Find power series for each of the following functions:
b) $\displaystyle \cos(z^2)$
c) $\displaystyle z^2\sin(z)$
d) $\displaystyle (\sin(z))^2$
You might focus on the first few terms for that last one.
Find power series for each of the following functions:
b) $\displaystyle \cos(z^2)$
c) $\displaystyle z^2\sin(z)$
d) $\displaystyle (\sin(z))^2$
You might focus on the first few terms for that last one.
For b.) $$\sin(z)=\sum_{n=0}^\infty(-1)^{n+1}\frac{z^{2n+1}}{(2n+1)!}$$
$$f(z)=z^2\sin(z)=z^2\sum_{n=0}^\infty(-1)^{n+1}\frac{z^{2n+1}}{(2n+1)!}=\sum_{n=0}^\infty(-1)^{n+1}\frac{z^{2n+1}}{(2n+1)!}=\sum_{n=0}^\infty(-1)^{n+1}\frac{z^{2n+3}}{(2n+1)!}$$
B) Find the power series representation about the origin for $\cos(z^2)$.
Note that the power series about the origin for $\cos(z)=\displaystyle\sum_{k=0}^{\infty}(-1)^{2k}\frac{z^{2k}}{(2k)!}$.
If we instead evaluate $\cos(z^2)$, we have $\cos(z^2)=\displaystyle\sum_{k=0}^{\infty}(-1)^{2k}\frac{(z^2)^{2k}}{(2k)!}=\displaystyle\sum_{k=0}^{\infty}(-1)^{2k}\frac{z^{4k}}{(2k)!}$.