Problem 1 on the Exam 1 review sheet asks us to show that the function $f(z)=|z|$ is nowhere differentiable using the definition of the derivative.
Let $x,y\in\mathbb{R}$ and let $z=x+iy$. If we approach $f(z)$ along the real axis then
\begin{align}
&\lim\limits_{h\rightarrow0}\frac{f((x+h)+iy)-f(x+iy)}{h}\\&=\lim\limits_{h\rightarrow0}\frac{|(x+h)+iy|-|x+iy|}{h}\\&=\lim\limits_{h\rightarrow0}\frac{\sqrt{(x+h)^2+y^2}-\sqrt{x^2+y^2}}{h}
\end{align}
Similarly, if we approach $f(z)$ along the imaginary axis then
\begin{align}
&\lim\limits_{h\rightarrow0}\frac{f(x+i(y+h))-f(x+iy)}{ih}\\&=\lim\limits_{h\rightarrow0}\frac{|x+i(y+h)|-|x+iy|}{ih}\\&=\lim\limits_{h\rightarrow0}\frac{\sqrt{x^2+(y+h)^2}-\sqrt{x^2+y^2}}{ih}
\end{align}
We can show that $f(z)$ is nowhere differentiable by showing that these two limits have different results. How can one show this?