Use the Weierstrass M-test to show that each of the following series converges uniformly on the given domain:
a) $\displaystyle \sum \frac{z^k}{k^2} \text{ on } \overline{D}_1(0)$
b) $\displaystyle \sum \frac{1}{z^k} \text{ on } \overline{D}_2(0)^c$
c) $\displaystyle \sum \frac{z^k}{z^k+1} \text{ on } \overline{D}_r(0) \text{ where } 0\leq r<1$