFS, 30 000 D

2.10 Mathematica implementation 31

In this figure, we see two predominant families of intertwined spirals; one

family spirals clockwise while the other counter-clockwise. Furthermore, if we

count the clockwise spirals we find 13 and if we count the counter-clockwise

spirals we find 21. The numbers 13 and 21 are successive Fibonacci numbers!

Experimentation with the contraction ratios can lead to varying numbers of

clockwise and counter-clockwise spirals, but those numbers will always be

successive Fibonacci numbers.

2.10 Mathematica implementation

One goal of this book is to demonstrate how Mathematica can be used to

generate fractal objects. In this section, we describe some of the details of

the ShowIFS and ShowIFSStochastic commands.

2.10.1 Details for the ShowIFS command

The first step for the deterministic version is to transform the given IFS into

a list of pure functions which can act on an object consisting of Graphics

primitives. Here is a function which accepts our representation of an affine

32 Self-similarity

function and returns the corresponding pure function which acts on graphics

primitives.

toFunc @8M_, b_ <D : = GeometricTransformation @ð,
AffineTransform @N@8M, b<DDD &;

You can think of GeometricTransformation as a high level graphics prim-

itive. The corresponding function is automatically applied to the graphic,

when this construct appears inside Graphics. We can now map toFunc onto

the IFS.

pureFuncs = toFunc �� gasketIFS;

Each one of these can now act on our initiator. For example:

pureFuncs @@3DD@gasketInit D
GeometricTransformationB

:GrayLevel@0.6D, EdgeForm@GrayLevel@0DD, PolygonB:80, 0<, 81, 0<, : 1
2
,

3

2
>>F>,

8880.5, 0.<, 80., 0.5<<, 80.25, 0.433013<<F
Let’s see what it looks like if we apply each function in pureFuncs to the

initiator (which can be accomplished using Mathematica’s Through function)

and pass the result to graphics.

Graphics @Through @pureFuncs @gasketInit DDD

Not bad. Now we need to iterate the procedure. For this purpose, we use

Mathematica’s Nest function.

2.10 Mathematica implementation 33

graphic = Nest @Through @pureFuncs @ðDD &, gasketInit, 4 D;
Graphics @graphic D

That is really the essentials. Of course, there is a fair amount of code

that deals with options and encapsulates the command into a package. The

code for the modified algorithm is a bit trickier as well, but the primary

mathematical portion of the algorithm is contained in the few lines of code

above.

2.10.2 Details for the ShowIFSStochastic command

We again transform the given IFS into a list of pure functions, but this time

they only need act on points.

toFunc @8M_, b_ <D : = N@M.ð + bD &;
funcs = toFunc �� gasketIFS;

We next generate a long list of these functions chosen randomly.

numPoints = 10;
functionList = RandomChoice @funcs, numPoints D;

Finally, we generate a list of points applying the first function in the functionList

to the origin, applying the second function in the functionList to the

first result, and iterating. This is easily accomplished using Mathematica’s

ComposeList function.

ComposeList @functionList, 80, 0 <D
880, 0<, 80.5, 0.<, 80.5, 0.433013<, 80.5, 0.649519<, 80.75, 0.32476<,
80.875, 0.16238<, 80.9375, 0.0811899<, 80.46875, 0.0405949<,
80.484375, 0.45331<, 80.742188, 0.226655<, 80.621094, 0.54634<<

34 Self-similarity

These points can be passed to the graphics routines, but we should gen-

erate more points to get a good image.

numPoints = 8000;
points = ComposeList @RandomChoice @funcs, numPoints D, 80, 0 <D;
Graphics @8PointSize @0.005 D, Point @points D<D

Again, there are a few other issues that the package must deal with -

particularly, the computation of the scaling ratios and determination of the

correct probabilities to yield a uniform distribution in terms of those ratios.

2.11 Notes

The definitive paper on self-similarity is Hutchinson (1981), although similar

ideas certainly appeared much earlier. Barnsley (1993) is generally credited

for popularizing the technique. Many of the examples in this chapter are well

known. The Sierpinski pedal triangle construction is relatively new and first

appears in Zhang et al. (2008). While there are a number of freely available

Mathematica implementations of the IFS technique, the treatment here owes

a bit to Gutierrez et al. (1997)

Exercises

2.1 Show that a number x ∈ [0, 1] is in the Cantor set if and only if x can

be written in base 3 using only 0s and 2s. Why does this imply that

the Cantor set is uncountable?

Exercises 35

2.2 Use the previous exercise and a geometric series to show that 1
4 is in

the Cantor set.

2.3 Use a geometric series to compute the total length of the intervals

removed from the unit interval during the construction of the Cantor

set.

2.4 Write three different iterated function systems to describe the Cantor

set - one using two similarties, one using three similarities, and one

using four similarities.

2.5 Let D be the set of all numbers in the unit interval which can be written

in base 5 using only 0s, 2s, and 4s. Write down an iterated function

system to describe D.

2.6 Describe a natural addressing scheme for the Sierpinski gasket using

three symbols.

2.7 Show the area of the Sierpinski gasket is zero.

2.8 Find an IFS for the Koch curve consisting of only two similarities. Use

the ShowIFS command to generate the Koch curve using your IFS.

2.9 Find an IFS to render each of the images in figure 2.10.

Figure 2.10 Several self-similar sets

2.10 Find an IFS that might generate the sequence of images shown in figure

36 Self-similarity

2.11. Use Graphics primitives together with the ShowIFS command to

generate the sequence of images.

Figure 2.11 Approximations to a self-similar set

2.11 The images in figure 2.12 depict the action of two iterated function

systems on a pentagon; the original pentagon is the bold boundary. For

each image, determine the iterated function system which generated it

and use it to generate a better approximation to the corresponding

fractal.

Exercises 37

Figure 2.12 Skeletons of pentagonal self-similar sets

3

Some mathematical details

In this chapter, we will be address questions of a purely theoretical nature.

How do we know that the IFS scheme always yields a unique self-similar

set? What is the fractal dimension of a set and what does it tell us? It is

not uncommon for these kinds of questions lead back to applications. For

example, the fractal dimension of a set turns out to be the proper tool to

help us determine the proper probabilities when implementing the stochastic

algorithm for generating self-similar sets.

This is the most theoretical chapter of the book. Most results will be

proven carefully using techniques of real analysis which are briefly outlined

in the Appendix A.3.

3.1 Invariant sets

The existence and uniqueness of invariant sets of iterated function systems

can be established by an elegant application of the contraction mapping

theorem from real analysis. The contraction mapping theorem states that

any contractive function mapping Rn to Rn has a unique fixed point. But as

we will see, the statement is true in a more general setting. We will be able

define a notion of distance between two subsets of Rn, consider our space

to be the set of all appropriately chosen subsets, and use the IFS scheme to

define a contraction on this space. The contraction mapping theorem then

yields a unique invariant set for the IFS.

Theorem 3.1 If f : Rn → Rn is a contraction, then there is a unique x′

in Rn such that f(x′) = x′.

Proof Suppose that f is a contraction of Rn with contractivity factor r and

let x0 be an arbitrary element of Rn. We will define a sequence starting at

x0 by iterating the function f. That is, define x1 = f (x0) , x2 = f (x1) , and

3.1 Invariant sets 39

for larger integers n, xn = f (xn−1) = fn (x0) . We’ll show that the sequence

(xn) thus defined is Cauchy and therefore convergent. It turns out that the

limit of this sequence is the unique fixed point of the function.

To show the sequence is Cauchy, let ε > 0and choose N ∈ N such that

∞
∑

n=N

rn |f (x0) − x0| < ε.

This is possible since the series is the tail of a convergent geometric series.

Note that for any n ≥ N,

|xn+1 − xn| =
∣

∣fn+1 (x0) − fn (x0)
∣

∣ ≤ rn|f (x0) − x0|.
Thus, by the triangle inequality, for n > m ≥ N,

|xn − xm| = |xn − xn−1 + xn−1 − xn−2 + xn−2 + ... + xm+1 − xm+1 − xm|
≤ |xn − xn−1| + |xn−1 − xn−2| + ... + |xm+1 − xm|
≤
(

rn−1 + rn−2 + ...rm
)

|f (x0) − x0| < ε.

This shows that the recursively defined sequence (xn) is Cauchy. Therefore,

the sequence converges to some value x′.
We now show that f(x′) = x′. Let ε > 0. Since xn → x′, we can choose

some N ∈ N such that |xn − x′| < ε/2 whenever n ≥ N. Then

|f(x′) − x′| =
∣

∣f(x′) − xN+1 + xN+1 − x′∣
∣

≤
∣

∣f(x′) − xN+1

∣

∣+
∣

∣xN+1 − x′∣
∣

=
∣

∣f(x′) − f (xN)
∣

∣+
∣

∣xN+1 − x′∣
∣

≤ r
∣

∣x′ − xN

∣

∣+
∣

∣xN+1 − x′∣
∣

< r
ε

2
+

ε

2
< ε.

Thus f(x′) = x′ as ε > 0 is arbitrary.

Finally, we show that the fixed point x′ is unique. Consider two distinct

points, say x1 and x2, Then

|f (x1) − f (x2)| ≤ r|x1 − x2| < |x1 − x2| .
Thus not both can be fixed.

40 Some mathematical details

The proof of the contraction mapping theorem is constructive, i.e. the

proof outlines a technique for finding the fixed point. Furthermore, the basic

technique of iteration plays an important role in this text. As an example,

consider the function f(x) = cos(x) which maps the unit interval I = [0, 1]

to itself. We can show that f is a contraction on I. In fact, |f(x) − f(y)| ≤
r|x−y|, where r = sin(1). To see this we apply basic trigonometric identities

to simplify cos(x) − cos(y). Mathematica will do this for us.

TrigFactor @Cos@xD - Cos@yDD
-2 SinB x

2
-

y

2
F SinB x

2
+

y

2
F

Recall also that sin(θ) ≤ θ for all θ ∈ R and x+y
2 ≤ 1, since x and y are

both in I. Thus

| cos(x)−cos(y)| ≤ 2| sin
(

x − y

2

)

sin

(

x + y

2

)

| ≤ 2
|x − y|

2
sin(1) = r|x−y|.

Now, cos(x) clearly has precisely one fixed point in the unit interval as

a simple graph shows. According to the proof of the contraction mapping

theorem, we should be able to find this fixed point by iterating the function

from an arbitrary starting value. We can accomplish this via Mathematica’s

NestList command.

NestList @Cos, .5, 20 D
80.5, 0.877583, 0.639012, 0.802685, 0.694778, 0.768196, 0.719165,
0.752356, 0.730081, 0.74512, 0.735006, 0.741827, 0.737236, 0.74033,
0.738246, 0.73965, 0.738705, 0.739341, 0.738912, 0.739201, 0.739007<

It appears that to three significant digits, the fixed point is 0.739. Note

that this iterative procedure is exactly how Mathematica’s FixedPoint com-

mand works.

FixedPoint @Cos, .5 D
0.739085

3.1.1 The Hausdorff metric

Although we proved the contraction mapping theorem for Rn, it is valid in

the more general setting of complete metric spaces described in the appendix

on real analysis. In particular, it applies to the Hausdorff metric space, which

defines a notion of distance between compact sets of Rn. Two sets, A and

B, will be considered close to one another if every point in A is close to

some point of B and vice-versa. To make this precise, we make the following

3.1 Invariant sets 41

definitions. First define H to the collection of all non-empty, closed, bounded

subsets of Rn. For a point x in Rn and a set B ∈ H, define the distance from

x to B by

dist(x,B) = min{|x − y| : y ∈ B}.
Thus dist(x,B) is simply the Euclidean distance from x to the closest

point of B. For two compact sets A and B contained in Rn, define

dist(A,B) = max{dist(x,B) : x ∈ A}.
Thus dist(A,B) represents the largest possible distance of a point chosen

from A to the set B. Note that dist does not form a metric on H, since

it is not necessarily symmetric. The Hausdorff metric d is defined to be a

symmetric version of dist by

d(A,B) = max{dist(A,B),dist(B,A)}.
For example, if A and B are the two overlapping closed disks shown in

figure 3.1, then d(A,B) is the maximum of the two labeled distances.

A

B

dist(A, B) dist(B, A)

Figure 3.1 Definition of the Hausdorff distance

It can be shown that d is a complete metric on H; see for example Edgar

(2009). We can use this fact in conjunction with the contraction mapping

theorem to establish the existence and uniqueness of invariant sets for iter-

ated function systems. Given an IFS {fi}m
i=1 and a set A ∈ H, define T (A)

by

42 Some mathematical details

T (A) =

m
⋃

i=1

fi(A).

Since the continuous image of a compact set is compact and the finite

union of compact sets is compact, T (A) will also be in H; i.e. T : H → H.

Furthermore, if r satisfies |fi(x) − fi(y)| ≤ r|x− y|, for all x, y ∈ Rn and for

all i = 1, . . . ,m, then

d(T (A), T (B)) ≤ rd(A,B).

(The details of this will be left to the exercises.) Thus T is a contraction

on H and, therefore, has a unique fixed point E. By the definition of T, the

set E is the invariant set of the IFS. This result is worth summarizing as a

theorem.

Theorem 3.2 Let {fi}m
i=1be an IFS of contractions defined on Rn. Then

there is a unique non-empty, compact set E in Rn such that

E =

m
⋃

i=1

fi(E).

By the proof of the contraction mapping theorem, we have a technique

constructing approximations to invariant sets. Start with an initial approx-

imation A0 and construct a sequence recursively by An+1 = T (An) . This is

exactly the technique implemented by the code described in chapter 2.

3.2 Fractal Dimension

Fractal geometry is concerned with the study of geometrically complicated

objects. The concept of “fractal dimension”’ is a quantitative measure of

this complexity. The Cantor set, for example, is a set between dimensions.

On one hand it seems small enough to be of dimension zero, but on the

other hand it is a much richer set than what one might think of as a zero

dimensional set. Fractal dimension quantifies its place in this spectrum.

There are many notions of fractal dimension - Hausdorff, similarity, box-

counting, and packing dimensions are just a few. In the serious study of

fractal geometry it is important to understand the relationships between

these ideas. In particular, we would like to know conditions guaranteeing

equality of two or more definitions. Perhaps one definition is of theoretical

importance, while the other is easier to calculate.

3.2 Fractal Dimension 43

We will focus on the similarity dimension and the box-counting dimension.

The box-counting dimension is broadly applicable and widely used, but can

be difficult to calculate. The similarity dimension is of much more restricted

applicability, but easy to calculate when appropriate. Fortunately, it turns

out that these concepts are equivalent on suitably chosen sets.

3.2.1 Quantifying dimension

Both definitions of dimension under consideration are generalizations of a

very simple idea. We attempt to quantify the dimension of some very simple

sets in a way that generalizes to more complicated sets. The simple sets we

consider are the unit interval [0, 1], the unit square [0, 1]2, and the unit cube

[0, 1]3, which should clearly have dimensions 1, 2, and 3 respectively. Each

of these can be decomposed into some number Nr of copies of itself when

scaled by certain factors r. The following table shows the values of Nr for

various choices of r and for each of our simple objects.

[0, 1] [0, 1]2 [0, 1]3

r = 1/2 Nr = 2 4 = 22 8 = 23

r = 1/3 Nr = 3 9 = 32 27 = 33

r = 1/5 Nr = 5 25 = 52 125 = 53

Note that no matter the scaling factor or set, the number of pieces Nr,

the scaling factor r, and the dimension d are related by Nr = (1/r)d. This

motivates the following definition: If E ⊂ Rn can be decomposed into Nr

copies of itself scaled by the factor r, then

dim(E) =
log Nr

log 1/r
(3.1)

Many sets constructed via iterated function systems can be analyzed via

equation 3.1. For example, the Cantor set is composed of two copies of itself

scaled by the factor 1/3. Thus it’s fractal dimension is log 2
log 3 . The fractal

dimension of the Sierpinski gasket is log 3
log 2 and the fractal dimension of the

Koch curve is log 4
log 3 .

3.2.2 Similarity dimension of an IFS

Equation 3.1 is not quite general enough to compute the fractal dimension

of all self-similar sets, since iterated function systems need not have all

contraction ratios equal to one another. For example, equation 3.1 cannot

44 Some mathematical details

compute the dimension of the z-curve. There is an important generalization

of equation 3.1 which defines the dimension associated with any IFS. We

will assume that all iterated function systems consist of pure similarities for

the remainder of this chapter.

Definition 3.3 Let {fi}m
i=1 be a fixed IFS of similarities and let {ri}m

i=1

be the list of associated similarity ratios. Define a function Φ : [0,∞) → R

by

Φ(s) = rs
1 + · · · + rs

n.

Note that Φ is continuous, strictly decreasing, Φ(0) = m, and lims→∞ Φ(s) =

0. Thus there is a unique positive number s such that Φ(s) = 1. This unique

value of s is defined to be the similarity dimension of the IFS.

We can see that this definition agrees with that given by equation 3.1,

when applicable. If ri = r for each i = 1, . . . ,m, then the similarity dimen-

sion is the unique s such that

m
∑

i=1

rs = mrs = 1,

which has solution log m
log 1/r .

Consider, as an example, the following generalization of the Cantor set.

Suppose that r1 and r2 are positive numbers satisfying r1 + r2 ≤ 1. We

define an iterated function system {f1, f2} on R by setting f1(x) = r1x and

f2(x) = r2x+(1 − r2) . Note that f1 contracts the unit interval by the factor

r1towards 0, while f2 contracts the unit interval by the factor r2 towards 1.

If r1 + r2 = 1, then the invariant set is the unit interval and the dimension

is 1. If r1 + r2 < 1, then this IFS generalizes the Cantor construction. The

dimension of this IFS is the unique solution to the equation rs
1 + rs

2 = 1. For

example if r1 = 1/2 and r2 = 1/4, we obtain

1

2s
+

1

4s
= 1ors =

log 1+
√

5
2

log 2
.

This set is shown in figure 3.2.

Not all equations of this form can be solved explicitly. For example, if

r1 = 1/2 and r2 = 1/3 then the similarity dimension is the unique solution

to 1 /2s +1/3s = 1. While this equation cannot be explicitly solved, it does

uniquely characterize the dimension. Furthermore, numerical algorithms like

3.2 Fractal Dimension 45

Figure 3.2 The invariant set corresponding to r1 = 1/2 and r2 = 1/4.

the FindRoot command can be used to approximate the dimension to a

high degree of accuracy. In this case, the dimension can be estimated by the

following command.

FindRoot @1 � 2s
+ 1 � 3s

� 1, 8s, 1 <D
8s ® 0.787885<

Another example is provided by the z-curve, which has similarity ratio list
{

1/3,
√

2
/

6, 1/3,
√

2
/

6, 1/3
}

. It’s dimension is given by the equation

3

3s
+ 2

(√
2

6

)s

= 1.

The solution is approximately 1.32038.

If r1 + r2 > 1, then the solution to rs
1 + rs

2 = 1 will satisfy s > 1. This

indicates a potential problem with similarity dimension since we don’t want

to assign number larger than one to be the dimension of a subset of R.

3.2.3 Box-counting dimension

As mentioned earlier, there are many definitions of fractal dimension, all

with their own strengths and weaknesses. The major strength of the simi-

larity dimension is that it is very easily computed. The major weakness of

the similarity dimension is that it is very restrictive; there are many sets

(even very simple sets) which are simply not self-similar. Another weakness

is that many people find it to be non-intuitive when compared to the simple

46 Some mathematical details

definition of equation 3.1. The box-counting dimension is a definition whose

properties are somewhat complementary to those of the similarity dimen-

sion. In particular, it is much more broadly applicable, although harder to

compute. Also, it is a more intuitively direct generalization of equation 3.1.

There are several equivalent formulations of box-counting dimension, but

all rely on the same idea. Throughout this section, E will denote a non-

empty, compact subset of Rn. The diameter of such a general set E is defined

to be maxx,y∈E |x − y|. For ε > 0, an ε-cover of E is simply a collection of

compact sets of diameter at most ε whose union contains E. Given ε > 0,

let Cε(E) denote the minimum possible number of sets in an ε-cover of E.

While the sets defining Cε(E) can be quite arbitrary, they give a measure

of how E decomposes into smaller sets not necessarily similar to E. Thus

we can think of Cε(E) as analogous to Nr in equation 3.1. Of course, the

expression

log Cε(E)

log 1/ε

will in general vary with ε. Since we want our definition of dimension to

depend upon the finest details of E, it is natural to consider the limit as

ε → 0+.

Definition 3.4 The box-counting dimension dim(E) of a non-empty, bounded

subset E of Rn is defined by

dim(E) = lim
ε→0+

log Cε(E)

log 1/ε
,

provided this limit exists.

The name box-counting dimension is due to another common formulation.

The expression Cε(E) is not the only measure of how E decomposes into

smaller sets. For ε > 0, the ε-mesh for Rn is the grid of closed cubes of side

length ε with one corner at the origin and sides parallel to the coordinate

axes. For n = 2, this can be visualized as fine graph paper. Define Nε(E) to

be the smallest number of ε-mesh cubes whose union contains E. We can de-

fine a notion of dimension completely analogous to box-counting dimension

using Nε(E) in place of Cε(E). We will (temporarily) denote the dimension

of a set computed in this way by dimb(E).

Another useful variation is to consider packings of the set E rather than

coverings. Given ε > 0, an ε-packing of E is a collection of closed, disjoint

balls of radius ε with centers in E. Define Pε(E) to be the maximum possible

3.2 Fractal Dimension 47

number of balls in an ε-packing of E. We can again define a notion of

dimension using Pε(E) and we (temporarily) denote the dimension of a set

computed this way by dimp(E).

These ideas are illustrated in figure 3.3. In figure 3.3(a), we see a finite

collection of points. Figure 3.3(b) illustrates a covering of those points, figure

3.3(c) illustrates a packing of the points, and figure 3.3(d) illustrates a box-

covering of the points.

a b

c d

Figure 3.3 A covering, packing, and box covering of a finite set.

48 Some mathematical details

The need to understand relationships between dimensions should be clear,

given the wide assortment of possible definitions. As we prove in the following

theorem, all three definitions of dimension given in this section are equiv-

alent. This is a good situation because it gives us flexibility in computing

box-counting dimension. For many sets, Nε(E) is the easiest definition to

work with. In other situations, Cε(E) or Pε(E) might be more natural.

Lemma 3.5 Let E be a non-empty, bounded subset of Rn and let dimb(E),

dimc(E), and dimp(E) denote the dimensions of E defined using Nε(E),

Cε(E), and Pε(E) respectively. Then dimb(E) = dimc(E) = dimp(E).

Proof Assume first that the packing dimension is well defined. In other

words

lim
ε→0+

log Pε(E)

log 1/ε

exists. We will show that the covering dimension is also well defined and that

dimc(E) = dimp(E). Suppose we have an ε-packing of E that is maximal in

the sense that no more closed ε-balls centered in E can be added without

intersecting one of the balls in the packing. Then any point of E is within

a distance at most 2ε from some center in the packing; otherwise we could

add another ε-ball to the packing. Thus this ε-packing induces a 4ε-cover of

E obtained by doubling the radius of any ball in the packing as illustrated

in figure 3.4. This says that C4ε(E) ≤ Pε(E). It follows that

log C4ε(E)

log 1
4ε

≤ log Pε(E)

log 1
4ε

=
log Pε(E)

log 1
4 + log 1

ε

.

Next, the centers of the balls of any ε-packing of E are separated by more

than 2ε. Thus for any ε-cover of E, different sets are needed for each center

of any ε-packing. It follows that Pε(E) ≤ Cε(E) for every ε. Thus we now

have

log P4ε(E)

log 1
4ε

≤ log C4ε(E)

log 1
4ε

≤ log Pε(E)

log 1
4 + log 1

ε

.

The expressions on the left and the right both approach dimp(E) as ε →
0+. Thus, by the squeeze theorem, the expression in the middle approaches

this same value as ε → 0+. Of course, this middle limit defines the covering

dimension. Thus, the covering dimension exists and dimc(E) = dimp(E).

If we assume that the covering dimension exists, then a similar argument

shows that the packing dimension exists using the inequality

3.2 Fractal Dimension 49

A maximal packing The induced cover

Figure 3.4 A maximal packing and the induced cover.

C4ε(E) ≤ Pε(E) ≤ Cε(E).

One can also show that dimc(E) = dimb(E) using the inequality

C√
nε(E) ≤ Nε(E) ≤ 2nCε(E).

The details are left as an exercise.

In light of lemma 3.5, we will drop the subscripts and refer to the dimen-

sion computed using any one of Nε(E), Cε(E), or Pε(E) as the box-counting

dimension.

Before looking at an example, we prove another lemma, which simplifies

computation considerably.

Lemma 3.6 Let (εk)k be a sequence which strictly decreases to zero and

for every k satisfies εk+1 ≥ cεk, where c ∈ (0, 1) is fixed, and suppose that

lim
k→∞

log Cεk
(E)

log 1 /εk
= d.

Then dim(E) is well defined and dim(E) = d.

50 Some mathematical details

Proof Given any ε > 0, there is a unique value of k such that εk+1 ≤ ε < εk.

Assuming this relationship between ε and k, we have

log Cε(E)

log 1/ε
≤ log Cεk+1

(E)

log 1 /εk
=

log Cεk+1
(E)

log 1
εk+1

+ log
εk+1

εk

≤ log Cεk+1
(E)

log 1
εk+1

+ log c

and

log Cε(E)

log 1/ε
≥ log Cεk

(E)

log 1 /εk+1
=

log Cεk
(E)

log 1
εk

+ log εk

εk+1

≥ log Cεk
(E)

log 1
εk

+ log 1
c

.

Taking these two inequalities together we have

log Cεk
(E)

log 1
εk

+ log 1
c

≤ log Cε(E)

log 1/ε
≤ log Cεk+1

(E)

log 1
εk+1

+ log c
.

Now as k → ∞, the expressions on either side of the inequality both

approach d. Furthermore, ε → 0+ as k → ∞. Thus, by the squeeze theorem,

lim
ε→0+

log Cε(E)

log 1/ε
= d

and this value is dim(E) by definition.

Of particular interest are the geometric sequences εk = ck where c ∈ (0, 1).

Note that similar results hold for Nε(E) and Pε(E).

Lemma 3.6 makes it easy to compute the box-counting dimension of the

Cantor set. If E is the Cantor set, then N3−k(E) = 2k. Thus,

dim(E) = lim
k→∞

log 2k

log 3k
=

log 2

log 3
.

It has turned out that the box-counting dimension of the Cantor set is the

same as its similarity dimension. As we will see in the next section, this is not

by chance. This example should not leave the impression that box-counting

dimension is easy to compute. An attempt to compute the box-counting

dimension of the generalized Cantor sets should make this clear.

3.2.4 Comparing fractal dimensions

We have now defined two notions of dimension. Box-counting dimension is

broadly defined and well motivated. Similarity dimension is much more re-

3.2 Fractal Dimension 51

strictive, but very easy to compute when applicable. The main goal in this

section is to show that these definitions agree under a reasonable assump-

tion. The advantage of this is two-fold. Similarity dimension can be used to

compute the (usually more difficult) box-counting dimension of a self-similar

set. Furthermore, we can assume that similarity dimension is a reasonable

definition of dimension as it agrees with the box-counting dimension.

We first illustrate the need for an additional assumption concerning the

similarity dimension Recall the definition of the generalized Cantor set,

where f1(x) = r1x and f2(x) = r2x+(1 − r2) define an IFS on R. If r1 = r2 =

3/4, then the similarity dimension of the IFS is log(2)/ log(4/3) ≈ 2.4 > 1.

This is clearly nonsense since the invariant set is precisely the unit interval

which has dimension 1. The problem is that the two images of [0, 1] under

the action of the IFS have a significant amount of overlap, thus the IFS does

not generate efficient covers of the invariant set. There is an assumption we

can place on an IFS which limits this type of overlap.

An IFS {fi}m
i=1 on Rn with invariant set E is said to satisfy the strong

open set condition if there is an open set U in Rn such that U ∩ E 6= ∅ and

U ⊃
m
⋃

i=1

fi(U)

with this union disjoint. Note that if a generalized Cantor set satisfies r1 +

r2 ≤ 1, then the strong open set condition is satisfied by taking U to be the

open unit interval. If r1 + r2 > 1, then the strong open set condition is no

longer satisfied.

Theorem 3.7 Let E be the invariant set of an IFS with similarity dimen-

sion s. If the IFS satisfies the strong open set condition, then dim(E) = s.

Before proving the theorem, we need to develop some useful notation asso-

ciated with an IFS {fi}m
i=1 with ratio list {ri}m

i=1 , invariant set E, and sim-

ilarity dimension s. A string with symbols chosen from {1, . . . ,m} is simply

a finite or infinite sequence with values in {1, . . . ,m}. A finite string α will

be denoted α = i1 · · · ik. Finite strings can be concatenated to form longer

strings. Thus if α = i1 · · · ik and β = j1 · · · jl, then αβ = i1 · · · ikj1 · · · jl.

Every string α = i1 · · · ik has one parent α− = i1 · · · ik−1. Given a positive

integer k, let Jk denote the set of all strings of length k with values chosen

from the set {1, . . . ,m}. Let J∗ =
∞∪

k=1
Jk denote the set of all such finite

strings. Given α = i1 · · · ik ∈ Jk, let fα = fi1 ◦ · · · ◦ fikand rα = ri1 · · · rik .

Then Jk induces a kth level decomposition of E given by

52 Some mathematical details

E =
⋃

α∈Jk

fα(E).

The sets Jk are examples of cross-sections of J∗, but Jk does not nec-

essarily induce a useful decomposition of J∗ with respect to box-counting

dimension as the sizes of the sets fα(E) may vary greatly. A more general

type of cross-section may be defined as follows. Let Jω denote the set of all in-

finite strings with symbols chosen from {1, . . . ,m}. Given σ = i1i2 · · · ∈ Jω,

let ω|k denote the element of Jk whose symbols are the first k symbols of

σ. Given α ∈ Jk, let [α] = {σ ∈ Jω : σ|k = α} denote the set of all infinite

strings whose first k symbols agree with α. A cross-section of J∗ is a finite

set J ⊂ J∗ such that ∪α∈J [α] = J∗ with this union disjoint. Note that a

cross-section J of J∗ defines a decomposition of E given by

E =
⋃

α∈J

fα(E).

Furthermore, if α ∈ J∗, then

m
∑

j=1

rs
αj = rs

α

m
∑

j=1

rs
j = rs

α.

It follows by induction that
∑

α∈J rs
α = 1 for any cross-section J of J∗.

Now for ε > 0, define Jε by

Jε = {α ∈ J∗ : rαdiam(E) ≤ ε < rα−diam(E)} .

Note that if σ ∈ Jω, then
(

rσ|k
)

k
is a sequence of positive numbers which is

strictly decreasing to zero. Thus there is a unique value of k with σ|k ∈ Jε so

Jε defines a cross-section of J∗. Furthermore, the decomposition of E induced

by Jε has diameters comparable to ε. In particular, if r = min {ri}m
i=1 , then

rε < diam (fα(E)) ≤ ε

for all α ∈ Jε.

Finally, #(J) will denote the number of elements in a cross-section. We

are now ready to prove our theorem on the comparison of dimensions.

Proof Our strategy is to find constants M1 and M2 so that

3.2 Fractal Dimension 53

s +
log M1

log 1/ε
≤ log Pε(E)

log 1/ε
≤ log Cε(E)

log 1/ε
≤ s +

log M2

log 1/ε
, (3.2)

for then the squeeze theorem applies. Note that the second inequality follows

from the fact that Pε(E) ≤ Cε(E) which was established in the proof of our

lemma comparing packings and coverings.

The last inequality in equation 3.2 is equivalent to εsCε(E) ≤ M2. We

will show that this is true for M2 = r−sdiam(E)s, where r = min {ri}m
i=1 as

above. Recall that Cε(E) ≤ # (Jε) and rε < rαdiam(E). Thus

(rε)sCε(E) ≤
∑

α∈Jε

(rαdiam(E)) s = diam(E)s

and εsCε(E) ≤ r−sdiam(E)s.

Proof of the first inequality of equation 3.2 is somewhat more difficult

and will require the use of the strong open set condition. We will show that

there is a constant M1 > 0 such that (rε)sPrε(E) ≥ M1. A simple change

of variables shows that this is equivalent to εsPε(E) ≥ M1, which is in turn

equivalent to the first inequality of equation 3.2. Let U be the open set

specified by the strong open set condition and let x ∈ U ∩ E. Choose δ > 0

such that Bδ(x) ⊂ U. Then any cross-section J of J∗ induces a packing
{

fα

(

Bδ(x)
)

: α ∈ J
}

of E. Now let

Jε = {α ∈ J∗ : rαδ ≤ ε < rα−δ} .

Then rε < rαδ ≤ ε for all α ∈ Jε. Thus Prε(E) ≥ # (Jε) and

εsPrε(E) ≥
∑

α∈Jε

rs
αδs = δs.

Multiplying through by rs we obtain (rε)sPrε(E) ≥ (rδ)s ≡ M1.

3.2.5 Choosing probabilities for the stochastic algorithm

With a firm understanding of fractal dimension, we are now ready to describe

a way to choose probabilities for ShowIFSStochastic to generate a uniform

approximation to invariant set of an IFS. Since a probability list must sum

to one, it is easy to guess that {r1
s, . . . , rm

s} is the appropriate choice. Why?

At an intuitive level, the proof of our theorem on the comparison of di-

mensions states that we need approximately # (Jε) of size ε to cover E.

54 Some mathematical details

For the approximation to appear uniform, “pieces” of the set of compa-

rable sizes should have comparable numbers of points. By a piece, we mean

fα(E)

3.2.6 Notes

Much of the this chapter has been influenced by Edgar (2009) and Falconer

(2003). One notable difference is the use of the strong open set condition.

Typically, this is presented in a weaker formulation. An iterated function

system is said to satisfy the open set condition if there is a non-empty, open

set U in Rn such that

U ⊃
m
⋃

i=1

fi(U)

with this union disjoint. Note that we have dropped the requirement that U

and the invariant set E of the IFS have non-empty intersection. The strong

open set condition was introduced by Lalley (1988) and it can be used to

obtain results in more general metric spaces Schief (1996). In Rn, it can be

proved that if an IFS satisfies the open set condition, then it automatically

satisfies the strong open set condition We have assumed the strong open set

condition here since it simplifies our exposition.

Exercises

3.1 Show that dimc(E) = dimb(E).

3.2 Compute the box dimension of the modified cantor set directly from

the definition and the lemma. Hint: Using the sequence εk = 1
/

2k ,

compute the first few values of Nεk
(F). Can you make a conjecture as

to what sequence this is? Can you prove your conjecture? There is a

well known approximation concerning the growth of this sequence.

4

Generalizing self-similarity

The self-similar sets developed in chapter 2 form an important class of sets

for two main reasons; they are complicated enough to display the fine level

of detail we expect of fractal sets, yet they are regular enough to allow some

level of analysis. Self-similarity is a very restrictive condition, however. In

this chapter, we’ll explore two natural generalizations of self-similarity - self-

affinity and digraph self-similarity.

4.1 Self-affinity

Theorem 3.7, which guarantees the existence of an invariant set for any

iterated function system, immediately suggests a natural generalization of

self-similarity; we simply consider iterated function systems whose functions

are more general types of contractions than pure similarities. For example,

an affine function or affinity is a function which consists of a linear portion

together with a translation. A self-affine set is simply a set generated by

an IFS whose functions are affinities. Although the class of affine functions

is still more restrictive that the class of all contractions, there are good

reasons to carefully investigate self-affinity. On one hand, self-affinity is such

an immediate generalization of self-similarity that we will be able to use the

exact same Mathematica notation to represent an IFS, since all we need to

know the matrix and the shift vector. We will see, however, that dimensional

analysis of such sets is already significantly more complicated.

Figure 4.1 illustrates an example of a self-affine set. Figure 4.1 (a) portrays

the action of an IFS of three similarities on the unit square. The dashed out-

line of the unit square contains the three shaded images of the square under

the action of the IFS. Figures 4.1 (b) and 4.1 (c) show the second and third

level approximations and figure 4.1 (d) is a higher level approximation. Note

that the key difference between a similarity and an affine function is that

56 Generalizing self-similarity
(a) (b)

(c) (d)

Figure 4.1 Approximations to a self-affine set.

an affine functions may contract by different amounts in different directions.

Thus the images of the square may be rectangles, or even parallelograms. In

this particular example, the set is generated by the IFS

f1(x) = Mx

f2(x) = Mx +

(

1/3

1/2

)

f3(x) = Mx +

(

2/3

0

)

where

M =







1

3
0

0
1

2






.

Of course, affine transformations can rotate and/or reflect an object as

well. Figure 4.2 illustrates a self-affine set where reflection is used for one of

the transformations. As before, figure 4.2 (a) portrays the action of an IFS

4.1 Self-affinity 57

of three similarities on the unit square; this time, however, the initial square

has an upward orientation. The image shows how one of the rectangles has

been flipped using the matrix







1

3
0

0 −1

2






.

(a) (b)

Figure 4.2 Approximations to a self-affine set with reflection

Affine functions can also have a shear effect, which a similarity cannot.

Figure 4.3 shows such a set constructed with four affine transformations,

two of which involve a shear. The two matrices used in the generation of

this set are

M1 =

(

1/3 0

0 1/4

)

andM2 =

(

0.7 cos(π/6) 0.3 cos(π/3)

0.7 sin(π/6) 0.7 sin(π/3)

)

Our last example, Barnsley’s Fern, is shown in figure 4.4 and is truly

incredible. The obvious difference between Barnsley’s fern and our other

examples is its natural appearance. The amazing thing is that it is generated

using an IFS with only four affine functions. Since an affine function is

specified by six numbers, this means that only 24 numbers are required to

encode this very natural looking object.

Barnsley’s fern is the invariant set of the following IFS.

58 Generalizing self-similarity

Figure 4.3 Approximations to a self-affine set with shears

Figure 4.4 Barnsley’s Fern

4.1 Self-affinity 59

f1(x) =

(

.85 .04

−.04 .85

)

x +

(

0

1.6

)

f2(x) =

(−.15 .28

.26 .24

)

x +

(

0

.44

)

f3(x) =

(

.2 −.26

.23 .22

)

x +

(

0

1.6

)

f4(x) =

(

0 0

0 .16

)

x

Figure 4.5 shows the action of the IFS on an outline of the fern. Note that

the function f4 maps all of R2 onto the y-axis. In particular, f4 maps the

entire fern onto the stem at the bottom of figure 4.5 (b).

(a) (b)

Figure 4.5 Construction of Barnsley’s fern

60 Generalizing self-similarity

4.1.1 Generating images with the IteratedFunctionSystems

package

As mentioned in the introduction, one reason to study self-affinity is that

the exact same Mathematica commands and notation introduced in chapter

2 can be used to generate images. The only difference is that we use more

general matrices but the notation for representing these matrices remains

unchanged. Since the commands are so similar, we only indicate very briefly

how a couple of the images in the previous section were generated.

The fractal in figure 4.1 can be generated using the deterministic ShowIFS

command as follows.

Needs@"FractalGeometry`IteratedFunctionSystems`" D;
M = 881 � 3, 0 <, 80, 1 � 2<<;
IFS = 88M, 80, 0 <<,
8M, 81 � 3, 1 � 2<<, 8M, 82 � 3, 0 <<<;

vertices = 880, 0 <, 81, 0 <, 81, 1 <, 80, 1 <, 80, 0 <<;
square = Polygon @880, 0 <, 81, 0 <, 81, 1 <, 80, 1 <<D;
ShowIFS@IFS, 6,
Initiator ® Polygon @880, 0 <, 81, 0 <, 81, 1 <, 80, 1 <<DD
The Barnsley fern shown in figure 4.4 was generated with the stochastic

algorithm with probabilities specified.

ShowIFSStochastic @8
888.85, .04 <, 8- .04, .85 <<, 80, 1.6 <<,
888- .15, .28 <, 8.26, .24 <<, 80, .44 <<,
888.2, - .26 <, 8.23, .22 <<, 80, 1.6 <<,
8880, 0 <, 80, .16 <<, 80, 0 <<<, 20 000,

Probabilities ® 8.8, .09, .09, .02 <D

4.1.2 The Collage Theorem

Barnsley’s fern suggests that we might be able to use iterated function sys-

tems to approximate natural images. To do so, we would like a method to

find an iterated function system whose invariant set is close to a given set.

The theoretical tool for doing this is called the collage theorem.

Theorem 4.1 Let {f1, ..., fm} be an IFS satisfying |fi(x) − fi(y)| ≤ r|x−
y|, where r ∈ (0, 1) is fixed. For an arbitrary compact set F , let

T (F) =

m
⋃

i=1

fi(F).

Also, let E be the invariant set of the IFS and let d denote the Hausdorff

metric. Then for any compact set F ,

4.1 Self-affinity 61

d(E,F) ≤ 1

1 − r
d(F, T (F)).

In other words, if an IFS doesn’t move a particular compact set F too

much and the IFS has small contraction ratios, then the set F must be close

to the attractor of the IFS. Now suppose we have a compact set A that

we would like to approximate with an IFS. We should attempt to find a

compact set F which is close to A and an IFS with small contraction ratios

which moves F very little in the Hausdorff metric. Then the collage theorem

guarantees that the invariant set E of the IFS will be close to F . Since F is

close to A, E will be close to A.

As an example, suppose we would like an IFS whose invariant set is ap-

proximately the closed unit disk. Although this is not a very natural looking

target set, the example is interesting since the disk is manifestly not self-

similar. We first find a collection of small disks whose union is close to the

unit disk in the Hausdorff metric. Such a collection of disks is shown in figure

4.6 (a) which also shows the boundary of the unit disk.

(a) (b)

Figure 4.6 An IFS approximating a disk

Note that each small disk in figure 4.6 (a) determines a similarity trans-

formation which maps the whole unit disk onto the small disk. If we assume

that the similarity neither rotates nor reflects the image, then the similarity

is uniquely determined. Thus figure 4.6 (a) describes an iterated function

system. The invariant set of this IFS is rendered with a stochastic algorithm

in figure 4.6 (b). As we can see, it is close to the whole disk.

A major problem with the above technique is that it typically yields a large

number of transformations. The IFS determined by figure 4.6, for example,

has 365 functions. A practical approach which avoids this problem is to try

62 Generalizing self-similarity

to approximate the image you want with as small a number of affine copies

of itself as possible. Such an approach is illustrated for a disk in figure 4.7.

(a) (b)

Figure 4.7 An IFS with fewer functions approximating a disk

4.1.3 Dimension of self-affine sets

Computing the fractal dimension of self-affine sets in general is much harder

than for self-similar sets, even assuming the open set condition. We’ll begin

by looking at several examples. Our first example is the set E illustrated in

figure 4.8. It consists of four parts scaled by the factor 1/4 in the horizontal

direction and 1/2 in the vertical direction.

Figure 4.8 A self-affine set to analyze

We will compute the box-counting dimension of E. To do so, we first

cover it with rectangles. By applying the IFS to the unit square n times, we

see that 4n rectangles of width 1 /4n and height 1 /2n can cover E. This is

illustrated for n = 2 in figure 4.9.

4.1 Self-affinity 63

Figure 4.9 Covering the self-affine set with boxes

We need to translate this cover by rectangles into a cover by ε mesh

squares. A rectangle of width 1 /4n and height 1 /2n can be decomposed

into a stack of 2n squares of side length 1 /4n , for then the total height of

the stack is 2n/4n = 1/2n . We now take Nε(E) to denote the number of

open ε mesh squares that intersect E. Since the nth level approximation

generated by the IFS yields 4n rectangles that can each be decomposed into

2n squares of side length 1 /4n , we compute N4−n(E) = 2n4n = 8n.

dim(E) = lim
n→∞

log (N4−n(E))

log (4n)
= lim

n→∞
log (8n)

log (4n)
=

3

2
.

There are a couple of technical points that have been glossed over in this

exposition. First, we explicitly stated that Nε(E) denotes the number of

open ε mesh squares that intersect E. This allows us to ignore those squares

that intersect the set E at their boundary. As mentioned in chapter 3, this

definition is within a constant multiple of the result obtained by using closed

64 Generalizing self-similarity

ε mesh squares and, therefore, yields the correct dimension computation.

The other point is more subtle. Clearly, each rectangle generated by the IFS

intersects the invariant set E but how do we know that each of the 2n sub-

squares into which these rectangles were decomposed intersect the set E?

For this particular example, we can prove that the projection of E onto the

y-axis is the unit interval, since this is clearly true for each approximation

to the set. Using the self-affine structure of the set it can be shown that each

of those 2n sub-squares indeed intersects the set.

To outline an approach for a slightly harder example, consider the self-

affine set illustrated back in figure 4.1. We now denote this set by E, which

consists of 3n pieces scaled by the factor 3−n in the horizontal direction and

2−n in the vertical direction. Now, there is no single natural choice of a

sequence εn to use in the computation of Nε. Nonetheless, we can estimate

C√
23−n(E), the number of sets of diameter

√
23−n required to cover E,

by using squares of side length 3−n. Now, the IFS generates 3n rectangles

of width 3−n and height 2−n that cover E. In turn, these can be covered

with at most ⌈3n/2n⌉ + 1 squares of side length 3n. Thus, C√
23−n(E) ≤

3n (⌈3n/2n⌉ + 1) so

dim(E) = lim
n→∞

log
(

C√
23−n(E)

)

log
(

3n/
√

2
) ≤ lim

n→∞
log (3n (⌈3n/2n⌉ + 1))

log
(

3n/
√

2
) =

log(9/2)

log(3)
.

To generate (the same) lower bound for the dimension, we consider pack-

ings by balls of radius 3−n/ 2 with centers in E. Each rectangle generated by

the IFS as shown in figure 4.1 stretches vertically along a y interval of the

form
[

i
2n , i+1

2n

]

. As in the previous example, the projection of the portion

of E contained in this rectangle onto the y-axis is precisely this interval.

Thus, we can find points in the intersection of E and this rectangle with y-

coordinates of the form i
2n + j

3n for j = 1, 2, . . . , ⌊3n/2n⌋. Thus, we can pack

at least ⌊3n/2n⌋ open balls of radius 3n/ 2 into this portion of E. A glance

at figure 4.1 indicates that we need not worry about lateral intersections

between balls coming from different rectangles. Thus, P3−n/2(E) ≥ ⌊3n/2n⌋
so

dim(E) = lim
n→∞

log
(

P3−n/2(E)
)

log (23n)
≥ lim

n→∞
log (3n (⌊3n/2n⌋))

log (23n)
=

log(9/2)

log(3)
.

Taking these two results together, we see that dim(E) = log(9/2)/ log(3) ≈
1.369.

Clearly, it would be nice to have theorem analogous to theorem 3.7 that

4.1 Self-affinity 65

would allow us to compute the dimension of a self-affine set using a simple

formula. Ideally, the formula should hold under reasonably simple hypothe-

ses. While we’ll meet such a formula in the next section, it is not nearly as

broadly applicable as theorem 3.7. In our next example, we’ll see that, even

if we assume the strong open set condition, that no simple formula can hold.

Let M be the matrix

M =

(

1/3 0

0 1/2

)

and consider the IFS with two affine functions

f1(x) = Mx +

(

0

r

)

f2(x) = Mx +

(

2/3

0

)

where r is a real parameter. The invariant set of this IFS for several choices of

r is illustrated in figure 4.10. The dark vertical line segment is the projection

of the set onto the y-axis. There are two key observations to make here. First,

for any r > 0, this projection is a line segment; thus, the dimension of the

set must be at least one. Second, for r = 0, the invariant set is the Cantor

set with dimension log(2)/ log(3), which is strictly less than one. Thus the

dimension does not vary continuously with the parameter r so we can’t

expect the dimension to be given by a simple, continuous function of r.

4.1.4 Falconer dimension

A technique to estimate the box-counting dimension of self-affine sets was

discovered by Kenneth Falconer. It’s complicated and it doesn’t always yield

the exact value. It does yield an upper bound though and, in certain special

cases, it yields the exact value.

Falconer’s technique is expressed in terms of the singular values of the

matrices used in the IFS. We can provide a geometric description of the

singular values as follows. Let B = {x ∈ Rn : |x| ≤ 1} denote the closed unit

ball in Rn. If we apply the linear transformation induced by the matrix

A to B we generate an ellipsoid. The singular values of A are the lengths

of the semi-major axes of this ellipsoid. Thus, they are a good measure of

how A distorts space in different directions and, as we saw in the previous

sub-section, this is exactly the information we need to compute the box

66 Generalizing self-similarity

r = 1/2 r = 1/16

r = 0 r = 1/4 and n = 2

1

4

1

4

1

4

1

4

1

2

1

2

1

2

1

2

3

4

3

4

3

4

3

4

1

3

1

3

1

3

1

3

2

3

2

3

2

3

2

3

1

1

1

1

1

1

1

1

Figure 4.10 Family of self-affine sets dependent upon a parameter

counting dimension of the invariant set. Algebraically, the singular values

may be computed as the square roots of the eigenvalues of the matrix AT A.

The singular values of an affine function are simply the singular values of

the linear part of that function. It is customary to write the singular values

in a list α1, α2, . . . , αn where α1 ≥ α2 ≥ · · · ≥ αn ≥ 0. In the context of

iterated function systems, we also have α1 < 1 since all our functions are

contractions.

Using the singular values, we can define the singular value function. Let

f be an affine function mapping Rn to Rn, let s satisfy 0 ≤ s ≤ n and let r

be the integer such that r − 1 < s ≤ r. Define φs(f) by

φs(f) = α1α2 · · ·αr−1α
s−r+1
r . (4.1)

Our examples will be in the plane with n = 2. In this context, we will

write the singular values as α and β with α > β. We will also frequently

be interested in the situation where s > 1. Thus, equation 4.1 will often

simplify to

φs(f) = αβs−1. (4.2)

4.1 Self-affinity 67

Now we have an iterated function system {f1, . . . , fm}, where fi(x) =

Aix + bi. As in chapter 3, let Jk denote the set of all sequences of integers

chosen from {1, . . . ,m}. Falconer proved that there is a unique number s so

that

lim
k→∞





∑

(i1,...,ik)∈Jk

φs (fi1 ◦ · · · ◦ fik)





1/k = 1 (4.3)

and, furthermore, that this number s is an upper bound for the box dimen-

sion of the set E. This number is now called the Falconer dimension of the

set. While Falconer dimension is not necessarily equal to the box-counting

dimension, we will discuss hypotheses that force equality after looking at

some examples.

Finding Falconer dimension in the plane

Unfortunately, Falconer dimension is theoretically complicated and prac-

tically hard to compute. While we won’t prove Falconer’s results, we will

look at several example that, hopefully, provide some level of understand-

ing. These examples exploit some of the following simplifications that can

happen when dealing with self affine sets in the plane.

• Since the examples live in R2 these sets have dimension at most 2. Fur-

thermore, using projection techniques, we can frequently show that the

dimension of the attractor is at least 1. These properties imply that φs

will have the specific form mentioned in formula 4.2.

• The matrices in the associated iterated function systems are diagonal. Of

course, their products will also be diagonal; thus, it is easy to compute

the singular values.

• In the computation of the singular value function using equation 4.2, we

need to know be able to systematically tell which singular value is larger.

This will be easy in all but the last example, since the matrices will have

the specific form

Ai =

(

ai 0

0 di

)

,

with di < aj for each i and j. In particular, the singular values of Aj and

Aj will be aiaj and didj , with aiaj < didj .

For our first example, let’s revisit the self-affine set shown in figure 4.1,

whose fractal dimension we’ve already computed to be log(9/2)/ log(3). All

three of the function in the IFS have linear part

68 Generalizing self-similarity

(

1/3 0

0 1/2

)

.

Thus, it is not hard to show that for any sequence (i1, i2, . . . , ik) ∈ Jk,

φs (fi1 ◦ · · · ◦ fik) = 1
/(

2k3k(s−1)
)

.

Furthermore, |Jk| = 3k. Thus





∑

(i1,...,ik)∈Jk

φs (fi1 ◦ · · · ◦ fik)





1/k =
(

3k/
(

2k3k(s−1)
))

=
1

2

1

3s−2
.

Setting this equal to one and solving for s, we get s = log(9/2)/ log(3).

Next, let’s look at an example whose features make it just a bit harder

but is still approachable using Falconer’s technique. We’ll consider the IFS

f1(x) =

(

1/3 0

0 3/4

)

x

f2(x) =

(

1/3 0

0 1/2

)

x +

(

1/3

1/2

)

f3(x) =

(

1/3 0

0 3/4

)

x +

(

2/3

0

)

.

The invariant set for this IFS is shown in figure 4.11.

Denote the singular values of each function fi in the IFS by αi and βi,

where 1 > αi ≥ βi > 0. Thus,

α1 = α3 =
3

4
, α2 =

1

2
, andβ1 = β2 = β3 =

1

3
.

Since αi ≥ βj for every i, j = 1, . . . , 3, it’s a relatively simple matter to

compute φs:

φs (fi1 ◦ · · · ◦ fik) =

(

1

2

)n2
(

3

4

)n1+n3
(

1

3

)k(s−1)

,

where ni is the number of occurrences of i in the sequence (i1, . . . , ik). Thus

4.1 Self-affinity 69

0
1

3

2

3
1

3

4

1

Figure 4.11 A self-affine set for Falconer’s formula

∑

(i1,...,ik)∈Jk

φs (fi1 ◦ · · · ◦ fim) =
∑

(i1,...,ik)∈Jk

(

1

2

)n2
(

3

4

)n1+n3
(

1

3

)k(s−1)

=

(

1

3

)k(s−1)
∑

(i1,...,ik)∈Jk

(

1

2

)n2
(

3

4

)n1+n3

=

(

1

3

)k(s−1)(1

2
+

3

4
+

3

4

)k

.

This last computation follows by simply expanding (1/2 + 3/4 + 3/4)k . We

now have

70 Generalizing self-similarity





∑

(i1,...,ik)∈Jk

φs (fi1 ◦ · · · ◦ fim)





1/k =

(

1

2
+

3

4
+

3

4

)(

1

3

)s−1

= 2

(

1

3

)s−1

.

Since this expression is constant, it’s pretty easy to find the exact s so

that 2
/

3s−1 = 1. In fact, s = 1 + log 2
log 3 ≈ 1.63.

Finally, we look at a somewhat harder example - namely

f1(x) =

(

1/3 0

0 3/4

)

x

f2(x) =

(

1/3 0

0 1/2

)

x +

(

1/3

1/2

)

f3(x) =

(

1/3 0

0 3/4

)

x +

(

2/3

0

)

.

The attractor is shown in figure 4.12.

The essential difference here is that f2 compresses more in the vertical

direction than in the horizontal, while the reverse is true of f1 and f3.

Algebraically, we again have matrices of the form

Ai =

(

ai 0

0 di

)

,

but now a1 ≥ d1 while a2 ≤ d2. Thus the value of φs (A1A2) is not immedi-

ately clear. The determination of an expression of the form φs (fi1 ◦ · · · ◦ fik)

can be quite difficult. In this particular example, the singular values αi and

βi, satisfying 1 > αi ≥ βi > 0 are

α1 = α3 =
3

4
, α2 =

1

3
, andβ1 = β3 =

1

3
andβ2 =

1

4
.

While we will not be able to find a closed form expression for φs in this

case, a good upper bound for the dimension can still be obtained. Define sk

to be the unique value of s such that

∑

(i1,...,ik)∈Jk

φs (fi1 ◦ · · · ◦ fim) = 1.

It turns out that the Falconer dimension is the infimum of all the sk [REF

NEEDED]. We can find s1 as follows.

4.1 Self-affinity 71

0
1

3

2

3
1

3

4

1

Figure 4.12 A harder self-affine set for Falconer’s formula

FindRoot B 3

4

1

3s-1
+

1

3

1

4s-1
+

3

4

1

3s-1
� 1, 8s, 1 <F

8s ® 1.5281<
Thus, s = 1.53 is an upper bound for the Falconer dimension and, therefore,

the box-counting dimension. Finding values for higher level sks is harder; it

seems to prudent to use some computational tool. Here’s how we can do so

for this example. First we define the list of matrices from the IFS. Note that

we have one matrix for each function, repeating the matrices as necessary.

matrices = 8
881 � 3, 0 <, 80, 3 � 4<<,
881 � 3, 0 <, 80, 1 � 4<<,
881 � 3, 0 <, 80, 3 � 4<<<;

Then, the following code computes the first 8 sks.

72 Generalizing self-similarity

Table @
expandedMatrices = Dot ��� Tuples @matrices, k D;
svs = SingularValueList �� expandedMatrices;
dimensionFormula @s_D : = Total @Max@ðD^s & �� svs D �; s £ 1;
dimensionFormula @s_D : = Total @Max@ðD Min @ðD^ Hs - 1L & �� svs D �; s > 1;
s �. FindRoot @dimensionFormula @sD � 1, 8s, 1 <D,
8k, 1, 8 <D
81.5281, 1.51238, 1.50985, 1.50951, 1.50945, 1.5094, 1.50939, 1.50939<

It appears that the Falconer dimension is about 1.50939.

4.2 Digraph Iterated Function Systems

Self-affinity generalizes self-similarity by expanding the class of functions in

the iterated function system. In this section, we’ll generalize the concept

of an iterated function system itself. Rather than considering a single set

composed of copies of itself, we consider a collection of sets each composed

of copies of sets chosen from the collection. As an example, consider the

two curves K1 and K2 shown in figure 4.13. The curve K1 is composed of 1

copy of itself, scaled by the factor 1/2, and 2 copies of K2, rotated by ±π/3

and scaled by the factor 1/2. The curve K2 is composed of 1 copy of itself,

scaled by the factor 1/2, and 1 copy of K1, reflected and scaled by the factor

1/2. The curves K1 and K2 are called digraph self-similar sets and may be

described using a digraph iterated function system or digraph IFS.

K1

K1

K2

K2K2

K1

K2

Figure 4.13 Digraph self-similar curves

The first ingredient to define a digraph IFS is a directed multi-graph. A

directed multi-graph G consists of a finite set V of vertices and a finite set

E of directed edges between vertices. We call G a multi-graph because we

4.2 Digraph Iterated Function Systems 73

allow more than one edge between any two vertices. Figure 4.14 shows the

directed multi-graph for the curves K1 and K2. There are two edges from

vertex 1 to vertex 2 and one edge from vertex 1 to itself since K1 consists

of two copies of K2 together with one copy of itself. Similarly, there is one

edge from vertex 2 to vertex 1 and one edge from vertex 2 to itself since K2

consists of one copy of K1 together with one copy of itself.

a11

a12

a21

a22

b12

1 2

Figure 4.14 The digraph for the curves

Note that the edges in figure 4.14 are labeled. The subscript of the label

indicates the initial and terminal vertices. We obtain a digraph IFS from a

directed multi-graph by associating an affine function fe with each edge e of

the digraph. The digraph IFS for the digraph curves K1 and K2 is generated

from figure 4.13 by associating the following affine functions with the edges

of the digraph.

fa11
(x) =

(

1/2 0

0 1/2

)

x +

(

1/4√
3
/

4

)

fa12
(x) =

(

1/4 −
√

3
/

4√
3
/

4 1/4

)

x

fb12(x) =

(

1/4
√

3
/

4

−
√

3
/

4 1/4

)

x +

(

3/4√
3
/

4

)

fa21
(x) =

(

1/2 0

0 −1/2

)

x +

(

1/2

0

)

fa22
(x) =

(

1/2 0

0 1/2

)

x

The functions associated with the edges indicate how the large sets map

onto the constituent parts. For example, the function fa12
maps the set K2

onto the lower left portion of the set K1. To make this type of statement for

the general digraph IFS, we need to develop some notation associated with

digraph iterated function systems. Given two vertices, u and v, we denote

the set of all edges from u to v by Euv. A path through G is a finite sequence

74 Generalizing self-similarity

of edges so that the terminal vertex of any edge is the initial vertex of the

subsequent edge. A loop through G is a path which starts and ends at the

same vertex. G is called strongly connected if for every u and v in V , there

is a path from u to v. We denote the set of all paths of length n with initial

vertex u by En
u . A digraph IFS is called contractive if the product of the

scaling factors in any closed loop is less than 1. Theorem 4.3.5 of [Edgar

1990] states that for any contractive digraph IFS, there is a unique set of

non-empty, compact sets Kv, one for every v in V, such that for every u in

V,

Ku =
⋃

vǫV,eǫEuv

fe (Kv) . (4.4)

Such a collection of sets is called the invariant list of the digraph IFS and

we will refer to its members as digraph fractals. In general, if e ∈ Euv, then

fe maps Kv into Ku. Thus the functions of the digraph IFS map against the

orientation of the edges. Also note that an IFS is the special case of a digraph

IFS with one vertex and theorem 4.3.5 of [Edgar 1990] is a generalization of

the statement that a unique invariant set exists for a contractive IFS.

To clarify equation 4.4, let’s write it down for the specific case of the

digraph curves K1 and K2. There is one equation for each vertex, thus in

this case, equation 4.4 denotes a pair of equations. Substituting u = 1 then

u = 2 we obtain the two equations

K1 = fa11
(K1)

⋃

fa12
(K2)

⋃

fb12 (K2)

K2 = fa21
(K1)

⋃

fa22
(K2)

4.2.1 The Digraph Fractals package

Digraph fractal images may be generated using the DigraphFractals pack-

age. Of course, we first need to load the package.

Needs@"FractalGeometry`DigraphFractals`" D
We will need an appropriate data structure to describe a digraph IFS. For

this purpose, we will use the concept of an adjacency matrix. The adjacency

matrix representation of a digraph G is a matrix whose rows and columns

are indexed by the vertices of G. The entry in row u and column v is a

number indicating the number of edges of G from u to v. For example, the

digraph in figure 4.14 would have adjacency matrix

4.2 Digraph Iterated Function Systems 75

(

1 2

1 1

)

.

To represent a digraph IFS we need to consider how the pieces of the in-

variant sets fit together. So the entry in row u and column v of our adjacency

matrix representation will be a list of the functions mapping Ev into Eu. For

our digraph curves K1 and K2, the digraph IFS has matrix representation

(

{fa11
} {fa12

, fb12}
{fa21

} {fa22
}

)

.

To write this in Mathematica we use the usual representation of a matrix,

which is most easily entered using the BasicMathInput palette. Thus here

is the code describing the digraph IFS for the curves K1 and K2.

a11 = :881 � 2, 0 <, 80, 1 � 2<<, :1 � 4, 3 � 4>>;

a12 = 81 � 2 RotationMatrix @Π � 3D, 80, 0 <<;

b12 = :1 � 2 RotationMatrix @-Π � 3D, :3 � 4, 3 � 4>>;

a21 = 8881 � 2, 0 <, 80, -1 � 2<<, 81 � 2, 0 <<;
a22 = 8881 � 2, 0 <, 80, 1 � 2<<, 80, 0 <<;

curvesDigraph = K8a11< 8a12, b12 <
8a21< 8a22< O;

We can now use the ShowDigraphFractals command.

GraphicsRow @ShowDigraphFractals @curvesDigraph, 8 DD

The algorithm which generates these pictures is very similar to the one

which works for a standard IFS. We start with a list of initial approximations

to the invariant sets, {Kv,0 : v ∈ V }. By default, each Kv,0 is taken to be

the single point at the origin. We then recursively define a sequence of lists

of approximations {Kv,n : v ∈ V }∞n=1by

76 Generalizing self-similarity

Ku,n+1 =
⋃

vǫV,eǫEuv

fe (Kv,n) .

We can see this process in action by plotting a list of the first few approx-

imations to the digraph curves. In order to make the approximations look

like curves, we choose the unit interval to be the initiator for both K1,0 and

K2,0. We do this by using the Initiators option, which should be a list of

lists of Graphics primitives.

lineSegment = Line @880, 0 <, 81, 0 <<D;
initiators = 88lineSegment <, 8lineSegment <<;

We now use the Table command to generate a sequence of approximations

and display these in a GraphicsGrid.

GraphicsGrid @Partition @GraphicsRow �� Table @
ShowDigraphFractals @curvesDigraph, n,

Initiators ® initiators,
PlotRange ® 880, 1 <, 8- .5, .9 <<D, 8n, 0, 5 <D, 2 D,

Spacings ® 8Scaled @0.3 D, Scaled @0D<D

4.2 Digraph Iterated Function Systems 77

78 Generalizing self-similarity

4.2.2 Examples

As a second example, we’ll generate the so called golden rectangle fractals.

This interesting pair shows that not all functions in the digraph IFS need

be contractions. It also turns out to be a natural pair to generate with a

stochastic algorithm. The golden rectangle fractals are based on the obser-

vation that a golden rectangle and a square form a digraph pair as indicated

in figure 4.15.

Figure 4.15 Decomposition of a golden rectangle and square into a digraph
pair.

Now suppose we modify the decomposition shown in figure 4.15 by delet-

ing one of the rectangles as shown in figure 4.16.

Figure 4.16 A modification of the square

The digraph IFS suggested by figure 4.16 may be encoded in Mathematica

as follows.

4.2 Digraph Iterated Function Systems 79

j = GoldenRatio;
identity = IdentityMatrix @2D;
rotation = RotationMatrix @Pi � 2D;
a11 = 8rotation � j, 8j, 0 <<;
a12 = 8identity, 80, 0 <<;

a21 = 9identity � j2, 80, 0 <=;

b21 = 9rotation � j2, 91 � j + 1 � j2, 0 ==;

c21 = 9rotation � j2, 91 � j2, 1 � j2==;

a22 = 9identity � j3, 91 � j2, 1 � j2==;

goldenRectangleDigraph = K 8a11< 8a12<
8a21, b21, c21 < 8a22<O;

We would also like to use the following initiators.

squareVertices = 880, 0 <, 81, 0 <, 81, 1 <, 80, 1 <, 80, 0 <<;
rectangleVertices = 880, 0 <, 8j, 0 <, 8j, 1 <, 80, 1 <, 80, 0 <<;
square = 88GrayLevel @.8 D, Polygon @Drop @squareVertices DD<,

Line @squareVertices D<;
rectangle = 88GrayLevel @.5 D, Polygon @Drop @rectangleVertices DD<,

Line @rectangleVertices D<;
goldenInits = 8rectangle, square <;

We can then use the ShowDigraphFractals command.

GraphicsRow @ShowDigraphFractals @
goldenRectangleDigraph, 6,
Initiators ® goldenInits DD

Note that just as with our basic IFS algorithm, some parts of the frac-

tal approximations shown in this image are more finely detailed that other

parts. This is exactly the situation where we might consider using the

ShowDigraphFractalsStochastic command as demonstrated next. The

second argument refers to the total number of points generated and there is

no Initiators option.

GraphicsRow @ShowDigraphFractalsStochastic @
goldenRectangleDigraph, 30 000 DD

80 Generalizing self-similarity

Our final example is a pair of spirals based on phyllotaxis which intertwine

together beautifully.

goldenAngle = 2 Pi H2 - GoldenRatio L;
s1 = 8.985^3 RotationMatrix @3 goldenAngle D, 80, 0 <<;
s2 = 888.1, 0 <, 80, .1 <<, 81, 0 <<;
d1 = 8.985 88.1, 0 <, 80, .1 <<, .985 RotationMatrix @goldenAngle D. 81, 0 <<;
d2 = 8.985^2 88.1, 0 <, 80, .1 <<, .985^2 RotationMatrix @2 goldenAngle D. 81, 0 <<;
d3 = s1;
intertwinedSpirals = 888s1<, 8s2<<, 88d1, d2 <, 8d3<<<;
both = ShowDigraphFractalsStochastic @intertwinedSpirals, 30 000 D;
GraphicsRow @both D

These spirals look very nice when displayed together.

Show@both D

4.2 Digraph Iterated Function Systems 81

Note that probabilities to generate a uniform distribution are automati-

cally estimated. We may assign other probabilities using the option PMatrix.

A basic understanding of the algorithm is necessary to use this option. We

begin by assigning a positive probability pe to every eǫE such that for every

vǫV ,

∑

eǫEuv,uǫV

pe = 1.

This simply means that the sum of all of the probabilities of all of the

edges coming in to any particular vertex should be 1. For our matrix rep-

resentation of the digraph, this means that the sum of all of the probabil-

ities in any column should be 1. We then choose an arbitrary point xǫR2,

an arbitrary vertex vǫV , and some eǫEuv according to our probability list

{pe : e ∈ Euv, v ∈ V } and apply fe to xxx. If e ∈ Euv, this gives us a point

fe(xxx) in our approximation to Ku, which then becomes our new input and

the process continues. We are essentially performing a random walk along

the digraph and picking up points as we go along. The edges are traversed

in reverse order since fe : Kv → Ku when e ∈ Euv. Thus the option PMatrix

will be a matrix of lists of numbers, with the same shape as the digraph, such

82 Generalizing self-similarity

that the sum of all of the probabilities in any column is 1. We may compute

the PMatrix used by the package using the ComputePMatrix function. Here

is the PMatrix for the previous example.

ComputePMatrix @intertwinedSpirals D
8880.939968<, 80.060032<<, 880.0303257, 0.0297063<, 80.939968<<<

Let’s see what happens if we fiddle with this a little.

both = ShowDigraphFractalsStochastic @intertwinedSpirals, 30 000,
PMatrix ® 8880.95 <, 80.15 <<, 880.025, 0.025 <, 80.85 <<<D;

GraphicsRow @both D

Show[both]

4.2 Digraph Iterated Function Systems 83

The distribution has changed considerably.

4.2.3 Computing dimension

Our objective in this section is to develop an intuitive understanding of the

dimension computation for digraph fractals. As with self-similar sets, the

digraph IFS generates efficient covers of the digraph fractals and the rate of

growth of the number of sets in these covers indicates the dimension of the

set.

Consider, for example, our digraph self-similar curves and the simple cov-

erings by triangles as shown below. Note that each of these triangles has

diameter 1. Now, if we apply the digraph IFS to the pair of triangles, we

obtain the finer covering shown in figure 4.18. The sets in these covers all

have diameter 1/2. Iterating again, we obtain covers by sets of diameter 1/4,

as shown in figure 4.19.

At the nth iteration, we obtain covers of K1 and K2 by sets of diameter

2−n; we can count the number of sets in these to estimate N2−n (K1) and

N2−n (K2). The key to doing so efficiently is to realize that each set in either

cover at the nth level corresponds to a path of length n through the digraph

for the sets. Furthermore, the number of such paths may be computed by

84 Generalizing self-similarity

Figure 4.17 A level zero cover of the digraph curves

Figure 4.18 A level one cover of the digraph curves

summing the terms in the nth power of the adjacency matrix of the digraph.

To see this, let A denote the adjacency matrix for the digraph. Thus, for

our example,

A =

(

1 2

1 1

)

.

Figure 4.19 A level two cover of the digraph curves.

4.2 Digraph Iterated Function Systems 85

Recall that the entry in row i and column j denotes the number of edges

(or paths of length one) from the ith vertex to the jth. Now consider

A2 =

(

1 2

1 1

)(

1 2

1 1

)

=

(

1 + 2 2 + 2

1 + 1 2 + 1

)

=

(

3 4

2 3

)

.

The entry in row i and column j of A2 is the dot product of the ith row of

A with the jth column and represents the number of paths of length 2 from

the ith vertex to the jth; the kth term in that sum represents the number

of paths through vertex k. It follows from induction that the entry in row i

and column j of An represents the number of paths of length n from vertex

i to vertex j.

Now consider the vector vn = An1, where 1 represents the vector of ones.

In our example,

An1 =

(

1 2

1 1

)n(
1

1

)

.

The ith element of this vector is the sum of the ith row of An and represents

the number of sets in the nth level cover of the ith digraph fractal. It turns

out that the entries of vn grow exponentially at the rate λn, where λ is the

largest eigenvalue of A. We can demonstrate this for our example matrix as

follows.

A = K 1 2

1 1
O;

sequence = NestList @A. ð &, 81, 1 <, 9 D
881, 1<, 83, 2<, 87, 5<, 817, 12<, 841, 29<,
899, 70<, 8239, 169<, 8577, 408<, 81393, 985<, 83363, 2378<<

The exponential growth rate can be checked by examining successive ratios

from this list.

ð@@2DD � ð@@1DD &�� N@Partition @sequence, 2, 1 DD
883., 2.<, 82.33333, 2.5<, 82.42857, 2.4<, 82.41176, 2.41667<, 82.41463, 2.41379<,
82.41414, 2.41429<, 82.41423, 2.4142<, 82.41421, 2.41422<, 82.41421, 2.41421<<

This common ratio is precisely the largest eigenvalue of the matrix.

Eigenvalues @N@ADD
82.41421, -0.414214<

These computations suggest that the common dimension of the digraph

fractal curves is log(λ)/ log(2), where λ = 1 +
√

2 is the largest eigenvalue

of A.

86 Generalizing self-similarity

4.2.4 Dimensional theorems

We now state some definitions and theorems that carefully confirm the obser-

vations of the last section. First, recall that a digraph is strongly connected

if, given vertices u and v, there is a path from u to v. For a collection of di-

graph fractals, this implies that each fractal contains a similar copy of every

other fractal. Therefore, there is a common dimension for all the digraph

fractals.

When a directed graph is strongly connected, the corresponding adjacency

matrix must have a property called irreducibility; indeed, this is taken as the

definition of irreducible matrix in many texts on graph theory. In our con-

text, this implies that we can apply a powerful theorem from linear algebra,

called the Perron-Frobenius theorem. We state here a part of this theorem,

without proof.

Theorem 4.2 Let A be a non-negative, irreducible square matrix and let

ρ = max(|λ|), where the maximum is taken over all eigenvalues of A. Let

λ1 = ρ. Then λ1 is a simple (non-repeated) eigenvalue of A and the corre-

sponding eigenvector may be taken to have all positive terms.

The value λ1 is called the spectral radius of the matrix. In the case where

all similarities in the digraph IFS have the same contraction ratio, we can

write down a simple upper bound for the dimension of the digraph fractals

in terms of the spectral radius.

Just as in the IFS case, an assumption must be made to limit overlap

between the pieces in the decomposition of the digraph fractals. Thus, we

say that a digraph IFS satisfies the open set condition if there is a collection

of open sets {Uv : v ∈ V } such that for every u ∈ V ,

Uu ⊃
⋃

vǫV,eǫEuv

fe (Uv) ,

with this union disjoint. In our digraph curves example, the open sets may

be taken to be the interiors of the triangles used to generate the covers.

Using the open set condition, we may now state a major theorem on the

dimension of digraph self-similar sets.

Theorem 4.3 Let G = (V,E) be a strongly connected, directed multi-

graph. For each e ∈ E, associate a similarity fe with common contraction

ratio r < 1 so that the resulting digraph IFS satisfies the open set condition.

Then the corresponding digraph fractals all have dimension log (λ1)/ log(1/r),

where λ1 is the spectral radius of the adjacency matrix of G.

4.2 Digraph Iterated Function Systems 87

Note that this theorem immediately verifies our dimension computation

for the digraph fractals. On the other hand, it says nothing about the dimen-

sion of the golden rectangle fractals, or any example where the contraction

ratios are not all the same.

Theorem 4.4 Let G = (V,E) be a strongly connected, directed multi-

graph. For each e ∈ E, associate a similarity fe with contraction ratio re

so that the resulting digraph IFS is contractive and satisfies the open set

condition. For s > 0, define a matrix A(s), with rows and columns indexed

by V , such that the entry in row u and column v is

Auv(s) =
∑

eǫEuv

rs
e.

Then the box counting dimension of the digraph IFS is the unique value of

s such that the matrix A(s) has spectral radius 1.

1

ϕ
ϕ2

ϕ2
ϕ2

ϕ3

R S

Figure 4.20 The digraph for the golden rectangle fractals

Example 4.5 We compute the fractal dimension of the golden rectangle

fractals. The digraph for these fractals is shown in figure 4.20; the edge labels

indicate the corresponding contraction ratios.

A(s) =

(

1 /ϕs 1

3
/

ϕ2s 1
/

ϕ3s

)

.

Let us define the auxilliary function Φ(s) to be the largest eigenvalue of

A(s). We must find the value of s so that Φ(s) = 1. Generally, this equation

cannot be solved in closed form. A good numerical approximation can be

found with the FindRoot command, however.

j = GoldenRatio;

F@s_?NumericQ D : = MaxBEigenvalues B 1 � js 1

3 � j2 s 1 � j3 s
FF;

FindRoot @F@sD � 1, 8s, 1 <D

88 Generalizing self-similarity

8s ® 1.79246<
This procedure is encapsulated in the FindDigraphDimension command,

which works directly on the digraph IFS.

FindDigraphDimension @goldenRectangleDigraph D
1.79246

Exercises

Figure 4.21 Figures for exercise 1.

4.1 Generate figures 4.2 and 4.3 from the text using the IteratedFunctionSystems

package.

4.2 Figure 4.21 illustrates the effect of two IFSs of affine transformations on

the unit square. Find each IFS and generate a high level approximation

to the invariant set.

4.3 The IFS for figure 4.6 was generated with the following Mathematica

code.

r = .05;
u = 81, 0 <;
v = 8Cos@Pi � 3D, Sin @Pi � 3D<;
hexaLattice = Partition @Flatten @Table @2 r Hm u + n vL,

8m, -12, 12 <, 8n, -12, 12 <DD, 2 D;
hexaLattice = Select @hexaLattice, ð. ð < 1 &D;
M = 88r, 0 <, 80, r <<;
diskIFS = Prepend @ð, MD & �� hexaLattice;

1 How exactly does the code work? What is the effect of the param-

eter r?

Exercises 89

2 Use the collage theorem 4.1 to find an upper bound for the distance

between the invariant set of the IFS and the unit disk.

3 Use a similar technique to find an IFS that yields an invariant set

that is close to the unit circle. Note: this problem deals with the

circle, not the solid unit disk as in the example.

4.4 Use the box-counting technique developed in sub-section ?? to compute

the fractal dimension of the sets in figure 4.21.

4.5 Suppose that f is a similarity transformation with contraction ratio α.

Show that in this case, the singular value function defined in equation

4.1 simplifies to φs(f) = αs. Conclude that Falconer dimension yields

the similarity dimension in the strictly self-similar case.

4.6 Find a Falconer dimension.

5

Fractals and tiling

In tiling theory, we study ways to cover the plane without gaps or overlap.

In classical tiling theory, we typically use a small number of relatively simple

sets in the cover; any intricacies in the tiling arise from the overall pattern,

rather than from the individual sets. Figure 5.1, for example, shows three

simple tilings - one using squares, one using triangles, and one using both

triangles and squares.

Figure 5.1 Three simple tilings

If we are to cover the plane with countably many sets, then these individ-

ual sets will need to be two dimensional. However, the boundaries of these

sets could be fractal. Figure 5.2, for example, illustrates a tiling with a sin-

gle set called the terdragon that appears in three different orientations. The

boundary of the set is a self-similar fractal curve.

5.1 Tiling and self-similarity 91

Figure 5.2 A fractal tiling

5.1 Tiling and self-similarity

5.1.1 Basics

Perhaps the simplest example of a tiling is the basic square tiling shown

in figure 5.1. This tiling can be constructed using the self-similar structure

of the square. In fact, we can do this with the IteratedFunctionSystems

package as follows.

Needs@"FractalGeometry`IteratedFunctionSystems`" D;
A = 881, 0 <, 80, 1 << � 2;
IFS = 88A, 80, 0 <<, 8A, 81 � 2, 0 <<,
8A, 80, 1 � 2<<, 8A, 81 � 2, 1 � 2<<<;

GraphicsRow @Table @ShowIFS@IFS, k, Initiator ®

Line @880, 0 <, 81, 0 <, 81, 1 <, 80, 1 <, 80, 0 <<DD,
8k, 1, 3 <DD

92 Fractals and tiling

To generate a tiling, of course, we would scale the images up so that the

smallest squares in each image have side length 1. Nonetheless, it should be

clear that any two dimensional set satisfying an open set condition yields a

tiling in a natural way. This suggests the possibility of introducing fracta-

cality into the picture. Figure 5.2 is based the self similar set shown in figure

3, for example. Figure 3 (a) illustrates the decomposition of the terdragon

into 3 copies of itself. Figure 5.3 (b) shows how a higher level decomposition

can induce a tiling of the plane.

We should point out that self-similarity can be used to generate all kinds

of interesting tilings, even from the perspective of tiling theory. Figure 5.4,

for example, illustrates a nice tiling called the chair tiling. Of course, we are

primarily interested in the fractal possibilities.

5.1.2 Self-affine tiles

While it is easy to see to how squares, triangles, and a few other two dimen-

sional sets decompose to produce tilings, it’s harder to find fractal tilings

whose boundaries need to fit together just right. The earliest such tilings

were found by ad hoc methods - starting with a simple tiling and iteratively

modifying the boundary to obtain a fractal tiling. Figure 5.5, for example,

illustrates a tiling using two, different sized Sierpinski snowflakes. We start

with a simple tiling by triangles and hexagons and modify the tiling as

shown. In the limit, both regions converge to Sierpinski snowflakes.

As pretty as these ad hoc methods can be, it would be nice to have a

systematic way to generate fractal tilings. Furthermore, if we are to prove

general theorems concerning the properties that a broad class of tilings have,

then we need a precise definition of the class of sets we are studying.

A set T is called a self-affine tile if there is an expanding matrix A and a

collection of vectors D (called the digit set) such that

5.1 Tiling and self-similarity 93

(a)

(b)

Figure 5.3 The terdragon

AT = T + D ≡
⋃

d∈D
(T + d), (5.1)

where the pieces in the union are assumed to intersect only in their bound-

aries. Note that AT is the image of T under multiplication by the matrix

A. Also, if T is a self-affine tile with respect to A and D, then AT is a self-

affine tile with respect to A and AD. Thus, iteration of equation 5.1 yields

arbitrarily large tiling images. The unit square is an example of a self-affine

tile where

94 Fractals and tiling

Figure 5.4 The chair tiling

Figure 5.5 A tiling by Sierpinski snowflakes.

A =

(

2 0

0 2

)

andD =

{(

0

0

)

,

(

1

0

)

,

(

0

1

)

,

(

1

1

)}

. (5.2)

Iteration of equation 5.2 yields the checkerboard pattern.

As it turns out, the expansion identity 5.1 is inverse to the notion of an

iterated function system. If a self-affine tile T satisfies equation 5.1, then

after applying A−1 to both sides we see that

T =
⋃

d∈D

(

A−1T + A−1d
)

.

5.1 Tiling and self-similarity 95

Thus
{

A−1x + d : d ∈ D
}

forms an IFS that generates the tile. The major

question now is how to choose a matrix A and digit set D to generate

interesting images. A beautiful theorem, published by Christoph Bandt [],

provides an answer. This theorem is also described in [] at a more elementary

level.

Theorem 5.1 Let A be a two-dimensional expansive matrix with integer

entries and let D form a residue system for A. Then, there is a unique self-

affine tile T with matrix A and digit set D. In fact, T is the invariant set

of the IFS defined by
{

A−1x + A−1d : d ∈ D
}

An expansive matrix is simply a matrix whose eigenvalues are all larger

than one in absolute value. The terminology residue system and digit set

originates from work by Gilbert [] describing certain self-similar sets in terms

of number representation in the complex plane. By definition, a residue

system for A is a complete set of coset representatives for the quotient

group Z2
/

AZ2. This means quite simply that the integer lattice Z2 can be

decomposed as

Z2 =
⋃

d∈D

(

AZ2 + d
)

.

This decomposition of Z2 plays a key role in Bandt’s proof of theorem 5.1. Of

course, we need to be able to generate appropriate digits sets for expansive,

integer matrices. Given the matrix A with column vectors v1 and v2, the

simplest residue system for A consists of those points with integer coordi-

nates lying inside the parallelogram determined by v1 and v2 and including

only the two sides containing the origin. For example, figure 5.6 illustrates

this digit set for the matrix

(

2 2

−1 2

)

.

We can construct other residue systems from this simple one as follows:

two integer points are said to be equivalent if their difference is a linear

combination of v1 and v2. Any vector from our simple residue system may

be replaced by another from its equivalence class; that is, starting from our

simplest residue system, we can simply shift some of its members by some

linear combination of v1 and v2 to obtain another residue system. A digit

set which forms a residue system for A is called a standard digit set. Note

that the shift of a standard digit set by an integer vector is again a standard

digit set; thus, we may suppose that the zero vector is one of the digits.

96 Fractals and tiling

1 2 3 4

-1.0

-0.5

0.5

1.0

1.5

2.0

Figure 5.6 A complete residue system as a digit set

5.1.3 Examples

Example 5.2 The simplest example of a self-affine tile is the unit square,

which has matrix and digit set given by equation 5.2. For our first exam-

ple of a self-affine tile with fractal boundary, we modify that example by

shifting the digit (1, 1) to the digit (1, 1)− (2, 0)− (0, 2) = (−1,−1). (We’ve

expressed the digit this way to emphasize that it has been shifted by a linear

combination of the column vectors of A.). The result is shown in figure 5.7.

It is hard to imagine how such an exotic set could possibly tile the plane.

The tiling is possible since the red portion of figure 5.7 complement the gray

portion perfectly and this behavior is replicated when the tile is shifted, as

shown in figure 5.8.

Example 5.3 The twin-dragon is the self-affine tile with matrix A and

digit set D:

A =

(

1 1

−1 1

)

;D =

{(

0

0

)

,

(

1

0

)}

.

The twin-dragon is the red portion shown in figure 5.9. The gray portion

is a copy of the twin-dragon shifted to the right one unit. Multiplication by

the matrix A expands by the factor
√

2 and rotates clockwise through the

angle 45◦; this would map the twin-dragon onto the union of the red and

gray twin-dragons.

5.1 Tiling and self-similarity 97

Figure 5.7 Modification of the square’s digit set

Example 5.4 The type 1 terdragon is the self-affine tile with matrix A

and digit set D:

A =

(

2 −1

1 1

)

;D =

{(

0

0

)

,

(

1

0

)

,

(

1

1

)}

.

The type 1 terdragon is the red portion shown in figure 5.10. The yellow

and blue portions in figure 10 are shifts of the red portion under the last

two vectors in the digit set D. The union of these three portions form the

union of the image of the red portion under multiplication by the matrix A.

The type 1 terdragon in example 5.4 is self-affine but not self-similar.

Sometimes, such a set is affinely equivalent to a self-similar set. In this case,

the self-similar set will correspond to the same matrix and digit set expressed

in another basis. As explained in [], if A has a pair of complex conjugate

eigenvalues, then A is similar (i.e., conjugate) to a similarity matrix. In this

case, we may find the change of basis matrix B as follows. Suppose that the

vector

98 Fractals and tiling

Figure 5.8 Shifting the modified square

Figure 5.9 The twin-dragon

(

v11 + iv12

v21 + iv22

)

5.1 Tiling and self-similarity 99

Figure 5.10 Type 1 terdragon

is an eigenvector for A, and let B be the inverse of the matrix

(

v11 v12

v21 v22

)

.

Then, BAB−1 will be a similarity transformation. The type 1 terdragon falls

into this case, as the following computation shows.

A = 882, -1<, 81, 1 <<;
Eigenvalues @AD
: 1
2
K3 + ä 3 O, 1

2
K3 - ä 3 O>

We can now find one of the corresponding eigenvectors.

eigenvec = Eigenvectors @AD@@1DD �� Simplify

: 1
2
K1 + ä 3 O, 1>

We can now use this to find the change of basis matrix B.

B = Inverse @88Re@eigenvec @@1DDD, Im @eigenvec @@1DDD<,
8Re@eigenvec @@2DDD, Im @eigenvec @@2DDD<<D;

B �� MatrixForm

100 Fractals and tiling

0 1
2

3
-

1

3

The matrix B should conjugate A to a similarity matrix.

B.A.Inverse @BD �� MatrixForm

3

2

3

2

-
3

2

3

2

We can see that BAB−1 does indeed induce a similarity transformation.

In fact, it is simply a clockwise rotation throughout the angle π/6 together

with an expansion of
√

3.

3 RotationMatrix @-Π � 6D �� MatrixForm

3

2

3

2

-
3

2

3

2

Now the point is that, while this last matrix does not have integer entries,

so it does not seem to fall into the scheme outlined by Bandt’s theorem, it

may be expressed as a matrix with integer entries with respect to the correct

choice of basis. In fact, if we choose our basis to be the column vectors of B,

then this similarity is expressed as the matrix A. The statement and proof

of Bandt’s theorem are essentially algebraic, so the choice of basis does not

affect the result. In order to display the self-similar, type 1 terdragon in this

basis, we can simply multiply the tile by B. The result is shown in figure

5.11.

5.1.4 Multiple orientations

A major weakness in Bandt’s theorem is that all the functions in an IFS

generated by the theorem have the same linear part. Thus we can never

generate pieces in multiple orientations, like the terdragon in figure 5.3.

Bandt has a second theorem that is harder to apply but more general. This

theorem uses the notion of a symmetry group, which is simply a finite group

G of integer matrices with determinant + or − one such that MG = GM .

Theorem 5.5 Let M be an expansive, integer matrix, let {s1, . . . , sm}
contained in a symmetry group of M , and suppose that the integer lattice

can be decomposed as

5.1 Tiling and self-similarity 101

Figure 5.11 A symmetric type 1 terdragon

L =
m
⋃

i=1

s−1
i (yi + ML) .

Then, the invariant set of the IFS with fi(x) = siM
−1x+yi is a self-affine

tile.

This theorem is much more tedious to apply than Bandt’s theorem 5.1.

In that theorem, the symmetry group G is the trivial group consisting of

just the identity matrix and the lattice decomposition is automatic. Both of

these must be checked to apply theorem 5.5. To illustrate the process, we

consider the matrix

M =

(

1 1

−1 1

)

,

which generated the twin-dragon in example 5.3. An example of a symmetry

group for this matrix is

102 Fractals and tiling

G =

{(

1 0

0 1

)

,

(

0 −1

1 0

)

,

(

−1 0

0 −1

)

,

(

0 1

−1 0

)}

,

which is just the cyclic group of order 4 generated by

s2 =

(

0 −1

1 0

)

.

We can verify all this by simply checking that s2 generates G and that

GM = MG. While tedious by hand, this is easy on the computer.

M = 881, 1 <, 8-1, 1 <<;
s2 = 880, -1<, 81, 0 <<;
G = Table @MatrixPower @s2, k D, 8k, 4 <D;
Last @GD � 881, 0 <, 80, 1 << &&

Union @Table @M.s, 8s, G <DD �
Union @Table @s.M, 8s, G <DD

True

We can check the lattice decomposition condition by generating the lattice

of points, breaking this into two sets points1 and points2 that are the

image of points under x → Mx and x → s−1
2 (Mx + (1, 0)) and checking

the union of points1 and points2 form the whole lattice. We can visualize

this as follows.

points = Flatten @Table @8i, j <,
8i, -4, 4 <, 8j, -4, 4 <D, 1 D;

points1 = M.ð & �� points;
points2 = Inverse @s2D. HM.ð + 81, 0 <L & �� points;
ListPlot @8points1, points2 <D

-5 5

-5

5

Example 5.6 The observations above, together with theorem 5.5, imply

that the invariant set of the IFS with function f1(x) = M−1x, f2(x) =

5.1 Tiling and self-similarity 103

s2M
−1x+〈1, 0〉 is a self-similar tile. The result, called the Heighway dragon,

is shown if figure 5.12.

Figure 5.12 The Heighway dragon

As another example, consider the following integer matrix.

M = K 2 1

-1 1
O;

For this example, we need the M to be an integer matrix with respect to

the hexagonal basis. This means that, with respect to the standard basis,

we can express M as follows.

S = 881, 1 � 2<, 80, Sqrt @3D � 2<<;
M = S.M.Inverse @SD;
M�� MatrixForm

104 Fractals and tiling

3

2

3

2

-
3

2

3

2

We claim that the group of order 6 generated by the rotation through 60◦

is a symmetry group for M . We can check this just as we did in the previous

example.

G = Table @MatrixPower @RotationMatrix @Pi � 3D, k D,
8k, 1, 6 <D;

Union @Table @s.M, 8s, G <DD �
Union @Table @M.s, 8s, G <DD

True

Next, we claim that the lattice decomposition is satisfied for the hexagonal

lattice by taking s1 and s2 to be the identity matrix, s3 to be the rotation

through 60◦, y1 = (0, 0), and y2 = y3 = (1, 0). We again demonstrate this

by simply generating the lattice.

points = Flatten @Table @8i, 0 < + j 81 � 2, Sqrt @3D � 2<,
8i, -5, 5 <, 8j, -5, 5 <D, 1 D;

points1 = M.ð & �� points;
points2 = M.ð + 81, 0 < & �� points;
points3 = RotationMatrix @-Pi � 3D. HM.ð + 81, 0 <L & �� points;
ListPlot @8points1, points2, points3 <,

PlotRange ® 88-5, 5 <, 8-5, 5 <<D

-4 -2 2 4

-4

-2

2

4

Example 5.7 The observations above, together with theorem 5.5, imply

that the invariant set of the IFS with function f1(x) = M−1x, f2(x) =

M−1x + 〈1, 0〉, and f3(x) = s3M
−1x + 〈1, 0〉 is a self-similar tile. The result

is the type 2 terdragon that we first met in figure 5.3.

5.2 Fractal boundaries 105

5.2 Fractal boundaries

While we have used iterated function systems to describe the tilings in this

chapter, it is clearly the boundaries of the tiles that are somehow fractal. We

now try to analyze these boundaries. The key observation is illustrated in

figure 5.13, where we see a twin dragon and its six adjacent neigbors in the

tiling induced by the twindragon in part (a). The collection of intersections

between these neighbors and the original tile form a collection of six sets

whose union is in the whole boundary, as shown in part (b). It turns out

that this collection of sets forms the invariant list of a digraph IFS and this

can be used analyze the boundary.

(a) (b)

Figure 5.13 The adjacent neighbors of the twindragon and intersections
that form the boundary

5.2.1 The boundary digraph IFS

To make all this more precise, suppose that T is a self-affine tile and there

is a lattice Γ of points in the plane so that the translates of T by the points

of Γ form a tiling of the plane. The lattice should be invariant under the

action of A in the sense that A(Γ) ⊂ Γ. (Note that the lattice condition is

frequently, but not always satisfied.) Given α ∈ Γ, define Tα = T ∩ (T + α).

The boundary of T is formed by the collection of sets Tα which are non-

empty, excluding the case α = 0. Let F = {α ∈ Γ : Tα 6= ∅andα 6= 0}. We

hope to find a digraph IFS such that {Tα : α ∈ F} is the invariant list of that

digraph IFS. We do so by examining how the expansion matrix A affects

each set Tα and then translating to a digraph IFS by applying A−1.

106 Fractals and tiling

A (Tα) = A(T)
⋂

A(T + α)

=

(

⋃

d∈D
(T + d)

)

⋂

(

⋃

d′∈D
(T + d′ + Aα)

)

=
⋃

d,d′∈D
((T + d)

⋂

(T + d′ + Aα))

=
⋃

d,d′∈D
[(T
⋂

(T − d + d′ + Aα)) + d]

=
⋃

d,d′∈D
((TAα−d+d′) + d) .

(5.3)

We are only interested in the non-empty intersections so, given α and β in

F , let M(α, β) denote the set of pairs of digits (d, d′) so that β = Aα−d+d′.
Then applying A−1 to both sides of equation 5.3 we see that

Tα =
⋃

β∈F

⋃

(d,d′)∈M(α,β)

(

A−1Tβ + A−1d
)

. (5.4)

Equation 5.4 defines a digraph IFS to generate the sets Tα. Given α and β

in F , the functions mapping Tβ into Tα are precisely those affine functions

defined by
{

A−1, A−1d
}

for all digits d so that there is a digit d′ satisfying

β = Aα − d + d′.
We now implement the above ideas, to generate the boundary of the twin

dragon. We first define A and D.

A = K 1 1

-1 1
O;

D = 880, 0 <, 81, 0 <<;

We also need to know the set F . In general, it can be difficult to deter-

mine F . Fortunately, [10] describes an algorithm to automate the procedure.

The algorithm is fairly difficult, however, and the technique seems rather far

removed from the other techniques described here. Thus we refer the inter-

ested reader to [10] and the code defining the NonEmptyShifts function in

the SelfAffineTiles package. Examining figure 5.13, it is not to difficult to

see that the correct set of vectors F for the twindragon is defined as follows.

F = 88-1, -1<, 80, -1<, 81, 0 <,
81, 1 <, 80, 1 <, 8-1, 0 <<;

Now for each pair (α, β) where α and β are chosen from F , we want

M(α, β) to denote the set of pairs of digits (d, d′) so that β = Aα − d + d′.
This can be accomplished as follows.

M@Α_, Β_D : = Select @Tuples @D, 2 D,
ð@@1DD - ð@@2DD � Β - A. Α &D;

digitPairsMatrix = Outer @M, F , F , 1 D;

5.2 Fractal boundaries 107

In order to make sense of this, let’s look at the length of each element of

the matrix.

S = Map@Length, digitPairsMatrix, 82<D;
S �� MatrixForm
0 0 0 0 0 1

2 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 2 1 0

0 0 0 0 1 0

This matrix is called the substitution matrix of the tile and tells us simply

the combinatorial information of how the pieces of the boundary fit together.

Reading the rows, for example, we see that the first piece is composed of

one copy of the last piece, the second piece is composed of one copy of itself

and two copies of the first, etc. Note also that the order of the rows and

columns is dictated by the order of the set F . Thus the first piece refers

to the boundary along the maroon image in the lower left of figure 5.13,

since (−1,−1) is the first shift vector in the set F . The subsequent pieces

are numbered counterclockwise around the central tile, since that is the way

that F is set up.

We can transform the digitPairsMatrix into a digraph IFS defining

the boundary by simply replacing each pair (d, d′) with the affine function
(

A−1, A−1d
)

.

boundaryDigraphIFS = digitPairsMatrix �.
8_, 8x_?NumericQ, y_ << ® 8Inverse @AD, Inverse @AD. 8x, y <<;

Let’s see how it worked. We’ll use the function ShowDigraphFractalsStochastic

defined in the DigraphFractals package and then Show all the parts to-

gether. We’ll use color to distinguish the constituent parts.

Needs@"FractalGeometry`DigraphFractals`" D;
boundaryParts = ShowDigraphFractalsStochastic @

boundaryDigraphIFS, 40 000, Colors ® True D;
Show@boundaryParts D

108 Fractals and tiling

5.2.2 The dimension of the boundary

The preceeding section provides a complete description of the digraph IFS

that generates the boundary of a self-affine tile. Assuming that the matrix

A defines a similarity, theresulting digraph is strongly connected, and a sep-

aration condition like the digraph OSC is satisfied, we should be able to use

theorem 4.3 to compute the dimension of the boundary. Unfortunately, these

conditions don’t necessarily hold in general. Remarkably, Strichartz and

Wang have shown that the conclusion of theorem 4.3 holds for these digraph

IFSs anyway. Note that the substitution matrix, as defined by Strichartz and

Wang, is exactly the adjacency matrix for the digraph IFS. Thus we have

the following theorem.

Theorem 5.8 Let T be a self-affine tile for the matrix A and with substi-

5.3 The SelfAffineTiles package 109

tution matrix S. Let ρ(M) denote the spectral radius of a matrix M . Then,

the fractal dimension of the boundary of the tile A is log(ρ(S))/ log(ρ(A)).

For example, we can compute the dimension of the boundary of the twin-

dragon using the matrices S and A as defined at the end of the previous

sub-section. We simply compute the spectral radii as follows.

8Ρ1, Ρ2< = 8Max@Abs@Eigenvalues @SDDD, Max @Abs@Eigenvalues @ADDD<
:RootA-2 - ð12 + ð13 &, 1E, 2 >
The spectral radius of A is clearly no surprise but the spectral radius of

S requires a bit of interpretation. This Root result simply means that the

spectral radius is the largest root of the cubic polynomial x3−x2 −2, which

happens to be a factor of the characteristic polynomial of A. If we donote

this number by ρ1, then the dimension is log (ρ1) / log
(√

2
)

. We can find a

numerical estimate for this as follows.

Log@Ρ1D � Log@Ρ2D �� N

1.52363

5.3 The SelfAffineTiles package

Given a matrix and digit set, it is amazingly easy to generate a basic image

of the corresponding self-affine tile. Let’s illustrate the process to generate

the twin-dragon.

Needs@"FractalGeometry`IteratedFunctionSystems`" D;
A = 881, 1 <, 8-1, 1 <<;
D = 880, 0 <, 81, 0 <<;
IFS = 8Inverse @AD, Inverse @AD. ð< & �� D;
ShowIFS@IFS, 14, Colors ® True D

110 Fractals and tiling

5.4 Aperiodic tiling

Appendix A

A brief introduction to Mathematica

Mathematica is an immense computer software package for doing mathe-

matical computation and exploration. It contains hundreds of mathematical

functions, commands for producing graphics, and a complete programming

language. This appendix is a brief introduction to Mathematica, focusing

on the tools used in this book. The serious user of Mathematica will need

more comprehensive reference and tutorial materials. While there are a not

many resources available specifically for the latest version of Mathematica

(V6, which this text uses), there are several excellent references which ade-

quately cover the core programming tools...

A.1 The very basics

At the most basic level, Mathematica can be used interactively, like a cal-

culator. Commands to be evaluated are entered into input cells, which are

displayed inBoldInput in this text. They are evaluated by pressing the

ENTER key. (Note that ENTER is distinct from RETURN which is

used to start a new line.) Results are displayed in output cells. Here is a

simple example:

2 + 2

4

You can enter longer expressions over several lines. You can also include

comments in input cells by enclosing them in (* These *)

H5 * 7 - 32 � 6L � 4

H* Here is a comment *L
89

12

112 A brief introduction to Mathematica

Notice that we get a fraction. Mathematica is capable of exact computations,

rather than decimal approximations. We can always get numerical approxi-

mations using the N function (for numerical). In the following line, % refers

to the previous result and // N passes that result to the N function

% �� N

7.41667

Mathematica’s ability to do exact computations is truly impressive.

2^1000

10 715 086 071 862 673 209 484 250 490 600 018 105 614 048 117 055 336 074 �
437 503 883 703 510 511 249 361 224 931 983 788 156 958 581 275 946 729 �
175 531 468 251 871 452 856 923 140 435 984 577 574 698 574 803 934 567 �
774 824 230 985 421 074 605 062 371 141 877 954 182 153 046 474 983 581 �
941 267 398 767 559 165 543 946 077 062 914 571 196 477 686 542 167 660 �
429 831 652 624 386 837 205 668 069 376

Approximations can be computed to any desired degree of accuracy.. Here

we use the N function again along with an optional second argument to

obtain 100 decimal digits of π.

N@Pi, 100 D
3.14159265358979323846264338327950288419716939937510582097494�
4592307816406286208998628034825342117068

Mathematica has extensive knowledge about mathematical functions.

Sin @Pi � 3D
3

2

Note: built in function names are always capitalized and the arguments are

enclosed in square brackets.

Mathematica can do algebra.

Expand @Hx + 1L^10 D
1 + 10 x + 45 x2 + 120 x3 + 210 x4 + 252 x5 + 210 x6 + 120 x7 + 45 x8 + 10 x9 + x10

Factor @x^4 - x^3 - 2 x - 4D
H-2 + xL H1 + xL I2 + x2M

Mathematica can do calculus.

D@x^2, x D
2 x

Integrate @Sin @xD, 8x, 0, Pi <D
2

A.2 Brackets [], braces , and parentheses () 113

Mathematica can compute sums.

Sum@2 � 9^n, 8n, 1, Infinity <D
1

4

Mathematica can plot functions.

Plot @x^2, 8x, -2, 2 <D

-2 -1 1 2

1

2

3

4

A.2 Brackets [], braces , and parentheses ()

Brackets, braces, and parentheses all have distinct purposes in Mathematica.

Brackets [] are used to enclose the arguments of a function such as:

N@Tan@1D, 20 D
1.5574077246549022305

Parentheses () are used for grouping in mathematical expressions such as:

H2 * 5 - 1L � 3

3

Braces {} are used to form lists. Lists play a very important role in Mathe-

matica as they are a fundamental data structure. Many functions automat-

ically act on the individual elements of a list.

N@8Sqrt @2D, E <, 20 D
81.4142135623730950488, 2.7182818284590452354<
Some commands return lists. The Table and Range commands are two

of the most important such commands. The Table command has the syn-

tax Table[expr,{x,xMin,xMax}]. This evaluates expr at the values xMin,

114 A brief introduction to Mathematica

xMin+1, ..., xMin+n, where n is the largest integer so that xMin+n ≤ xMax.

For example, here are the first 10 natural numbers squared.

Table @x^2, 8x, 1, 10 <D
81, 4, 9, 16, 25, 36, 49, 64, 81, 100<

It is sometimes convenient to use a slightly more general version of Table

which specifies the step size: Table[expr, {x,xMin,xMax,step}], where

step represents the step size.

Table @x^2, 8x, 1, 10, .5 <D
81., 2.25, 4., 6.25, 9., 12.25, 16., 20.25, 25.,
30.25, 36., 42.25, 49., 56.25, 64., 72.25, 81., 90.25, 100.<

The more specific version Table[expr,{n}] simply produces n copies of

expr. We will see several instances when this is useful. Table accepts mul-

tiple variables to create nested lists. In the following example, x is fixed for

each sublist and ranges from 0 to 2 as we move from list to list; y ranges

from 1 to 4 inside each sublist.

Table @x + y, 8x, 0, 2 <, 8y, 1, 4 <D
881, 2, 3, 4<, 82, 3, 4, 5<, 83, 4, 5, 6<<
The Range command simply produces a list of numbers given a certain

min, max, and step. This is not as limited as it might seem, since functions

can act on lists.

Range@10D^2

81, 4, 9, 16, 25, 36, 49, 64, 81, 100<

Range@1, 10, .5 D^2

81., 2.25, 4., 6.25, 9., 12.25, 16., 20.25, 25.,
30.25, 36., 42.25, 49., 56.25, 64., 72.25, 81., 90.25, 100.<

A.3 Entering typeset expressions

Up until this point, it has been fairly clear how to enter all of the example

input cells. Mathematica allows input to resemble mathematical notation

much more closely, however. For example, the following are equivalent.

N@Pi^2 � 6D
1.64493

NB Π
2

6
F

1.64493

A.4 Defining constants and functions 115

There are two basic ways of entering typeset expressions - using palettes

or using keyboard shortcuts. Palettes are more intuitive, but typically take

longer. The best approach is usually to know a few important keyboard

shortcuts and to use the palettes when necessary. Let’s try both techniques

to enter π2

6 into the notebook.

First, we’ll use the Basic Math Input palette. This is the second palette un-

der the Palettes menu in V6 and is also the second palette under Palettes⊲Other

in V7. Note that V7 has much more extensive palettes than V6 but the basic

usage is the same. To enter π2

6 into the notebook using the Basic Math Input

palette, proceed as follows.

1 Click on the �

�
button in the first row

2 Click on the �
� button near the bottom row.

3 Click on the π button near the middle of the palette.

4 Press the TAB key.

5 Type “2”.

6 Press the TAB key.

7 Type “6”.

8 Press the right arrow twice key to exit the typeset expression.

Alternatively, we can enter π2

6 using just the keyboard. Here’s how:

1 Press the ESC key.

2 Type “pi”.

3 Press the ESC key.

4 Press the CTRL and ∧ keys simultaneously.

5 Type “2”.

6 Press the right arrow key.

7 Press the CTRL and / keys simultaneously.

8 Type “6”.

9 Press the right arrow twice key to exit the typeset expression.

A.4 Defining constants and functions

Constants can be defined in the natural way.

c = 7

7

The symbol c will now be treated as 7.

c + 3

10

116 A brief introduction to Mathematica

Symbol names can be longer alphanumeric strings and may refer to more

complicated objects

theList = Range@10D + c

88, 9, 10, 11, 12, 13, 14, 15, 16, 17<
We can still act on this object.

theList 2

864, 81, 100, 121, 144, 169, 196, 225, 256, 289<
We can clear the contents of the symbols.

Clear @c, theList D
c + 3

3 + c

theList 2

theList2

Here is how to define the function f(x) = x + 2.

f @x_D : = x + 2

We can now plug in any value we want for x.

f @3D
5

f Ay2E
2 + y2

The important things to remember when defining a function are 1) (al-

most) always use a := sign and 2) use underscores after variable names in

the function declaration to the left of the := sign. The underscore is used

because this is how Mathematica recognizes a pattern. Pattern recognition

is a central part of Mathematica and functions are defined in terms of pat-

terns. The := sign is the abbreviated form of SetDelayed, as opposed to =

which is the abbreviated form of Set. The difference is that using = sets the

definition immediately while using := waits until the expression is actually

evaluated, which is usually what you want when declaring a function. Here

is an example where the difference is important. Suppose we want to de-

fine a function diff that automatically differentiates with respect to x. The

correct way to do this is as follows. (Note that the semi-colon at the end

of the first line suppresses the output of that command. The semi-colon is

frequently used when entering multiple lines of code.)

A.5 Basic graphics 117

Clear @f D;
diff @f_ D : = D@f, x D;

diff Ax2E
2 x

If we use = instead of :=, the function does not work properly.

Clear @diff D;
diff @f_ D = D@f, x D;

diff Ax2E
0

The problem is that D[f,x] is evaluated immediately and returns 0.

D@f, x D
0

Using := tells Mathematica to wait until some expression is substituted for

f to take the derivative.

Sometimes it is convenient to use a pure function. A pure function has

the syntax expr &, where expr is a Mathematica expression involving the

symbol and the & operator tells Mathematica to treat expr as a function

with argument #. For example, #^#& is a pure function which raises a number

(or possibly another Mathematica object) to itself. We use square brackets

[] to plug in an argument just as with any other function.

ð^ ð &@3D
27

As we will see shortly, pure functions are particularly useful in the context

of list manipulation.

A.5 Basic graphics

There are several basic commands for plotting functions or data. The most

basic is the Plot command. For example, we can plot the function x2 over

the range -2 ≤ x ≤ 2 (denoted {x,-2,2}).

Plot Ax2, 8x, -2, 2 <E

118 A brief introduction to Mathematica

-2 -1 1 2

1

2

3

4

We can plot more than one function on the same graph by using a list of

functions. Here’s the plot of sin(x) together with a polynomial approxima-

tion.

Plot B:Sin @xD, x -
x3

6
+

x5

120
>, 8x, -2 Π, 2 Π<,

PlotRange ® 8-2, 2 <F

-6 -4 -2 2 4 6

-2

-1

1

2

Note that we have also included the option PlotRange->{-2,2} which con-

trols the vertical range in the plot. The Plot command has many such

options which you can examine through the Documentation Center.

The ListPlot command plots a list of points in the plane.

Table A9x, x 2=, 8x, -4, 4 <E
88-4, 16<, 8-3, 9<, 8-2, 4<, 8-1, 1<, 80, 0<, 81, 1<, 82, 4<, 83, 9<, 84, 16<<

ListPlot @%D

A.5 Basic graphics 119

-4 -2 2 4

5

10

15

When plotting many points, it makes sense to assign the output of the Table

command to a variable and to suppress the output.

data = Table A9x, x 2=, 8x, -4, 4, .1 <E;

ListPlot @data D

-4 -2 2 4

5

10

15

If you want the dots connected, you can use ListLinePlot.

ListLinePlot @data D

120 A brief introduction to Mathematica

-4 -2 2 4

5

10

15

Again, a semi-colon suppresses the output. This is convenient when you

don’t want to see the output, but want to combine it with subsequently gen-

erated graphics. For example, to plot the parabola above together with the

sample points chosen to generate it, we could generate both plots separately,

store those results using variables, and use the Show command to combine

those plots.

plot1 = ListPlot @data,
PlotStyle ® 8PointSize @.015 D<D;

plot2 = ListLinePlot @data D;
Show@plot1, plot2 D

-4 -2 2 4

5

10

15

We can also use a GraphicsGrid to display both plots separately.

GraphicsGrid @88plot1, plot2 <<D

A.6 Solving equations 121

-4 -2 2 4

5

10

15

-4 -2 2 4

5

10

15

A.6 Solving equations

Mathematica has powerful built in techniques for solving equations alge-

braically and numerically. The basic command is Solve. Here is how to use

Solve to find the roots of a polynomial.

Solve Ax3
- 2 x - 4 � 0, x E

88x ® -1 - ä<, 8x ® -1 + ä<, 8x ® 2<<
The general quintic cannot be exactly solved in terms of roots, so Math-

ematica has it’s own representation of such roots.

Solve Ax5
- 2 x - 3 � 0, x E

99x ® RootA-3 - 2 ð1 + ð15 &, 1E=, 9x ® RootA-3 - 2 ð1 + ð15 &, 2E=,
9x ® RootA-3 - 2 ð1 + ð15 &, 3E=, 9x ® RootA-3 - 2 ð1 + ð15 &, 4E=, 9x ® RootA-3 - 2 ð1 + ð15 &, 5E==

Note that the NSolve command is similar, but returns numerical approx-

imations.

NSolve Ax5
- 2 x - 3 � 0, x E

88x ® -0.958532 - 0.498428 ä<, 8x ® -0.958532 + 0.498428 ä<,
8x ® 0.246729 - 1.32082 ä<, 8x ® 0.246729 + 1.32082 ä<, 8x ® 1.42361<<

The Solve and NSolve commands work well with polynomials and sys-

tems of polynomials. However, many equations involving transcendental

functions are beyond their capabilities. Consider, for example, the simple

equation cos(x) = x. NSolve will not solve the equation, but returns a

statement to let you know this.

NSolve @Cos@xD � x, x D
Solve::tdep : The equations appear to involve the

variables to be solved for in an essentially non-algebraic way. �
NSolve@Cos@xD � x, xD

A simple plot shows that there is a solution in the unit interval.

122 A brief introduction to Mathematica

Plot @8Cos@xD, x <, 8x, 0, 1 <D

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

The FindRoot command uses Newton’s method to find this solution. Since

this is an iterative method, an initial guess is required. The graph indicates

that 0.8 would be a reasonable initial guess.

FindRoot @Cos@xD � x, 8x, 0.8 <D
8x ® 0.739085<
We will use FindRoot to solve certain equations for the fractal dimension

of a set.

A.7 Random sequences

Many fractal algorithms have a random element so it is important to be able

to generate random sequences. Mathematica has several commands for this

purpose; RandomInteger is, perhaps, the most fundamental. RandomInteger[{iMin,iMax},n]

generates a list of n random integer between iMin and iMax.

RandomInteger @81, 4 <, 10 D
84, 2, 4, 2, 4, 3, 4, 1, 2, 4<

In applications, the terms in a randomly generated sequence need not be

numbers and they might not be uniformly weighted. Suppose, for example,

that f1, f2, and f3 are functions and must be chosen randomly with the

weights 1/2, 1/3, and 1/6. This is easily accomplished using the RandomChoice

command.

Of course, these are not genuinely random sequences but pseudo-random;

they are deterministic procedures which appear random. The output of such

a pseudo-random number generator depends upon an initial input called a

seed. We can set the seed using the SeedRandom command. SeedRandom

accepts an integer input.

A.8 Graphics primitives 123

SeedRandom@1D;
RandomReal@81, 4 <, 5 D
83.45217, 1.33426, 3.36858, 1.56341, 1.72408<

If the table is generated again after another call to SeedRandom[1], Random

will generate the same sequence of numbers.

SeedRandom@1D;
RandomReal@81, 4 <, 5 D
83.45217, 1.33426, 3.36858, 1.56341, 1.72408<

A.8 Graphics primitives

Graphics functions like Plot generate graphical output.

Plot @x + 1, 8x, -2, 2 <, PlotPoints ® 2,
MaxRecursion ® 0D

-2 -1 1 2

-1

1

2

3

The graph is just one way to format the result. The InputForm is much

closer to Mathematica’s internal representation

% �� InputForm

Graphics[{{{}, {}, {Hue[0.67, 0.6, 0.6],
 Line[{{-1.999996, -0.9999960000000001},
 {1.8472175954999577, 2.8472175954999575},
 {1.999996, 2.9999960000000003}}]}}},
 {AspectRatio -> GoldenRatio^(-1),
 Axes -> True, AxesOrigin -> {0, 0},
 PlotRange -> {{-2, 2}, {-0.9999960000000001,
 2.9999960000000003}},
 PlotRangeClipping -> True,
 PlotRangePadding -> {Scaled[0.02],
 Scaled[0.02]}}]

This output is in the form Graphics[primitives_,options_], where primitives

is a list of graphics primitives and options is a list of options. Graphics prim-

itives are the building blocks of graphics objects; you can build your own

list of graphics primitives and display them using the Graphics command.

124 A brief introduction to Mathematica

Graphics primitives are important for this book since initial approximations

to fractal sets will frequently be expressed in terms of graphics primitives.

There are many two-dimensional graphics primitives; perhaps the simplest

are Line and Polygon. Line accepts a single list of the form {{x1,y1},...,{xn,yn}}

to define the line through the points with given coordinates. If the points

are not collinear, then this defines a polygonal path. If we encase such a line

in the Graphics command, Mathematica will display the line. For example,

here is the line from the origin to {1, 1}.
Graphics @Line @880, 0 <, 81, 1 <<DD

The argument of Line can take the more complicated form {{{x1,x2}...}...}

to yield multiple lines.

Graphics @Line @8880, 1 <, 82, 1 <<,
880, 0 <, 81, 1 <, 82, 0 <<<DD

A.8 Graphics primitives 125

The appearance of a graphics primitive can be affected using a graphics di-

rective. For example, the Thickness directive affects the thickness of a Line.

A graphics directive should be placed in the list of graphics primitives and

will affect any applicable graphics primitives which follow it until changed

by another graphics directive. If we want to use conflicting graphics direc-

tives, we need distinct graphics primitives. For example, we can distinguish

the two lines above as follows.

Graphics @8
Thickness @.01 D, Line @880, 1 <, 82, 1 <<D,
Thickness @.03 D, Line @880, 0 <, 81, 1 <, 82, 0 <<D
<D

Nested lists can be used inside the Graphics command. In this case,

a graphics directive does not have any effect outside the list it is in. For

example, only the top line is affected by the Thickness directive the next

example.

Graphics @88Thickness @.02 D, Line @880, 1 <, 82, 1 <<D<,
Line @880, 0 <, 81, 1 <, 82, 0 <<D
<D

126 A brief introduction to Mathematica

The Polygon primitive also accepts a list of points, but represents a filled

polygon.

Graphics @
Polygon @880, 0 <, 81, 0 <, 81, 1 <, 80, 1 <<DD

Color directives can be used to change the color.

Graphics @8GrayLevel @.7 D,
Polygon @880, 0 <, 81, 0 <, 81, 1 <, 80, 1 <<D<D

A.8 Graphics primitives 127

We can combine Line and Polygon primitives to include a border, al-

though the EdgeForm directive provides a nicer way to do this.

vertices = 880, 0 <, 81, 0 <, 81, 1 <, 80, 1 <, 80, 0 <<;
Graphics @8
8GrayLevel @.7 D, Polygon @vertices D<,
Line @vertices D<,

AspectRatio ® Automatic D

128 A brief introduction to Mathematica

A.9 Manipulating lists

Mathematica can act on lists in many ways. Here is a list of randomly chosen

integers.

SeedRandom@1D;
theList = RandomInteger @81, 10 <, 810<D
82, 5, 1, 8, 1, 1, 9, 7, 1, 5<

We can sort the list

sortedList = Sort @theList D
81, 1, 1, 1, 2, 5, 5, 7, 8, 9<

We can reverse the order.

Reverse @sortedList D
89, 8, 7, 5, 5, 2, 1, 1, 1, 1<

We can shift the list.

RotateLeft @sortedList, 3 D
81, 2, 5, 5, 7, 8, 9, 1, 1, 1<

We can drop some elements from the list

Drop @sortedList, 3 D
81, 2, 5, 5, 7, 8, 9<

A.9 Manipulating lists 129

We can access elements from the list

sortedList @@3DD
1

We can partition the list into subparts.

Partition @sortedList, 2 D
881, 1<, 81, 1<, 82, 5<, 85, 7<, 88, 9<<
Nested lists can be flattened to remove the nested structure.

Flatten @%D
81, 1, 1, 1, 2, 5, 5, 7, 8, 9<

We can select data from the list that satisfies some particular criteria. For

example, we can select the odd numbers from the list.

Select @theList, OddQ D
85, 1, 1, 1, 9, 7, 1, 5<
The second argument to Select should be a function returning either

True or False. For example, OddQ returns True if called with an odd integer

argument or False otherwise.

8OddQ@2D, OddQ@3D<
8False, True<

Pure functions are convenient in this context. For example, (#>5)& repre-

sents a function which returns True if called with a numeric argument which

is bigger than 5 or False if called with a numeric argument which is less or

equal to 5. Thus the following returns those elements of the list which are

greater than 5.

Select @theList, ð > 5 &D
88, 9, 7<
As we’ve seen, many functions act on the individual elements of a list.

sortedList 2

81, 1, 1, 1, 4, 25, 25, 49, 64, 81<
In this example, we say that the square function has mapped onto the list.

A function which automatically maps onto lists is said to be listable. The

arbitrary function is not listable.

Clear @f D;
f @theList D
f@82, 5, 1, 8, 1, 1, 9, 7, 1, 5<D
Any function can be mapped onto a list using the Map command.

130 A brief introduction to Mathematica

Map@f, theList D
8f@2D, f@5D, f@1D, f@8D, f@1D, f@1D, f@9D, f@7D, f@1D, f@5D<

Map can be abbreviated using /@.

f �� theList

8f@2D, f@5D, f@1D, f@8D, f@1D, f@1D, f@9D, f@7D, f@1D, f@5D<
We can map a pure function onto a list. For example, we can use a function

which accepts a number and returns a list whose elements are the original

number and the original number squared.

9ð, ð2= & �� theList

882, 4<, 85, 25<, 81, 1<, 88, 64<, 81, 1<, 81, 1<, 89, 81<, 87, 49<, 81, 1<, 85, 25<<
We can view the internal representation of a list using the FullForm com-

mand.

theList �� FullForm

List@2, 5, 1, 8, 1, 1, 9, 7, 1, 5D
All non-atomic expressions in Mathematica are represented this way. That is

all expressions other than numbers or symbols (called atoms) are represented

head[args___]. We can change the head of an expression using the Apply

command. For example,

Apply @f, theList D
f@2, 5, 1, 8, 1, 1, 9, 7, 1, 5D

As with Map, there is an abbreviated form, namely @@.

f �� theList

f@2, 5, 1, 8, 1, 1, 9, 7, 1, 5D
We can use this in conjunction with the Plus command to add the elements

of a list.

Plus �� theList

40

Here is a function which finds the average of a list.

average @l_ D : = Total @l D � Length @l D;
average @theList D
4

Some more advanced techniques to apply functions to lists include the

commands Through, Inner, and Outer. These commands are used in some of

the programs defined in the FractalGeometry packages. Through is similar

A.10 Iteration 131

to Map, but applies each of a list of functions to a single argument, rather

than a single function to a list of arguments.

Through @8f1, f2, f3 <@xDD
8f1@xD, f2@xD, f3@xD<
Inner and Outer are a bit more complicated and will be discussed in

appendix A2 on linear algebra.

A.10 Iteration

Iteration is fundamental to both fractal geometry and computer science. If

a function f maps a set to itself, then an initial value x0 can be plugged

into the function to obtain the value x1. This value can then be plugged

back into f continuing the process inductively. This yields the sequence

{x0, x1, x2, ...} where xn = f (xn−1) for every integer n > 0. Put another

way, xn = fn (x0) where fn represents the n-fold composition of f with

itself. The basic commands which perform this operation in Mathematica

are Nest and NestList. Nest[f,x0,n] returns fn (x0).

Clear @f D;
Nest @f, x0, 5 D
f@f@f@f@f@x0DDDDD
NestList[f,x,n] returns the list {x0, f (x0) , f (f (x0)) , . . .}.
NestList @f, x0, 5 D
8x0, f@x0D, f@f@x0DD, f@f@f@x0DDD, f@f@f@f@x0DDDD, f@f@f@f@f@x0DDDDD<

Of course, this will be more interesting if we use a specific function and a

specific starting point. For example, iteration of Cos starting at 0.8, should

yield a sequence which converges to the fixed point of Cos. Note that we

type Cos instead of Cos[x] since NestList anticipates a function.

NestList @Cos, .8, 30 D
80.8, 0.696707, 0.76696, 0.720024, 0.75179, 0.730468, 0.744863,
0.735181, 0.741709, 0.737315, 0.740276, 0.738282, 0.739626, 0.738721, 0.73933,
0.73892, 0.739196, 0.73901, 0.739136, 0.739051, 0.739108, 0.73907, 0.739096,
0.739078, 0.73909, 0.739082, 0.739087, 0.739084, 0.739086, 0.739084, 0.739086<

The command FixedPoint[f,x0] automatically iterates f starting at x0

until the result no longer changes, according to Mathematica’s internal rep-

resentation.

FixedPoint @Cos, .8 D
0.739085

132 A brief introduction to Mathematica

A.11 Pattern matching

When a function is declared, internally Mathematica adds a pattern to its

global rule base. As we have seen, here is how to define f(x) = x2.

f @x_D : = x2

f @2D
4

If we have an algebraic expression, rather than a function, we can do this

manually using a rule.

x2 �. x ® 2

4

In this example, the expression is x2, the rule is x → 2, and /. is the

replacement operator which tells Mathematica to implement the rule. The

arrow → can also be typed -> which Mathematica automatically converts

to → in an input cell.

Commands for solving algebraic formulae return lists of rules. This makes

it easy to plug solutions back into expressions. For example, suppose we use

Solve to find the critical points of a polynomial.

poly = x3
+ 4 x 2

- 3 x + 1;
cps = Solve @D@poly, x D � 0, x D
:8x ® -3<, :x ® 1

3
>>

We can plug the critical points back into poly.

poly �. cps

:19, 13

27
>

An underscore is used to denote a more general pattern. For example,

suppose we want to square the integers in a list.

81, 2, a, b, Π< �. 91 ® 12, 2 ® 22=
81, 4, a, b, Π<

We have used a list of rules - one for each integer in the list. We would prefer

a pattern which matches each integer. One way to do this is as follows.

81, 2, a, b, Π< �. n_Integer ® n2

81, 4, a, b, Π<
Any functions to the right of the Rule operator -> are evaluated imme-

diately. There is a delayed version of Rule called RuleDelayed which waits

A.12 Programming 133

until the rule is applied to evaluate any functions. RuleDelayed can be ab-

breviated by :→ which can be typed as :>. The difference between → and

:→ is similar to the difference between = and :=. Suppose, for example, we

want to expand any powers in an expressions. We might try the following.

Ha + bL1�2 Hc + dL3 �. x_ n_
® Expand @xnD

a + b Hc + dL3
This doesn’t work since the Expand is evaluated immediately to yield xn.

Thus this rule is equivalent to xn → xn which does nothing. By contrast,

the rule delayed version waits until any substitutions occur to perform the

expansion.

Ha + bL1�2 Hc + dL3 �. x_ n_
¦ Expand @xnD

a + b Ic3 + 3 c2 d + 3 c d2 + d3M
Pattern matching is a powerful and important yet subtle aspect of Math-

ematica.

A.12 Programming

Mathematica has a full featured, high-level programming language including

loop constructs such as Do and While, flow control devices such as If and

Switch, and scoping constructs which allow you to declare local variables.

Programming with Mathematica is a deep subject and entire books, such as

[Mae], have been written about it. In this appendix, we’ll develop one short

program which illustrates some important themes for this book. Of course,

the book contains many more such examples.

A word of warning is in order to experienced programmers. The proce-

dural programming paradigm used for many compiled languages, such as

C, C++, or Java, is emphatically not appropriate for a high-level language

such as Mathematica. This book primarily follows a paradigm known as

functional programming and, to a lesser extent, rule based programming.

The idea is to use Mathematica’s vast set of tools to define functions which

act naturally on Mathematica’s rich set of data structures. The “natural”

way to do something in any language is determined by the internal structure

of the language; it takes experience to learn what the most appropriate tech-

nique for a given situation might be. Consider, for example, the following

procedural approach to generating a list of squares of the first 10 squares.

134 A brief introduction to Mathematica

squareList = 8<;
For @i = 1, i £ 10, i ++,

squareList = AppendTo @squareList, i ^2 DD
squareList
81, 4, 9, 16, 25, 36, 49, 64, 81, 100<

Most people with procedural programming experience should be comfortable

with this example. If you are not, don’t worry because this is not the way to

do it anyway. It is much more natural in Mathematica to do the following.

Range@10D2

81, 4, 9, 16, 25, 36, 49, 64, 81, 100<
The functional approach is much shorter and more readable. More impor-

tantly, the functional approach generally executes faster. Suppose we want

to generate a list of 20,000 squares and measure how long it takes. Here is

a procedural approach.

squareList = 8<;
For @i = 0, i £ 20 000, i ++,

squareList = AppendTo @squareList, i ^2 DD; �� Timing
82.15142, Null<

That’s slow! A big part of the problem is that AppendTo is a very expen-

sive operation, particularly when applied to long lists. This can be sped up

considerably by generating an initial list and modifying it in place as follows.

squareList = Range@20 000 D;
For @i = 0, i £ 20 000, i ++,

squareList @@i DD = i ^2 D; �� Timing
80.049875, Null<

The functional approach is still considerably faster.

Range@20 000 D2; �� Timing

80.000691, Null<
For a more serious example, consider the first picture describing the con-

struction of the Cantor set which appears in chapter 2. To generate this

picture, we first define a function CantorStep which will be defined to act

on Line primitives and nested lists of Line primitives. If CantorStep en-

counters an object of the form Line[x_], it should return a list of two lines,

one contracted towards the origin by a factor r1 and the other contracted

towards 1 by a factor r2. For the classical Cantor set, r1 and r2 are both

1/3; we would like to include more general contraction ratios so we define

CantorStep in terms of parameters r1 and r2.

We first define the action of CantorStep on Line primitives.

A.12 Programming 135

r1 = r2 = 1 � 3;
CantorStep @Line @x_DD : =

N@8Line @r1 x D, Line @r2 x + 881 - r2, 0 <, 81 - r2, 0 <<D<D;

Let’s check to see how CantorStep works on the unit interval.

firstStep = CantorStep @Line @880, 0 <, 81, 0 <<DD
8Line@880., 0.<, 80.333333, 0.<<D, Line@880.666667, 0.<, 81., 0.<<D<
Note that we force numerical approximation using the N function. This is

important in iterative fractal programming, because computations with dec-

imal approximations is much faster than computations with exact rational

numbers.

Next, if CantorStep encounters a list, it should map over that list.

CantorStep @l_List D : = CantorStep �� l;

This version should now be applicable to firstStep.

CantorStep @firstStep D
88Line@880., 0.<, 80.111111, 0.<<D, Line@880.666667, 0.<, 80.777778, 0.<<D<,
8Line@880.222222, 0.<, 80.333333, 0.<<D, Line@880.888889, 0.<, 81., 0.<<D<<

We should be able to display this approximation.

Graphics @%, AspectRatio ® 1 � 10D

We can define a function CantorSet which uses the Nest command to

generate a higher level approximation.

CantorSet @n_Integer D : =
Nest @CantorStep, Line @880, 0 <, 81, 0 <<D, n D;

Graphics @CantorSet @5D,
AspectRatio ® 1 � 10D

We can now generate a list of approximations and display them using GraphicsColumn.

approximations = Table @Graphics @CantorSet @nD,
AspectRatio ® 1 � 10D, 8n, 0, 5 <D;

GraphicsColumn @approximations D

136 A brief introduction to Mathematica

When you have developed many lines of code that will be implemented

many times with small modifications, you might consider encapsulating that

code in a Module, which allows you to declare local variables. The Module

command has the syntax Module[localVars_, body_], where localVars

is a list of the local variables and body is the sequence of Mathematica com-

mands to be executed. Here is how to define a function ShowCantorApproximations

which encapsulates the code we have just discussed.

ShowCantorApproximations @depth_Integer, r1_, r2_ D : =
Module @8CantorStep, CantorSet, approximations <,

CantorStep @Line @x_DD : =
N@8Line @r1 x D, Line @r2 x + 881 - r2, 0 <, 81 - r2, 0 <<D<D;

CantorStep @l_List D : = CantorStep �� l;
CantorSet @n_Integer D : =

Nest @CantorStep, Line @880, 0 <, 81, 0 <<D, n D;
approximations = Table @8Graphics @CantorSet @nD,

AspectRatio ® 1 � 10D<, 8n, 0, depth <D;
GraphicsGrid @approximations D
D;

ShowCantorApproximations takes three arguments which appear in the

body of the module. We can use this function to generate the figure in chap-

ter 2, which shows the construction of a Cantor type set with contraction

ratios 1/2 and 1/4.

ShowCantorApproximations @6, 1 � 2, 1 � 4D

A.13 Notes 137

A.13 Notes

Exercises

A.1 Enter and evaluate the following input cells.

â
n=1

¥ 1

n2

Sum@1 � n^2, 8n, 1, Infinity <D

à
0

¥

ã

-x2

2 âx

Integrate @Exp@-x^2 � 2D, 8x, 0, Infinity <D
A.2 For both of the following functions, use the commands D, Solve, NSolve,

and/or FindRoot to find the critical points of the function. Then use

Plot to graph the function.

1 f(x) = x3 − 6x2 + 10x − 2

2 g(x) = x sin
(

x2
)

A.3 Use the Table command and the trigonometric functions to generate

a list of the vertices of a regular hexagon of side length 1.

A.4 Use graphics primitives to create a picture of a regular hexagon and a

picture of a square inscribed inside an equilateral triangle as in figure

A.1.

A.5 Write a function nGon which accepts a positive integer n and returns

a list of graphics primitives describing a regular n-sided polygon. Thus

your function should be able to generate figure A.2.

138 A brief introduction to Mathematica

Figure A.1 Graphics exercises

Figure A.2 A heptagon

Appendix B

Linear Algebra

Linear algebra is important for fractal geometry since it provides a conve-

nient notation for describing iterated function systems. Linear algebra is the

study of linear transformations of vector spaces, which are represented by

matrices. The most important part of linear algebra to understand for this

book is how the basic two dimensional vector space R2 is transformed under

multiplication by specific types of matrices. We will also need to compute

eigenvalues and eigenvectors to determine the fractal dimension of digraph

self-similar sets. Finally, certain programming constructs are best under-

stood in the context of matrices.

B.1 Vectors and matrices

Vectors are represented as lists of the appropriate length in Mathematica.

Thus a two dimensional vector is simply a list of length two. Matrices are

represented as lists of lists. A two dimensional matrix should be a list of

length two and each of its elements should be a list of length two; the first

element should represent the first row and the second element should rep-

resent the second row. You can pass a matrix to the MatrixForm command

to see it typeset as a matrix.

88a, b <, 8c, d << �� MatrixForm

K a b

c d
O

You can also enter matrices directly using the

(

� �

� �

)

button from the

BasicInputs palette or the using Table/Matrix command from the Insert

menu.

Matrix multiplication is represented using a . between two matrices or

between a matrix and a vector.

140 Linear Algebra

88a, b <, 8c, d <<. 8x1, x 2<
8a x1 + b x2, c x1 + d x2<

We can now explore the effect of multiplication by certain types of matrices

on the general two dimensional vector. First we create a simple picture to

act on.

triangle = Graphics B::GrayLevel @.7 D,

Polygon B:80, 0 <, 81, 0 <,

:1 � 2, 3 � 2>>F>,

:Line B:80, 0 <, 81, 0 <,

:1 � 2, 3 � 2>, 80, 0 <>F>>,

Axes ® True F

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

The following simple function accepts a Graphics object and a matrix

and applies the linear transformation defined by the matrix to all two-

dimensional numerical vectors in the Graphics object.

transform @Graphics @g_, opts___ D, M_?MatrixQ D : =
Graphics @GeometricTransformation @g,

AffineTransform @MDD, opts D;

Now, a diagonal matrix

(

r 0

0 r

)

should stretch or compress the graphic

by the factor r. (Note the axes in the next picture.)

M = 881 � 2, 0 <, 80, 1 � 2<<;
transform @triangle, M D

B.1 Vectors and matrices 141

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

We can introduce a reflection by placing a minus sign in the correct place.

M = 881 � 2, 0 <, 80, -1 � 2<<;
transform @triangle, M D

0.1 0.2 0.3 0.4 0.5

-0.4

-0.3

-0.2

-0.1

Rotation is a bit trickier. Rotation about the origin through the angle θ

can be represented by the matrix

(

cos θ − sin θ

sin θ cos θ

)

.

This is exactly the matrix encoded in the Mathematica function RotationMatrix.

142 Linear Algebra

RotationMatrix @ΘD �� MatrixForm

K Cos@ΘD -Sin@ΘD
Sin@ΘD Cos@ΘD O

In fact, there is a RotationTransform command analogous to the AffineTransform

command we used above, but it defeats the purpose of our linear algebra

review.

Now, positive θ implies counter-clockwise rotation, while negative θ im-

plies clockwise rotation. To see why this matrix works, first apply it to the

standard basis vectors
⇀
ı =

(

1

0

)

and
⇀
 =

(

0

1

)

. This should simply ex-

tract the two columns of the rotation matrix. We first consider the matrix

multiplied by
⇀
ı .

88Cos@ΘD, -Sin @ΘD<, 8Sin @ΘD, Cos @ΘD<<. 81, 0 <
8Cos@ΘD, Sin@ΘD<

By basic trigonometry, this is the basis vector
⇀
ı rotated through the angle

θ. We next look at the matrix multiplied by
⇀
 .

88Cos@ΘD, -Sin @ΘD<, 8Sin @ΘD, Cos @ΘD<<. 80, 1 <
8-Sin@ΘD, Cos@ΘD<

Now the basis vector
⇀
 can be written

(

0

1

)

=

(

cos π/2

sin π/2

)

.

Thus
⇀
 rotated by the angle theta can be written

(

cos(θ + π/2)

sin(θ + π/2)

)

=

(

− sin θ

cos θ

)

,

which exactly the rotation matrix multiplied by
⇀
 . This last equality can

be seen by applying basic trigonometric identities using TrigExpand.

8Cos@Θ + Π � 2D, Sin @Θ + Π � 2D< �� TrigExpand

8-Sin@ΘD, Cos@ΘD<
Now since M rotates both

⇀
ı and

⇀
 by the angle θ, it rotates any vector

through that angle by linearity since

M

(

x1

x2

)

= M

(

x1

(

1

0

)

+ x2

(

0

1

))

= x1M

(

1

0

)

+ x2M

(

0

1

)

.

For example, we can rotate our triangle rotated through the angle π/12.

B.1 Vectors and matrices 143

M= 88Cos@Π � 12D, -Sin @Π � 12D<,
8Sin @Π � 12D, Cos @Π � 12D<<;

Show@transform @triangle, M D,
Axes ® True, AspectRatio ® Automatic D

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

We can combine these geometric transformations by multiplying the ap-

propriate matrices.

compression = 881 � 2, 0 <, 80, 1 � 2<<;
reflection = 881, 0 <, 80, -1<<;
rotation = 88Cos@Π � 12D, -Sin @Π � 12D<,
8Sin @Π � 12D, Cos @Π � 12D<<;

M = reflection.rotation.compression;
transform @triangle, M D

144 Linear Algebra

0.1 0.2 0.3 0.4

-0.4

-0.3

-0.2

-0.1

These operations are not generally commutative.

M = rotation.reflection.compression;
transform @triangle, M D

0.1 0.2 0.3 0.4

-0.3

-0.2

-0.1

0.1

When we enter the broader world of affine functions, rather than just

similarities, there are other possibilities. A diagonal matrix

B.1 Vectors and matrices 145

(

a 0

0 d

)

should stretch or compress the graphic by the factor a in the horizontal

direction and d in the vertical direction.

M = 882, 0 <, 80, 1 � 2<<;
transform @triangle, M D

0.5 1.0 1.5 2.0

0.1

0.2

0.3

0.4

There are also shear transformations, which have the form

(

1 s

0 1

)

or

(

1 0

s 1

)

.

You can see why these are called shear transformations by observing their

geometric effect.

M = ::1, 1 � 3 >, 80, 1 <>;

transform @triangle, M D

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

You can see why this works by observing

146 Linear Algebra

(

1 s

0 1

)(

x

y

)

=

(

x + sy

y

)

.

B.2 Eigenvalues and eigenvectors

The set of eigenvectors and eigenvalues forms a more advanced way to un-

derstand the geometric behavior of certain matrices. We will use eigenvalues

to compute the fractal dimension of digraph self-similar sets and related

fractal sets. A vector v is an eigenvector of a matrix M if there is a number

λ so that Mv = λv. In this case, λ is the corresponding eigenvalue. The col-

lection of eigenvalues and eigenvectors is sometimes called the eigensystem

of the matrix. The eigenvector determines a one dimensional subspace which

is invariant under M and the eigenvalue determines the factor by which M

expands or compresses this subspace. Mathematica has built in commands

Eigenvalues, Eigenvectors, and Eigensystem to compute these.

M= 881 � 2, 1 <, 80, 2 <<;
Eigenvalues @MD
:2, 1

2
>

Eigenvectors @MD
:: 2

3
, 1>, 81, 0<>

Thus this matrix should compress the vector

(

1

0

)

by the factor 1/2 and it

should expand the vector

(

2/3

1

)

by the factor 2.

M.81, 0 <
: 1
2
, 0>

M.82 � 3, 1 <
: 4
3
, 2>

The command Eigensystem returns a list of two lists; the first list contains

the eigenvalues and the second list contains the corresponding eigenvectors.

Eigensystem @MD

B.2 Eigenvalues and eigenvectors 147

::2, 1

2
>, :: 2

3
, 1>, 81, 0<>>

Finally, the commands Inner and Outer generalize the dot and matrix

products of vectors. These commands will be useful when implementing the

digraph iterated function system scheme. The dot product of two vectors

simply multiplies termwise and adds the results. The dot product of w and

v is denoted w.v. Vectors are represented as lists. For example,

w = 81, 2, 3 <;
v = 8a, b, c <;
w.v
a + 2 b + 3 c

The inner product generalizes this by allowing operations other than addi-

tion or multiplication to be used. In general, operations can be defined by

multivariate functions f and g where f plays the role of multiplication and g

plays the role of addition. Inner implements this generalized inner product

as follows.

Clear @f, g D;
Inner @f, 81, 2, 3 <, 8a, b, c <, g D
g@f@1, aD, f@2, bD, f@3, cDD

Note that if f is Times denoting multiplication and g is Plus denoting ad-

dition, then we recover the basic dot product.

Inner @Times, 81, 2, 3 <, 8a, b, c <, Plus D
a + 2 b + 3 c

One way to think of the inner product is as matrix multiplication of a row

vector times a column vector.

H1 2 3 L.

a

b
c
�� MatrixForm

H a + 2 b + 3 c L
If we multiply a column vector by a row vector, we obtain the outer

product. Note that the lengths of the vectors need not be the same.

a

b
c

. H 1 2 3 4 L �� MatrixForm

a 2 a 3 a 4 a

b 2 b 3 b 4 b

c 2 c 3 c 4 c

This can be generalized using the command Outer

148 Linear Algebra

Outer @f, 8a, b, c <, 81, 2, 3, 4 <D �� MatrixForm

f@a, 1D f@a, 2D f@a, 3D f@a, 4D
f@b, 1D f@b, 2D f@b, 3D f@b, 4D
f@c, 1D f@c, 2D f@c, 3D f@c, 4D

If we use Times in place of f, we recover the usual outer product.

Outer @Times, 8a, b, c <, 81, 2, 3, 4 <D �� MatrixForm

a 2 a 3 a 4 a

b 2 b 3 b 4 b

c 2 c 3 c 4 c

Exercises

B.1 Create a graphic representing a square with center at the origin and

sides parallel to the coordinate axes. This graphic will called The

Graphic throughout these exercises.

B.2 Write down a matrix which transforms The Graphic into a square with

width 1/2 and height 4. Use Mathematica to visualize this transforma-

tion.

B.3 Write down a matrix which rotates The Graphic through the angle π/4.

B.4 Using Do or Table and our rotation techniques, generate the list of

images shown in figure B.1, where each square is a rotation of the

previous square through the angle π/12.

Figure B.1 A rotating square

Appendix C

Real Analysis

Real analysis is the branch of mathematics that grew out of an effort to

understand the theoretical aspects of calculus. The main tools of calculus,

the derivative and the integral, depend on the difficult notion of limit, which

in turn depends on the basic structure of the real numbers. This theoretical

framework describing R and Rn is the natural setting to prove the major

theorems of fractal geometry.

In this appendix, we outline just that part of real analysis relevant to this

book. One proof is presented to introduce the flavor of real analysis, but most

results are stated without proof. If you have had an undergraduate course

in real analysis, then most of this material should be familiar. If this is your

first exposure to the subject, this material should seem very complicated or

confusing. No pretense is made that this material can be fully absorbed on

a first reading and no effort is made to fully elucidate the material. A deep

understanding of real analysis can only be acquired through long and difficult

study. Much of this book can be appreciated without the use of real analysis,

but an understanding of the theoretical framework certainly enhances the

beauty of the subject. We look most closely at this theoretical framework in

chapter 3, which will be particularly dependent on real analysis.

C.1 Sequences

A sequence can be thought of as an infinite list of real numbers. More pre-

cisely, a sequence is a function mapping N → R. We frequently represent

a sequence using the notation {an}∞n=1. The most important issue concern-

ing a sequence is that of convergence, i.e. does the sequence have a limit.

Intuitively, a sequence {an}∞n=1 is said to converge to the limit L if an can

be made arbitrarily close to L by taking n to be sufficiently large. This

statement is made precise by the following definition

150 Real Analysis

Definition C.1 The sequence {an}∞n=1 is said to converge to the limit L

if for every ε > 0, there is an N ∈ N so that |an − L| < ε whenever n > N .

In this case, we write lim an = L or an → L.

In this definition, ε may be thought of as an arbitrary error tolerance; it

describes how close an is supposed to be to L. The N describes how large n

should be to guarantee that |an − L| < ε. For example,

lim
2n

3n + 1
=

2

3
, because| 2n

3n + 1
− 2

3

∣

∣

∣

∣

< ε

whenever n > 1/(9ε).

In the definition of limit, we see that an → L if the value of an is close to

L for large n, but we can’t use this definition to prove that a sequence con-

verges without knowing the limit first. Our first theorem, called the Cauchy

criterion, provides a way to test whether a sequence converges without know-

ing the limit. Intuitively, a sequence is said to be Cauchy if the values of

an are close to one another for large n. As we will see, this is equivalent to

convergence of the sequence.

Definition C.2 The sequence {an}∞n=1 is called Cauchy if for every ε > 0,

there is an N ∈ N so that |an − am| < ε whenever m,n > N .

Theorem C.3 A sequence converges if and only if it is Cauchy.

The Cauchy criterion is an “if and only if” statement so it provides a char-

acterization of convergence without reference to the limit of the sequence.

We will use it to prove the contraction mapping theorem. An application

of the contraction mapping theorem allows us to establish the most funda-

mental result of this book: the existence and uniqueness of invariant sets of

iterated function systems.

Since this theorem is so fundamental, let’s prove one direction of the

Cauchy criterion. This also provides us with a first look at a genuine proof

in real analysis. The proof depends on the triangle inequality which says

that |a + b| ≤ |a| + |b| for all real numbers a and b.

Lemma C.4 If a sequence converges, then it is Cauchy.

Proof Suppose that the sequence {an}∞n=1 converges to L and let ε > 0.

We want some N ∈ N which is large enough so that |an − am| < ε whenever

m,n > N . Since {an}∞n=1 converges to L, there is an N ∈ N which is large

enough so that |an − L| < ε/2 whenever n > N . Thus if m,n > N ,

C.2 The basic structure of R and Rn 151

|an − am| = |an − L + L − am| ≤ |an − L| + |L − am| <
ε

2
+

ε

2
= ε.

Given a sequence {an}∞n=1, we can form the related series
∑∞

n=1 an, which

should be familiar to most students of calculus. We will occasionally refer

to the geometric series formula namely

∞
∑

n=m

arn =
arm

1 − r
,

provided |r| < 1.

C.2 The basic structure of R and Rn

Most students of calculus will have familiarity with the basic structure of

R, although they might have taken it for granted. For example, R has an

algebraic structure; i.e. it is a set with algebraic operations addition and

multiplication which combine real numbers to form new real numbers.

The notions of an open interval versus a closed interval should also be

familiar to calculus students. These ideas generalize to open and closed sets

of R and of Rn. The basic properties of open and closed sets define the

topological structure of R or of Rn. All of the fractals defined in this book

are closed (in fact compact) sets because these are the natural invariant

sets of iterated function systems. Let’s carefully define the basic concepts of

topology. These definitions are stated for Rn. Of course, they apply to R as

well by taking n = 1.

Definition C.5

1 Let x ∈ Rn and let r > 0. The set Br(x) = {y : |y − x| < r} is called

the open ball of radius r about x. The set Br(x) = {y : |y − x| ≤ r} is

called the closed ball of radius r about x.

Br(x) = {y : |y − x| < r}
is called the open ball of radius r about x. The set

Br(x) = {y : |y − x| ≤ r}
is called the closed ball of radius r about x.

152 Real Analysis

2 A set U ⊂ Rn is called open if for every x ∈ U , there is an r > 0 such

that Br(x) ⊂ U .

3 A point x ∈ Rn is called a boundary point of a set U ⊂ Rn if for every

r > 0, Br(x) contains points in U and in U c, the complement of U .

4 A set is called closed if it contains all of its boundary points.

5 A point x ∈ Rn is called a cluster point of a set U if for every r > 0,

Br(x) contains points in U .

6 A set U is called bounded if there is an r > 0 big enough so that U ⊂
Br(0).

7 A set E is called compact if every infinite subset of E has a cluster point

in E.

Several comments are in order concerning these definitions. Compactness

is an extremely important idea in topology. There are several alternative

characterizations of compactness. Perhaps the most important theorem con-

cerning compactness for this book states that a set E ⊂ Rn is compact if

and only if it is closed and bounded. This is a useful and intuitive way for

many readers to think of compactness. However, it should be emphasized

that this characterization is not valid in the more general setting of metric

spaces described later. The notions of open and closed sets are clearly com-

plementary. In fact, a fundamental theorem states that a set is closed if and

only if its complement is open.

The fundamental characteristic of the set of real numbers R which dis-

tinguishes it from the set of rational numbers Q is completeness. The set of

real numbers is called complete because every non-empty set in R which is

bounded above has a least upper bound in R. The least upper bound of set

A ⊂ R is also called the supremum of A and is denoted supA. The greatest

lower bound of a set A is also called the infimum of A and denoted inf A.

For example, inf{1/n : n ∈ N} = 0.

C.3 Metric spaces

The absolute value function defines a notion of distance d between two points

x and y in Rn by d(x, y) = |x−y|. The key algebraic properties of this notion

of distance are reflexivity, symmetry, and the triangle inequality. That is,

for all x, y, and z in Rn,

C.4 Functions 153

d(x, x) = 0

d(x, y) = d(y, x)

d(x, z) ≤ d(x, y) + d(y, z)

Conversely, any function satisfying these three criteria where x, y, and z

belong to some set S defines a reasonable notion of distance on that set.

Functions satisfying these properties are called metrics and a set S equipped

with such a metric is called a metric space. If the metric space happens to

have the property that any Cauchy sequence automatically converges, then

the metric space is called complete.

In chapter 3, we will define a complete metric on the set of all non-empty

compact subsets of Rn called the Hausdorff metric. The proof of the exis-

tence of invariant sets of iterated function systems involves the iteration of

a function defined on this set.

C.4 Functions

Functions mapping R → R are the central objects of study in real analysis.

We assume that the reader is familiar with the basic properties of limits and

continuity of a function from calculus. An important fact that we will use

is that the continuous image of a compact set is compact.

Later for the chapter on graphs of functions: Precise definition of conti-

nuity / Holder conditions

Appendix D

The Golden Ratio

The golden ratio ϕ ≈ 1.618 is a beautiful and important irrational number

whose status ranks right behind π and e. Many sources indicate that ϕ

appears throughout ancient architecture, medieval art, and even the human

body. Much of this is false, having been debunked in Markowsky (1992).

There is no doubt, however, that the algebraic properties of the golden ratio

lead to geometric constructions involving self-reproduction. In this short

appendix, we focus on these mathematical properties of the golden ratio.

D.1 Definition

Suppose an interval of length a is divided into sub-intervals of length b and

c. If the lengths of the sub-intervals are chosen so that a/b = b/c, then the

division is called a golden cut. In words, the ratio of the whole to the longer

part equals the ratio of the longer part to the shorter. This ratio is called

the golden ratio and is denoted ϕ. We can compute a numerical value of ϕ

as follows. Suppose we cut an interval of length ϕ with a golden cut. Then,

as shown in figure D.1, the length of the longer sub-interval must be 1 so

the length of the shorter must be ϕ − 1. The defining equation then yields

ϕ = 1/(ϕ − 1). Thus ϕ satisfies the quadratic equation ϕ2 − ϕ − 1 = 0 so

ϕ =
(

1 +
√

5
)/

2 ≈ 1.618.

1 ϕ − 1

Figure D.1 A golden cut

D.2 Geometric properties 155

D.2 Geometric properties

D.2.1 The golden rectangle

A rectangle whose sides are in the golden proportion is called a golden

rectangle. The simplest golden rectangle has side lengths ϕ and 1. If we cut

the longer side of such a rectangle in a golden cut with a line perpendicular

to that side, we generate a square and a smaller rectangle as shown in figure

D.2. The ratio of the longer side of the smaller triangle to the shorter is then

1/(ϕ − 1) = ϕ. Thus, the smaller rectangle is another golden rectangle. We

can use this geometric decomposition to generate a spiral of squares that fill

a golden rectangle, as shown in figure D.3.

1

1 ϕ − 1

Figure D.2 A golden rectangle

Figure D.3 A spiral of squares filling a golden rectangle

156 The Golden Ratio

D.2.2 The golden triangles

Consider an isosceles triangle whose base angles are twice the remaining

angle. The angle measures must then be 72 − 36 − 72. Suppose we bisect

one of the base angles with a line segment that joins that base angle to the

opposite side, as shown in figure D.4 (a). This divides the triangle into two

isosceles triangles, one with angles 36 − 108 − 36 and another with angles

72 − 36 − 72. Thus, this second triangle is similar to the original and we

can use this information to determine the scaling factor between the two.

Suppose the length of the longer side of the original triangle is ϕ while the

length of the base is 1. (The symbol ϕ may be treated as an unknown here

but it will turn out to be the golden ratio anyway.) Comparing the ratio of

the length of a leg to the base in the larger triangle to the smaller, we see

that ϕ/1 = 1/(ϕ − 1). Thus this ratio is indeed the golden ratio.

11

1ϕ

ϕ − 1

ϕ − 1

(a) (b)

Figure D.4 The golden triangles

A similar argument shows that the 36 − 108 − 36 can be dissected into a

72− 36− 72 triangle and another 36− 108− 36 triangle. In the language of

chapter four, these form a digraph fractal pair.

D.2.3 The pentagon

References

Barnsley, M. 1993. Fractals Everywhere. Second edn. Kaufman.
Edgar, G. A. 1993. Classics on Fractals. Perseus Books.
Edgar, G. A. 1998. Integral, Probability, and Fractal Measures. Springer-Verlag.
Edgar, G. A. 2009. Measure Topology and Fractal Geometry. Second edn. Springer-

Verlag.
Falconer, K. 1997. Techiques in Fractal Geometry. Wiley.
Falconer, K. 2003. Fractal Geometry. Second edn. Wiley.
Gutierrez, J., Iglesias, A., Rodriguez, M., and Rodriguez, V. 1997. Generating and

rendering fractals images. Fractals, 7.
Hutchinson, J. 1981. Fractals and self similarity. Indiana University Mathematics

Journal, 30, 713–747.
Lalley, S. P. 1988. The packing and covering functions of some self-similar fractals.

Indiana Univ. Math. J., 37, 699–710.
Mandelbrot, M. 1982. The Fractal Geometry of Nature. Freeman.
Markowsky, G. 1992. Misconceptions about the Golden Ratio. The College Math-

ematics Journal, 23, 2–19.
Schief, A. 1996. Self-similar sets in complete metric spaces. Proc. Amer. Math.

Soc., 124, 481–490.
Zhang, X., Hitt, R., Wang, B., , and J., Ding. 2008. Sierpinski Pedal Triangles.

Fractals, 30, 141–150.

