I'd like someone who's done this problem to see if I've made a mistake.
We are asked to find two Laurent series centered at zero for
$$
f(z)=\frac{1}{z(z-4)}.
$$
For the first series, I factor out a $z$, giving
\begin{align}
\frac{1}{z(z-4)}&=\frac{1}{z^2}\frac{1}{(1-4/z)}\\&=\frac{1}{z^2}\sum_{k=0}^\infty\bigg(\frac{4}{z}\bigg)^k\\&=\sum_{k=0}^\infty\frac{4^k}{z^{k+2}}.
\end{align}
This converges for $|4/z|<1\Rightarrow|z|>4$.
For the second series, I factor out a $z-4$, giving
$$
\begin{align}
\frac{1}{z(z-4)}&=\frac{1}{((z-4)+4)(z-4)}\\&=\frac{1}{(z-4)^2}\frac{1}{(1+4/(z-4))}\\&=\frac{1}{(z-4)^2}\frac{1}{(1-(-4/(z-4)))}\\&=\frac{1}{(z-4)^2}\sum_{k=0}^\infty\bigg(\frac{-4}{z-4}\bigg)^k\\&=\sum_{k=0}^\infty\frac{(-1)^k4^k}{(z-4)^{k+2}}.
\end{align}
$$
This converges for $|-4/(z-4)|<1\Rightarrow|z-4|>4$.
I'm unsure if my domains of convergence are correct or even if they are "centered at zero".