Right so I think I have an answer for this one.
First definitions. Let
$Z_1,Z_2,Z_3\in \mathbb{C}$, where $Z_1=(x_1,y_1)$, $Z_2=(x_2,y_2)$,
and $Z_3=(x_3,y_3)$,
with $x_1,x_2,x_3,y_1,y_2,y_3 \in \mathbb{R}$.
Then, we want to prove that $$Z_1(Z_2+Z_3)=Z_1Z_2+Z_1Z_3.$$
Thus
\begin{align*}
Z_1(Z_2+Z_3)&=(x_1,y_1)[(x_2,y_2)+(x_3,y_3)]\\
&=(x_1,y_1)(x_2+x_3,y_2+y_3)\\
&=(x_1(x_2+x_3)-y_1(y_2+y_3),x_1(y_2+y_3)+y_1(x_2+x_3))\\
&=(x_1x_2+x_1x_3-y_1y_2-y_1y_3,x_1y_2+x_1y_3+y_1x_2+y_1x_3)\\
&=((x_1x_2-y_1y_2)+(x_1x_3-y_1y_3),(x_1y_2+y_1x_2)+(x_1y_3+y_1x_3))\\
&=(x_1x_2-y_1y_2,x_1y_2+y_1x_2)+(x_1x_3-y_1y_3,x_1y_3+y_1x_3)\\
&=(x_1,y_1)(x_2,y_2)+(x_1,y_1)(x_3,y_3)\\
&=Z_1 Z_2 + Z_1 Z_3
\end{align*}
End