Problem 2.2.1 asks us to prove that several sequences converge. Here they are, together with a couple more:
a) $\displaystyle \lim \frac{1}{6n^2+1}=0$
b) $\displaystyle \lim \frac{3n+1}{2n+5}=\frac{3}{2}$
c) $\displaystyle \lim \frac{2}{\sqrt{n+3}}=0$
d) $\displaystyle \lim \frac{10n^2}{n^2-10}=10$
a) $\displaystyle \lim \frac{\cos(n)}{n^2+1}=0$