Exercise 4.4.1 Let $f(x) = x^{3}$. Show $f$ is continuous on $\mathbb{R}$.
Proof. Let $x, x_{0} \in \mathbb{R}$, $\epsilon > 0$ and
$$\delta = \textrm{ min} \{1, \frac{\epsilon}{3(x_{0} + 1)^2} \},$$ satisfy $| x - x_{0}| < \delta$. Then $|f(x) - f(x_{0})| = |x^3 - x_{0}^{3}| = |x - x_{0}|\cdot|x^2 + xx_{0} + x_{0}^2|$ Note that $x \in (x_{0} - 1, x_{0} + 1)$, by our choice of $\delta$. It follows that $|x^2 + xx_{0} + x_{0}^2| < (x_{0} + 1)^2 + (x_{0} + 1)^2 + x_{0}^2 < 3(x_{0} + 1)^2$. Substituting in we find that $|x - x_{0}|\cdot|x^2 + xx_{0} + x_{0}^2| < \delta\cdot3 (x_{0} + 1)^2 \leq \frac{\epsilon}{3 (x_{0} + 1)^2} \cdot3 (x_{0} + 1)^2 = \epsilon$. So $|f(x) - f(x_{0})| < \epsilon$. $\square$.