We are asked to compute the integral
$$
\int_{C_1(i)}\frac{1}{z^4+1}dz.
$$
I am confident that
$$
\begin{align}
z^4+1&=\bigg(z-\bigg(\frac{\sqrt{2}}{2}+\frac{i\sqrt{2}}{2}\bigg)\bigg)\bigg(z-\bigg(-\frac{\sqrt{2}}{2}+\frac{i\sqrt{2}}{2}\bigg)\bigg)\\ &\times\bigg(z-\bigg(-\frac{\sqrt{2}}{2}-\frac{i\sqrt{2}}{2}\bigg)\bigg)\bigg(z-\bigg(\frac{\sqrt{2}}{2}-\frac{i\sqrt{2}}{2}\bigg)\bigg).
\end{align}
$$
The point $\frac{\sqrt{2}}{2}+\frac{i\sqrt{2}}{2}$ is inside the circle of radius $1$ centered at $i$. By the Cauchy integral formula, this integral is equal to
$$
\begin{align}
&2\pi i\cdot\Bigg[\bigg(z-\bigg(-\frac{\sqrt{2}}{2}+\frac{i\sqrt{2}}{2}\bigg)\bigg)\bigg(z-\bigg(-\frac{\sqrt{2}}{2}-\frac{i\sqrt{2}}{2}\bigg)\bigg)\\&\bigg(z-\bigg(\frac{\sqrt{2}}{2}-\frac{i\sqrt{2}}{2}\bigg)\bigg)\Bigg]^{-1}=\frac{\pi(1-i)}{2\sqrt{2}},
\end{align}
$$
where $z=\frac{\sqrt{2}}{2}+\frac{i\sqrt{2}}{2}$.
However, when I try to use mathematica to solve this integral using the contour $\gamma(t)=i+e^{it},0\leq t<2\pi$ I get the answer $\frac{\pi}{\sqrt{2}}$. Which is the right answer and why?
Edited out the typos. Thanks, @complexcharacter.