2.2.17, part d
$\textbf{claim}$:
Given the function $f(z)=e^{x}e^{-iy}$ where $z=x+iy$ and $x,y\in\mathbb{R}$, The function $f$ is only differentiable at the Imaginary axis.
$\textbf{Proof}$:
Start by rewriting $f(z)=e^xe^{-iy}$ in terms of it's real and imaginary parts:
$$\begin{array}{rcl}f(z)&=&e^xe^{-iy}\\&=&e^x( \cos(y)-i \sin(y))\\&=&e^x \cos(y)-(e^x \sin(y))i \end{array}$$
Now, let:
$$\begin{array}{rcl} u(x,y)&=&e^x \cos(y)\\&and&\\v(x,y)&=&-e^x \sin(y) \end{array}$$
According to the Cauchy–Riemann equations, $f$ is only differentiable where:
$$\begin{array}{rcl}\frac{\partial u}{\partial x}&=&\frac{\partial v}{\partial y}\\&and&\\ \frac{\partial u}{\partial y}&=&-\frac{\partial v}{\partial x} \end{array}$$
Given our $u(x,y)$ , $v(x,y)$:
$$\begin{array}{rcl}\frac{\partial u}{\partial x}=e^x \cos(y)&,&\frac{\partial v}{\partial y}=-e^x \cos(y)\\&&\\ \frac{\partial u}{\partial y}=-e^x \sin(y)&,&-\frac{\partial v}{\partial x}=e^x \sin(y) \end{array}$$
Because $e^x \neq 0$ for any $x$, these equations is true for all $x$ and only for $y=0$.